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Abstract

We study cheap-talk pre-play communication in the static all-pay auctions. For the case of

two bidders we show that all correlated and communication equilibria are payoff equivalent to

the Nash equilibrium if there is no reserve price, or if it is commonly known that one bidder

has a strictly higher value. Hence, in such environments the Nash equilibrium predictions are

robust to pre-play communication between the bidders. If there are three or more symmetric

bidders, or two symmetric bidders and a positive reserve price, then we show that there exist

correlated and communication equilibria such that the bidders’ payoffs are higher than in the

Nash equilibrium. In these cases pre-play cheap talk may affect the outcomes of the game since

the bidders have an incentive to coordinate on such equilibria.
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1 Introduction

In many situations it may be difficult to prevent the bidders from engaging in cheap talk before

the auction. In this paper we study whether such pre-play communication can affect the outcomes
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of the static all-pay auctions. In particular, we are interested whether the predictions about the

auction outcomes obtained using models that do not allow the bidders to talk are robust to allowing

pre-play cheap-talk communication.

To study the all-pay auction with pre-play communication we use the solution concepts of

correlated equilibrium (Aumann, 1974; 1987)) and communication equilibrium (Myerson, 1982),

which are defined in Section 2. The significance of these solution concepts for studying games with

communication is due to a version of the revelation principle for such games. Consider a Nash

equilibrium outcome of a game that consists of some communication protocol followed by the all-

pay auction. In the complete information environments such an outcome can be replicated as a

correlated equilibrium of the all-pay auction, and in the incomplete information environments—as a

communication equilibrium of the all-pay auction (Myerson, 1982).

In the all-pay auction models that we study there is either a unique Nash equilibrium, or all

Nash equilibria result in the same payoffs for the bidders. If it happens that in a given environment

all correlated (communication) equilibria are payoff equivalent to the Nash equilibrium, then we can

say that the Nash equilibrium prediction is robust to pre-play communication between the bidders.

However, if there exist correlated (communication) equilibria that are not payoff equivalent to the

Nash equilibrium, then pre-play communication may affect the outcomes of the game. In particular,

if in such correlated (communication) equilibria the bidders get higher payoffs than in the Nash

equilibrium, then they have an incentive to coordinate on the former, possibly with the help of a

mediator.1

In Section 3 we study correlated equilibria in the all-pay auctions with complete information. We

show that with two bidders the correlated equilibria are payoff equivalent to the Nash equilibrium

when there is no reserve price, or if the bidders are asymmetric (Proposition 2). In such cases the

all-pay auction is “strategically equivalent” to a particular zero-sum game, and for the two-player

zero-sum games the correlated and Nash equilibria are known to be payoff equivalent (Moulin and

Vial, 1978). It turns out that this equivalence does not hold when there is a reserve price and the

bidders are symmetric. For this case we construct correlated equilibria that are more profitable for

the bidders than the Nash equilibrium (Proposition 3 and Example 1). When there are three or

1 If there are sufficiently many bidders, then the outcome of any correlated (communication) equilibrium can be
achieved as a Nash equilibrium of a game that consists of an unmediated communication protocol followed by the
all-pay auction (Forges, 1990; Gerardi, 2004).
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more symmetric bidders, such profitable correlated equilibria exist even when there is no reserve

price (Proposition 4 and Example 2). The idea of the constructions is to introduce some negative

correlation in the distribution of the bids. Say, when one of the bidders bids aggressively, then with

a certain probability his opponents are “suggested” to bid zero, and thus save the cost of their bids.

In Section 4 we study communication equilibria in the all-pay auctions with independent pri-

vate values. Similarly to the case of complete information, we show that with two bidders the

communication equilibria are payoff equivalent to the Nash equilibrium when there is no reserve

price (Proposition 6). That is, no payoff-consequential self-enforcing sharing of private information

or correlation of play is possible in this case. However, in other cases there exist communication

equilibria that are more profitable for the bidders than the Nash equilibrium. In a symmetric en-

vironment where each bidder has two possible valuations we demonstrate such possibilities for the

case of two bidders and a positive reserve price (Proposition 8), and for the case of more than two

bidders and no reserve price (Proposition 10). The constructions involve correlating the bidders’

play in a way that is similar to the correlated equilibria in Section 3. The bidders share some private

information, but only to a limited extent, because it is important to maintain enough uncertainty

about the opponents’ types and play for the construction to work.

Pre-play communication in auctions is typically studied in the context of bidder collusion.2 Most

of the studies of collusion in static auctions focus on a scenario when the bidders organize an explicit

cartel that enforces coordinated behavior of the bidders in the action and facilitates exchange of

side payments between the bidders.3 The bidder collusion that is self-enforcing is for the most part

considered in the context of repeated auctions.4 In such models the enforcement of the desired

bidder behavior is provided by the expectations of the future reaction of the opponents.

Only a few papers study collusion in static auctions when the behavior of the bidders in the

auction cannot be directly controlled. Marshall and Marx (2007), and Lopomo et al. (2010) study

collusion in the first- and second-price auctions under the following scenario. The bidders make

reports to a “center”; based on these reports, the center privately recommends a bid to be made

2A separate strand of literature studies the bidders’ individual decisions to disclose their private signals that are
assumed to be verifiable. Hernando-Veciana and Troge (2005) and Benoit and Dubra (2006) study such a problem in
auctions with interdependent valuations.

3For example, Graham and Marshall (1987) study collusion in second-price auctions, and McAfee and McMillan
(1992) study collusion in first-price auctions.

4For example, Aoyagi (2003) studies self-enforcing collusion with pre-play communication in repeated auctions.
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by each bidder, and requires payments from the bidders.5 Note that if we remove the possibility

of exchange of pre-auction side payments, then such a model of collusion is equivalent to assuming

that the bidders play a communication equilibrium.

Lopomo et al. (2010) show that in the first-price auction with discrete bids such a collusion is

completely ineffective: all collusive equilibria are payoff equivalent to the unique Nash equilibrium.

An equivalent result for the communication equilibrium in such an environment follows directly

from their result.6 However, in the second-price auction such a collusion works as well as collusion

in a model where the bidders behavior can be controlled by the cartel (Marshall and Marx, 2007).

In fact, collusion in the second-price auctions continues to work quite well even when there is no

possibility of side payments, i.e. there exist communication equilibria that are different from the

Nash equilibria, and are more profitable for the bidders (Marshall and Marx, 2008).

The rest of the paper is organized as follows. The model and the definitions of correlated and

communication equilibria are in Section 2. The all-pay auctions with complete information and

incomplete information are studied in Sections 3 and 4, respectively. Concluding comments are in

Section 5. The proofs are relegated to the Appendix unless stated otherwise.

2 Model

There are n ≥ 2 bidders; each bidder i chooses a bid bi from a set Ai. If there is no reserve price,

then Ai = [0,∞). If there is a reserve price r > 0, then Ai = {0} ∪ [r,∞), i.e., he can either submit

an “active” bid bi ≥ r, or a “null” bid bi = 0.
7

We distinguish between complete and incomplete information environments as follows.

Complete information. Bidder i has a valuation vi > 0 for the good, and the bidders’ values

(v1, ..., vn) are commonly known. If bidder i bids bi and the other bidders bid b−i, then his payoff

is ui (bi, b−i) = viρi (bi, b−i) − bi, where ρi is the probability that bidder i wins the good for given

bids. If there is no reserve price, then

5Lopomo et al. (2005) and Garratt et al. (2008) study self-enforcing collusion without pre-auction side payments,
but with a possibility of resale.

6See also Azacis and Vida (2010) for related results for the first-price auction with a continuum of bids.
7Alternatively one can keep the action set Ai = [0,∞), but this will result in an unnecessary multiplity of equilibria

because there will be multiple possible “inactive” bids.
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ρi (bi, b−i) =





0

1

1
#{k: bk=bi}

if

if

if

bi < maxj �=i bj

bi > maxj �=i bj

bi = maxj �=i bj

If there is a reserve price r > 0, then

ρi (bi, b−i) =





0

1

1
#{k: bk=bi}

if

if

if

bi = 0 or bi ≥ r and bi < maxj �=i bj

bi ≥ r and bi > maxj �=i bj

bi ≥ r and bi = maxj �=i bj

Suppose there is a neutral trustworthy mediator who makes non-binding private recommenda-

tions (possibly stochastic) to each bidder of which bid to submit. The recommendations are made

according to a correlation rule µ, which is a probability measure over the bid profiles of the bidders

(A =
∏n
j=1Aj).

8 Each bidder i then decides which bid to submit as a function of the mediator’s

recommendation, b̂i : Ai → Ai.9

Definition 1 A correlation rule µ is a correlated equilibrium if each bidder finds it optimal to obey

the mediator’s recommendations:

∫

A

ui (b)µ(db) ≥

∫

A

ui

(
b̂i (bi) , b−i

)
µ(db) for every i, and b̂i (·) .

The significance of the correlated equilibrium for studying all-pay auctions with communication

is due to the revelation principle.10 According to it any equilibrium outcome of a game that consists

of some communication protocol followed by the all-pay auction can be replicated as a correlated

equilibrium of the all-pay auction. There is no loss of generality in requiring that for each player it

is optimal to obey the mediator’s recommendation.

Let µi be the marginal probability measure of µ on Ai:

µi (Ei) =

∫

Ei×A−i

µ(db) for every Ei ⊆ Ai.

8All considered sets and functions are Borel measurable; all considered probability measures are Borel, with
topology of weak convergence.

9 It suffices to work with the pure strategy deviations for the definitions of correlated and communication equilibria.
10See Aumann (1974, 1987) and Myerson (1982). Cotter (1989) provides the revelation principle for settings with

large action and type spaces.
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A Nash equilibrium is a correlated equilibrium such that each bidder’s behavior is independent from

the actions of the opponents, i.e., µ∗ is a product measure
∏n
j=1 µ

∗
j . When we encounter a Nash

equilibrium, we write it as a profile of the individual strategies (µ∗1, ..., µ
∗
n). Hence, both Nash and

correlated equilibria are joint plans of actions that are individually self-enforcing, but correlated

equilibrium allows for additional coordination by correlating recommendations to the bidders.

Incomplete information. Each bidder i privately observes own value vi ∈ Ti = [vi, vi] ⊂ R+.

The value of bidder i is distributed according to a probability measure Pi on Ti, independently from

the valuations of the other bidders. Let P be a product measure
∏n
j=1 Pj , and P−i =

∏
j �=i Pj . This

information structure is assumed to be common knowledge. The payoffs of the bidders are specified

in a similar way as under the complete information: the payoff of bidder i of type vi who bids bi

while the other bidders bid b−i is ui (bi, b−i; vi) = viρi (bi, b−i)− bi.

Suppose the bidders first privately report their private types to a neutral trustworthy mediator,

who then makes non-binding private recommendations (possibly stochastic) to each bidder of which

bid to submit. The recommendations are made according to a communication rule µ, which is a

family of probability measures µ(·|v) over the bid profiles of the bidders (A), indexed by the profile

of type reports submitted to the mediator (v ∈ T =
∏n
j=1 Tj). Bidder i with type vi decides which

type v̂i ∈ Ti to report, and which bid to take as a function of the mediator’s recommendation,

b̂i : Ai → Ai.

Definition 2 A communication rule µ is a communication equilibrium if Pi-a.e. type of each

bidder finds it optimal to report the true type and obey the mediator’s recommendations:

∫

T−i

(∫

A

ui (b; vi)µ(db|v)

)
P−i (dv−i) ≥

∫

T−i

(∫

A

ui

(
b̂i (bi) , b−i; vi

)
µ(db|v̂i, v−i)

)
P−i (dv−i)

for every i, Pi-a.e. vi, every v̂i, and b̂i (·) .

As in the case of correlated equilibrium, the significance of communication equilibrium for study-

ing all-pay auctions with communication is due to the revelation principle. Any equilibrium out-

come of a game that consists of some communication protocol followed by the all-pay auction can be

replicated as a communication equilibrium of the all-pay auction. There is no loss of generality in

requiring that for each player reporting the true type and obeying the mediator’s recommendation
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is optimal.

Let µi (·|vi) be the marginal probability measure of µ on Ai conditional on vi:

µi (Ei|vi) =

∫

T−i

(∫

Ei×A−i

µ(db|vi, v−i)

)
P−i (dv−i) for every Ei ⊆ Ai.

A Nash equilibrium is a communication equilibrium such that each bidder’s behavior is independent

from the reports and the actions of the opponents: µ∗ (·|v) is a product measure
∏n
j=1 µ

∗
j (·|vi).

When we encounter a Nash equilibrium, we write it as a profile of individual strategies (µ∗1, ..., µ
∗
n).

Relative to the Nash equilibrium, communication equilibrium allows for self-enforcing sharing of

private information between the bidders, as well as for coordination via correlation of recommended

bids (as in the correlated equilibrium).

3 All-pay auctions with complete information

3.1 Two bidders

Here we consider the case of two bidders under complete information. Denote the difference in

the bidders’ valuations by ∆v = v1 − v2, and without loss of generality assume ∆v ≥ 0. To avoid

uninteresting cases we assume that the valuations of both bidders are strictly above the reserve

price r ≥ 0.

First, we review the existing results on Nash equilibrium.

Proposition 1 In a complete information environment with two bidders:

(i) If r = 0, then there is a unique Nash equilibrium. Bidder 1 bids uniformly on [0, v2]; bidder 2

bids 0 with probability ∆v
v1

, and bids uniformly on [0, v2] otherwise. The bidders’ payoffs are U1 = ∆v,

U2 = 0.

(ii) If v1 > v2 > r > 0, then there is a unique Nash equilibrium. Bidder 1 bids r with probability

r
v2
, and bids uniformly on (r, v2] otherwise; bidder 2 bids 0 with probability ∆v+r

v1
, and bids uniformly

on (r, v2] otherwise. The bidders’ payoffs are U1 = ∆v, U2 = 0.

(iii) If v1 = v2 = v > r > 0, then there is a continuum of Nash equilibria. Bidder i bids 0 and

r with probabilities α r
v

and (1− α) r
v

(where α ∈ [0, 1]), respectively, and bids uniformly on (r, v]

otherwise; bidder j bids 0 with probability r
v
, and bids uniformly on (r, v] otherwise. The bidders’
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payoffs are U1 = U2 = 0.

Proof. Part (i) follows from Proposition 2 in Hillman and Riley (1989), part (ii) from Proposition

1 in Bertoletti (2008), and part (iii) from Proposition 7 in Section 4.1 below.

The Nash equilibria of the complete information all-pay auctions feature a phenomenon called

“rent dissipation”. The bidder with the lower valuation gets a zero payoff, while the bidder the

higher valuation gets a payoff equal to the difference in the valuations. In the case of symmetric

bidders the rents are fully dissipated, and each bidder gets a zero payoff.

We are interested in whether there exist correlated equilibria such that the bidders’ payoffs are

different from the Nash equilibrium payoffs. In games with a finite number of actions the correlated

equilibria are easy to describe. In such a case for each player i there are |Ai| · |Ai − 1| incentive

obedience constraints, which are linear in the probabilities over the action profiles. However, if

each player has a continuum of possible actions, then there is a double continuum of obedience

constraints, which is difficult to work with. Though in general it is not known when the set of

payoffs of correlated equilibria differs from the convex hull of payoffs of Nash equilibria, the results

for certain classes of games exist. For example, these sets coincide in the two-player zero-sum

games (Rosenthal, 1973), the two-player games that are “strategically equivalent” to zero-sum

games (Moulin and Vial, 1978), and the concave potential games (Neyman, 1997; Ui, 2008).11

There exist some results on correlated equilibria in the sealed-bid first- and second-price auctions.

The second-price auction has many Nash equilibria: the truthful equilibrium, and infinitely many

equilibria involving weakly dominated strategies. If the bidders correlate their play, then it is

possible, for example, to sustain the following collusive scheme. Before the auction a designated

winner is randomly chosen; during the auction the bidders coordinate on the equilibrium where the

designated winner obtains the good for free by submitting a very high bid while the other bidders

submit zero bids.12 Lopomo et al. (2010) study a model of collusion in the first-price auctions with

pre-auction side payments and bid recommendations when there are two symmetric bidders. Their

results imply that the correlated equilibria are payoff equivalent to the unique Nash equilibrium in

a model with large discrete bid spaces.

11Moulin and Vial (1978) study this question for general games, but they use a different notion of correlated
equilibrium that requires some commitment on the part of the players.

12See Marshall and Marx (2008).
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We show that the correlated equilibria of the all-pay auction are payoff equivalent to the Nash

equilibrium when r = 0 or v1 > v2.13 The idea of the proof is similar to the one for the zero-sum

games mentioned above.14

Proposition 2 In a complete information environment with two bidders, such that r = 0 or v1 >

v2, every correlated equilibrium is payoff equivalent to the Nash equilibrium.

Proof. Denote by U∗i and Ui the expected payoffs of player i in the Nash equilibrium (µ∗1, µ
∗
2) and

in the correlated equilibrium µ, respectively. By the definition of Nash equilibrium

U∗i = vi

∫

Aj

∫

Ai

ρi (b)µ
∗
i (dbi)µ

∗
j (dbj)−

∫

Ai

biµ
∗
i (dbi) (1)

≥ vi

∫

Aj

∫

Ai

ρi (b) µ̃i(dbi)µ
∗
j (dbj)−

∫

Ai

biµ̃i(dbi)

for every i, and µ̃i. By the definition of correlated equilibrium

Ui = vi

∫

A

ρi (b)µ(db)−

∫

Ai

biµi(dbi) (2)

≥ vi

∫

Aj

∫

Ai

ρi (b) µ̃i(dbi)µj (dbj)−

∫

Ai

biµ̃i(dbi)

for every i, and µ̃i.

Add (1) and (2), with µ̃i = µi in (1), and µ̃i = µ∗i in (2), divide by vi, and then sum up over i.

The result is

∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µ∗i (dbi)µ

∗
j (dbj) +

∫

A


∑

k=1,2

ρk (b)


µ(db) (3)

≥

∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µi(dbi)µ

∗
j (dbj) +

∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µ∗i (dbi)µj (dbj)

If r = 0, then
∑
k=1,2 ρk (b) = 1 for every b. If v1 > v2, the same is true even if r > 0, because

bid 0 is not rationalizable for bidder 1. To see this note that no rational bidder bids above his value,

13One may conjecture that such a result is implied by the uniqueness of the Nash equilibrium. Moulin and Vial
(1978) have shown that this is not true.

14Another way to prove this result is to show that the all-pay auction is “strategically equivalent” to the following
game. Consider a game identical to the all-pay auction, except that the payoffs are obtained from the all-pay auction
payoffs as follows: wi (bi, bj) =

1

vi
ui (bi, bj)−

1

2
+ 1

vj
bj . If r = 0 or v1 > v2, then this game is zero-sum, and thus the

set of payoffs of correlated equilibria coincides with the set of Nash equilibria (Moulin and Vial, 1978).
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and thus bidder 1 always prefers to bid slightly above v2 to bidding 0. Hence, inequality (3) holds

as equality. This implies that the following inequalities hold as equalities as well: (1) when µ̃i = µi,

and (2) when µ̃i = µ∗i .

Next we show that
(
µ∗i , µj

)
is a Nash equilibrium. By the above argument, bidder j’s payoff

from
(
µ∗i , µj

)
is U∗j , and µj is a best response to µ∗i . Bidder i’s payoff from

(
µ∗i , µj

)
is Ui. If µ∗i is

not a best response to µj, then for some µ̃i

Ui = vi

∫

Aj

∫

Ai

ρi (b)µ
∗
i (dbi)µj (dbj)−

∫

Ai

biµ
∗
i (dbi)

< vi

∫

Aj

∫

Ai

ρi (b) µ̃i(dbi)µj (dbj)−

∫

Ai

biµ̃i(dbi) ≤ Ui

where the second inequality follows from (2), which gives a contradiction.

By Proposition 1 the Nash equilibrium is unique when r = 0 or v1 > v2. This implies that

µi = µ∗i , and thus U∗i = Ui for every i.

The result shows that when there is no reserve price or if the bidders are asymmetric, then the

prediction according to Nash equilibrium solution about the bidders payoffs (i.e., the rent dissipation

property) is robust to pre-play communication between the bidders. The result also implies that

in these cases no effective collusive agreement (mediated or unmediated) between the bidders is

possible, if we restrict attention to collusive schemes that are self-enforcing, and do not allow side

transfers or punishments.

When v1 = v2 = v and r > 0 the same proof does not work. In particular, inequality (3) does

not necessarily hold as an equality because the action profile (b1, b2) = (0, 0) cannot be ruled out.

Indeed, in some Nash equilibria both bidders submit null bids with positive probability. This means

that there may exist correlated equilibria that are not payoff equivalent to Nash equilibria, and the

next result confirms that this is indeed the case.

Proposition 3 In a complete information environment with two bidders, such that vi = v for

i = 1, 2 and v > r > 0, for every (U1, U2) ∈ co
{
(0, 0) ,

(
0, r

2(v−r)
v2

)
,
(
r2(v−r)
v2+r2 ,

r2(v−r)
v2+r2

)
,
(
r2(v−r)
v2

, 0
)}

there exists a correlated equilibrium that gives bidder i payoff Ui.

Quite surprisingly, complete rent dissipation can be avoided in this case if the bidders correlate

their play. We illustrate the idea of the proof with the following example.
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Example 1 Let v1 = v2 = 1, and r ∈ (0, 1). The bidders are given recommendations according to

the following probability distribution:

1’s bid \ 2’s bid bid 0 bid uniformly on (r, 1]

bid 0 0 r (1− r)

bid r r2 0

bid uniformly on (r, 1] (1− r) r (1− r)2

If bidder 1 is suggested to bid 0, then he knows that the opponent bids aggressively, and thus he

is content to stay out. If bidder 1 is suggested to bid r, then he knows that the opponent bids 0, and

thus his best response is to bid r. If bidder 1 is suggested to above r, then his probability distribution

over the opponent’s bids is the same as in one of the Nash equilibria, and thus he is indifferent

between all bids not higher than 1. Whether bidder 2 is suggested to bid 0 or to bid above r, he is

indifferent between all bids not higher than 1.

Bidder 1 gets a payoff of 1−r when he is suggested to bid r, and a zero expected payoff otherwise.

Hence, his ex ante payoff is r2 (1− r). The expected payoff of bidder 2 is zero.

The correlated equilibrium in this example results in higher bidders payoffs than the Nash equi-

libria summarized in part (iii) of Proposition 1. To see the reason, compare the Nash equilibrium

where neither bidder stays out (α = 1) with the presented correlated equilibrium. The only differ-

ence is that in the Nash equilibrium there is an event when bidder 1 bids r and bidder 2 bids above

r, while in the correlated equilibrium bidder 1 bids 0 in such a case. In both equilibria in this event

bidder 1 loses the auction, but in the correlated equilibrium he saves the cost of the bid.

In Example 1 the bids are negatively correlated; say, if r = 1
2 , then correlation is approximately

−0.37. Negative correlation is usually good for the bidders payoffs. In particular, note the bidders

payoffs are maximized if the bids are perfectly negatively correlated: bidder i bids the reserve and

bidder j stays out, and their roles are decided by a toss of a coin. However, such a correlation rule

is not incentive compatible, because the bidder who is recommended to stay out has an incentive to

deviate to an active bid. We conjecture that there exist no correlated equilibria with payoffs that

Pareto dominate the payoffs described in Proposition 3.
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3.2 Three or more bidders

Here we focus on the case of three or more symmetric bidders. Each bidder has a valuation v, which

is assumed to be strictly above the reserve price r ≥ 0. There are many Nash equilibria in this

case.15 In every Nash equilibrium complete rent dissipation takes place, i.e. each bidder gets a zero

payoff. This fact is shown in Proposition 9 in Section 4.2.

The next result shows that there exist correlated equilibria where the bidders get positive payoffs.

In contrast to the case of two bidders, such correlated equilibria exist even when there is no reserve

price.

Proposition 4 In a complete information environment with n ≥ 3 symmetric bidders, such that

vi = v for every i and v > r ≥ 0, for every U ∈
[
0, 2(v−r)

n
(n−2)v2+(n−2)vr+2nr2

(9n−14)v2+(6n−8)vr+(n+6)r2

]
there exists a

correlated equilibrium that gives each player payoff U .

To illustrate the idea of the construction consider the following example.

Example 2 Let n = 3, v = 1, and r = 0. Consider the following symmetric correlation rule where

each bidder is given one of three recommendations: bid 0; bid “low”, i.e. uniformly on
(
0, 12

]
; or bid

“high”, i.e. uniformly on
(
1
2 , 1
]
. First, two bidders, say i and j, are randomly chosen, and the third

is recommended to bid 0. The chosen bidders are given recommendations according to the following

probability distribution:

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 2
26 0

bid low 2
26

7
26

5
26

bid high 0 5
26

5
26

If a bidder is suggested to bid high, then he knows that he has exactly one active opponent who

is equally likely to bid low or high. The probability of winning with bid b > 0 is equal to b, and thus

the bidder is willing to comply with the recommendation.

If a bidder is suggested to bid low, then he knows that he has exactly one active opponent who

either bids 0, bids low, or bids high, with probabilities 1
7 ,

1
2 , and

5
14 , respectively. The probability of

15See, for example, Baye et al. (1996) for a characterization of Nash equilibria when there is no reserve.
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winning with bid b > 0 is equal to min
{
b+ 1

7 ,
5
7b+

2
7

}
, and thus the payoff from any b ∈

(
0, 12

]
is

1
7 , and the payoff from any b ∈

(
1
2 , 1
]
is below 1

7 .

If a bidder is suggested to bid 0, then he knows that either he was not chosen and thus faces

two potentially active opponents, or that he was chosen but only his opponent was suggested to

bid above 0. It is possible to show that the probability of winning with bid b > 0 is equal to

min
{
14
15b

2 + 8
15b,

2
3b
2 + 1

3

}
, and thus the payoff from any b ∈ (0, 1] is nonpositive.

Each bidder gets an expected payoff of 1
7 when he is suggested to bid low, and a zero expected

payoff otherwise. This results in an ex ante payoff of 2
39 .

Here is one way to see why this correlated equilibrium gives positive payoffs even though all Nash

equilibria result in zero payoffs. Consider a Nash equilibrium such that two bidders bid uniformly

on (0, 1], and the third bidder bids 0. This Nash equilibrium can be viewed as a simple correlated

equilibrium: to each of the first two bidders the mediator is equally likely to recommend to bid

high or low (independently of each other); to the third bidder the mediator recommends to bid 0.

Now suppose that in advance the mediator preforms a fair lottery that chooses two bidders who

are to take active roles in the above Nash equilibrium, and each bidder is privately informed of

his role. Finally, suppose that with a small probability a mediator “forgets” to inform one of the

chosen bidders that he is to take an active role, and instead tells him to bid 0. If the probability

of such a “mistake” is sufficiently small, then the bidders will choose to comply whenever they are

recommended to bid 0. The introduction of such “mistakes” reduces the intensity of bidding, and

thus raises the bidders payoffs.

While Proposition 4 is about symmetric correlated equilibria, it is possible to construct correlated

equilibria with asymmetric payoffs as well. We do not claim that the upper bound on the payoff in

the presented symmetric correlated equilibrium is the highest one could achieve.

4 All-pay auctions with incomplete information

4.1 Two bidders

In settings with incomplete information the players may wish to share their private information

with each other. Communication equilibrium describes the information sharing schemes that can be
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sustained in a self-enforcing way. In addition, as in the case of correlated equilibrium, communication

equilibrium allows for coordination between the players via correlation of recommended actions.

To provide a benchmark we first review the results on Nash equilibrium. The following result

for the case when the bidders’ valuations are distributed continuously and independently is due to

Amann and Leininger (1996).16

Proposition 5 Suppose there are two bidders and no reserve price. Valuations v1 and v2 are inde-

pendently distributed on [0, 1] according to F1 and F2, whose densities, f1 and f2, are continuously

differentiable and positive on (0, 1). Then there exists a unique Nash equilibrium. Bidder i bids

according to a bidding function which has a strictly increasing inverse φi :
(
0, b
]
→ [0, 1] such that

fi (φi (b))φ
′
i (b)φj (b) = 1 for every b ∈

(
0, b
]
.

There exist some results on communication equilibria and related concepts in the first- and

second-price auctions.17 As discussed in Section 3.1, in the second-price auction the bidders may

use a correlating device to randomize among the Nash equilibria. In fact, for some distributions of

the bidders’ valuations this is the optimal way to collude as long as side payments are not allowed.18

Marshall and Marx (2008) discuss other communication equilibria in the second-price auction.

Lopomo et al. (2010) study a model of collusion with pre-auction side payments and bid recom-

mendations in the first-price auctions with two bidders. They work with large discrete bid spaces,

which allows them to use the linear programming techniques. Lopomo et al. (2010) show that in a

symmetric environment with two possible types (with or without reserve) the collusive equilibrium

is payoff equivalent to the unique Nash equilibrium.19 This a fortiori implies an equivalent result

for the communication equilibrium. Azacis and Vida (2010) study a similar environment in a model

with continuum of bids. They show that several restricted versions of communication equilibrium

are payoff equivalent to the Nash equilibrium, and they conjecture that the same is true for the

canonical communication equilibrium.

16To obtain results for the case of general symmetric independent distribution one can adapt the results of Monteiro
(2009) for the first price auctions. He provides an explicit formula for a symmetric Nash equilibrium, and shows that
it is unique in the class of symmetric Nash equilibria.

17There are also some studies of communication equilibria in other trading environments. See, for example,
Matthews and Postlewaite (1989) for analysis of double auctions in a bilateral trade model.

18See McAfee and McMillan (1992).
19Lopomo et al. (2010) check the robustness of the result by studying numerically other environments with two

bidders.
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In the all-pay auctions without a reserve the idea behind Proposition 2 can be extended to the

case of two bidders under incomplete information. As in the case of complete information, the

possibility to use correlated recommendations does not allow to achieve payoffs different from the

Nash equilibrium payoffs. It turns out that in this case no payoff-consequential sharing of private

information is possible either.

Proposition 6 Suppose that in a given incomplete information environment with two bidders and

no reserve price there exists a unique Nash equilibrium. Then every communication equilibrium is

interim payoff equivalent to the Nash equilibrium.

A result analogous to Proposition 6 is likely to hold in other environments, even when the reserve

price is strictly positive, if we can rule out the case when both bidders choose null bids. A sufficient

condition for this to happen is when the supports for the bidders’ valuations do not overlap, say,

v2 < v1. Then bid 0 is not rationalizable for bidder 1 for any beliefs, because he prefers to bid

slightly above v2 to bidding 0. It remains an open question, however, whether an analogous result

holds for the case when the bidders have correlated and/or interdependent values.

If there is a positive reserve price, and it is not commonly known that one bidder has a higher

value than the other bidder, then there may exist communication equilibria that are not payoff

equivalent to Nash equilibria. We demonstrate this for a simple symmetric environment where each

bidder has two possible valuations. First, we describe the Nash equilibria.

Proposition 7 Suppose there are two bidders, each bidder’s value is equal to 0 or v with probabilities

p and 1− p, independently of the opponent’s value. There is a reserve price r ∈ (0, v).

(i) If p ∈
[
0, r
v

)
then there is a continuum of Nash equilibria. Types 0 of both bidders bid 0.

Type v of bidder i bids 0 and r with probabilities α r−pv
(1−p)v and (1− α) r−pv

(1−p)v (where α ∈ [0, 1]),

respectively, and bids uniformly on (r, v] otherwise; type v of bidder j bids 0 with probability r−pv
(1−p)v ,

and bids uniformly on (r, v] otherwise. In every Nash equilibrium every type gets a zero payoff.

(ii) If p ∈
[
r
v
, 1
]
then there is a unique Nash equilibrium. Types 0 of both bidders bid 0. Type v

of both bidders i bids uniformly on (r, v (1− p) + r]. Types 0 of both bidders get a zero payoff, types

v of both bidders get a payoff of pv − r.

Next we show that for some parameters there exists communication equilibria that result in

bidder payoffs that are higher than in the Nash equilibrium.
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Proposition 8 In the environment described in Proposition 7, for every p ∈
[
0, r
v

)
there exists a

communication equilibrium that gives each bidder of type v a positive payoff.20

The construction of the communication equilibrium is quite involved. As in the correlated

equilibrium one has to make sure that the bidders are willing to comply with the recommended

bids. In addition, the bidders must be given incentives to report their types truthfully. Below are

a few highlights of the construction.

First, the behavior of the bidders of type v is coordinated in a way that is similar to the

correlated equilibria in the complete information case. In fact, when p = 0, the construction used

here is identical to the one in the proof of Proposition 3. Second, some information about the

bidders’ values is being shared. Consider, for example, an event when only one bidder has a value

above the reserve price. In every Nash equilibrium there is a positive probability that this bidder

submits a null bid and does not get the good. In the constructed communication equilibrium

the bidder with the value above the reserve submits an active bid, and thus gets the good, with

probability one.

However, in some cases it is important not too reveal too much information to the bidders about

their opponents. Consider once again the event when only one bidder has (reported) a value above

the reserve price. If this bidder learns that the opponent has value 0, then he will bid exactly the

reserve price. But this implies that the bidder of type v has a profitable deviation: report type

0, and then bid slightly above the reserve price. Thus, to make such a deviation unprofitable it is

necessary that the bidder of type v bids aggressively enough when the opponent has reported type

0. And to ensure that the bidder of type v is willing to comply with recommendations for aggressive

bidding it is important to maintain enough uncertainty about the opponent’s type.

4.2 Three or more bidders

Here we continue to work with the symmetric independent case when each bidder’s valuation can

be either 0 or v. The Nash equilibrium payoffs when there are three or more bidders are as follows.

Proposition 9 Suppose there are n ≥ 3 bidders, and each bidder’s value is equal to 0 or v with

probabilities p and 1− p, independently of the opponents’ values. There is a reserve price r ∈ [0, v).

20We can prove an analogous result for the case when p ∈
[
r
v
, 1
]
and r is sufficiently high. The proof is long, and

thus not included in the paper.
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In every Nash equilibrium types 0 of each bidder get a payoff of zero, types v of each bidder get a

payoff of max
{
0, pn−1v − r

}
.

Note that there can be no communication equilibrium such that some bidder gets a payoff below

his Nash equilibrium payoff. Bidding 0 guarantees a payoff of (at least) zero; bidding the reserve

price r leads to winning whenever all opponents have zero valuations, and thus guarantees a payoff

of (at least) pn−1v − r.

The next result demonstrates that there exist communication equilibria such that each bidder

gets a payoff higher than in the Nash equilibrium. We focus on the case of no reserve price, but the

construction can be extended to the case of positive reserve price as well.

Proposition 10 In the environment described in Proposition 9, if r = 0, then for p sufficiently

small there exists a communication equilibrium such that each bidder of type v gets a strictly higher

payoff than in the Nash equilibrium.

5 Conclusion

We have studied cheap-talk pre-play communication in the static all-pay auctions. For the case of

two bidders we have shown that all correlated and communication equilibria are payoff equivalent

to the Nash equilibrium if there is no reserve price, or if it is commonly known that one bidder

has a strictly higher value. It will be interesting to see if this equivalence result holds beyond the

incomplete information environments with independent private values.

For the cases of three or more symmetric bidders, or two symmetric bidders and a positive

reserve price, we have demonstrated that there may exist correlated and communication equilibria

such that the bidders’ payoffs are higher than in the Nash equilibrium. A characterization of all

environments where such profitable correlated or communication equilibria exist remains an open

question. It also may be interesting to compute the set of all payoffs that can be achieved by the

communication or correlated equilibria in such cases. Finally, one may want to understand when

the profitable correlated and communication equilibria can be achieved by unmediated cheap talk

between the bidders.

We believe that many of the results of this paper can be extended to related models like the
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all-pay tournaments. We also hope an approach similar to the one used here will be useful for

studying the effect of pre-play cheap talk communication on the outcomes of other games.

6 Appendix

6.1 Proofs of Section 3

Proof of Proposition 3. Denote ui =
1
v−rUi for i = 1, 2, and fix (u1, u2) ∈ R2+ such that

v2ui + r2uj ≤ r2. Consider the following correlation rule, where each bidder is given one of three

recommendations: bid 0; bid r; or bid “high”, i.e. uniformly on (r, v]. The recommendations are

given according to the following probability distribution.21

1’s bid \ 2’s bid bid 0 bid r bid high

bid 0 0 u2
r
v+r (1− u1 − u2)

bid r u1 0 0

bid high r
v+r (1− u1 − u2) 0 v−r

v+r (1− u1 − u2)

Suppose bidder 1 is suggested to bid 0 and bids b ∈ (r, v] instead.22 Then his payoff is

(
u2

u2 +
r
v+r (1− u1 − u2)

+
r
v+r (1− u1 − u2)

u2 +
r
v+r (1− u1 − u2)

(
b− r

v − r

))
v − b

=
r2u1 + v2u2 − r2

(v2 − r2)
(
u2 +

r
v+r (1− u1 − u2)

) (v − b) ≤ 0

where the inequality follows from r2u1 + v2u2 ≤ r2. If bidder 1 is suggested to bid r, then it is

clearly optimal to comply, since the opponent bids 0 in such case. If bidder 1 is suggested to bid

high, then he is indifferent between all bids since the payoff from bidding b ∈ [r, v] is

(
r

v
+
(
1−

r

v

)( b− r

v − r

))
v − b = 0

21 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is
because

u1 + u2 =
1

v2 + r2
((
v
2
u1 + r

2
u2
)
+
(
r
2
u1 + v

2
u2
))
≤

2r2

v2 + r2
< 1

where the first inequality follows from v2ui + r
2uj ≤ r

2.
22Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the opponent

bids r.
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To summarize, bidder 1 gets a payoff of v − r when he is suggested to bid r, and zero payoff

otherwise. Hence, his ex ante payoff is u1 (v − r) = U1. Using a similar argument for bidder 2, we

conclude that the considered correlation rule is a correlated equilibrium, and it achieves the desired

payoffs.

Proof of Proposition 4. Fix U ∈
[
0, U

]
, where U = 2(v−r)

n

(n−2)v2+(n−2)vr+2nr2

(9n−14)v2+(6n−8)vr+(n+6)r2
. Consider

the following symmetric correlation rule, where each bidder is given one of three recommendations:

bid 0; bid “low”, i.e. uniformly on
(
r, 12 (v + r)

]
; or bid “high”, i.e. uniformly on

(
1
2 (v + r) , v

]
.

First, two out of n bidders are chosen by a fair lottery, say bidders i and j, and all the other

bidders are recommended to bid 0. The chosen bidders are given recommendations according to

the following probability distribution, where x = 1
v+r

(
v−r
4 − 3v+r

v
n
8U
)
.23

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 πl =
2r
v−rx+

v+r
v−r

n
2vU πh =

2r
v−rx

bid low πl =
2r
v−rx+

v+r
v−r

n
2vU πll = x+ n

2vU πhl = x

bid high πh =
2r
v−rx πhl = x πhh = x

If a bidder is suggested to bid 0, then he knows that either he was not chosen (which happens

with probability n−2
n

), or that he was chosen but only his opponent was suggested to bid above 0

(which happens with probability 2
n
(πl + πh)).

If this bidder bids b ∈
(
r, 12 (v + r)

]
instead, then he has a chance to win only if none of his

opponents bid high. In particular, bidder i could win if (i) he was not chosen, and one chosen bidder

bids low (which happens with probability n−2
n
(2πl)); (ii) he was not chosen, and two chosen bidders

bid low (which happens with probability n−2
n

πll); (iii) he was chosen, and his opponent bids low

(which happens with probability 2
n
πl). The expected payoff this bidder is then




n−2
n
(2πl) +

2
n
πl

n−2
n
+ 2

n
(πl + πh)

(
b− r

1
2 (v + r)− r

)
+

n−2
n

πll
n−2
n
+ 2
n
(πl + πh)

(
b− r

1
2 (v + r)− r

)2
 v − b (4)

23 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative. The latter is
because

v − r

4
−
3v + r

v

n

8
U ≥

v − r

4
−
3v + r

v

n

8
U =

(v − r)2 (v + r) ((3n− 4) v + nr)

2v ((9n− 14) v2 + (6n− 8) vr + (n+ 6) r2)
≥ 0

where the equality is by definition of U .
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Note that (4) is equal to −r if b = r. If b = 1
2 (v + r), then (4) becomes

n−2
n
(2πl + πll) +

2
n
πl

n−2
n
+ 2

n
(πl + πh)

v −
1

2
(v + r) =

n

8

(9n− 14) v2 + (6n− 8) vr + (n+ 6) r2

(v − r) ((n− 2) v + nr + nU)

(
U − U

)
≤ 0 (5)

where the inequality holds since U ≤ U . Since (4) is convex in b, this implies that it is nonpositive

for every b ∈
[
r, 12 (v + r)

]
.

If this bidder bids b ∈
(
1
2 (v + r) , v

]
instead, then he wins for sure if none of his opponents bid

high, and has a chance to win otherwise. In particular, bidder i wins for sure if (i) he was not

chosen, and none of the chosen bidders bid high (which happens with probability n−2
n
(2πl + πll));

(ii) he was chosen, and his opponent does not bid high (which happens with probability 2
n
πl).

Also bidder i could win if (i) he was not chosen, and one chosen bidder bids high (which happens

with probability n−2
n
(2πh + 2πhl)); (ii) he was not chosen, and two chosen bidders bid high (which

happens with probability n−2
n

πhh); (iii) he was chosen, and his opponent bids high (which happens

with probability 2
n
πh). The expected payoff of this bidder is then

(
n−2
n
(2πl + πll) +

2
n
πl

n−2
n
+ 2

n
(πl + πh)

+
n−2
n
(2πh + 2πhl) +

2
n
πh

n−2
n
+ 2

n
(πl + πh)

(
b− 1

2 (v + r)

v − 1
2 (v + r)

)
+ (6)

+
n−2
n

πhh
n−2
n
+ 2

n
(πl + πh)

(
b− 1

2 (v + r)

v − 1
2 (v + r)

)2
 v − b

Note that (6) is equal to (5) if b = 1
2 (v + r), and (6) is equal to zero if b = v. Since (6) is convex

in b, this implies that it is nonpositive for every b ∈
(
1
2 (v + r) , v

]
.

If a bidder is suggested to bid low, then he knows that he is chosen, and faces exactly one

chosen opponent. This opponent bids 0, low, or high with probabilities πl
πl+πll+πhl

, πll
πl+πll+πhl

, and

πhl
πl+πll+πhl

, respectively. The expected payoff of this bidder from bidding any b ∈
(
r, 12 (v + r)

]
is

(
πl

πl + πll + πhl
+

πll

πl + πll + πhl

(
b− r

1
2 (v + r)− r

))
v − b =

U
2
n
(πl + πll + πhl)

≥ 0
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If he bids b ∈
(
1
2 (v + r) , v

]
instead, then his payoff is

(
πl + πll

πl + πll + πhl
+

πhl

πl + πll + πhl

(
b− 1

2 (v + r)

v − 1
2 (v + r)

))
v − b

=
U

2
n
(πl + πll + πhl)

2 (v − b)

v − r
<

U
2
n
(πl + πll + πhl)

If a bidder is suggested to bid high, then he knows that he is chosen, and faces exactly one

chosen opponent. This opponent bids 0, low, or high with probabilities πh
πh+πhl+πhh

, πhl
πh+πhl+πhh

, and

πhh
πh+πhl+πhh

, respectively. The expected payoff of this bidder from bidding any b ∈
(
1
2 (v + r) , 12v

]
is

(
πh + πhl

πh + πhl + πhh
+

πhh

πh + πhl + πhh

(
b− 1

2 (v + r)

v − 1
2 (v + r)

))
v − b

=

(
v + r

2v
+

v − r

v

(
b− 1

2 (v + r)

v − r

))
v − b = 0.

If he bids b ∈
(
r, 12 (v + r)

]
instead, then his payoff is

(
πh

πh + πhl + πhh
+

πhl

πh + πhl + πhh

(
b− r

1
2 (v + r)− r

))
v − b =

(
r

v
+

v − r

v

(
b− r

v − r

))
v − b = 0

Each bidder gets a payoff of U
2

n
(πl+πll+πhl)

when he is suggested to bid low, and zero payoff

otherwise. Hence, his ex ante payoff is U . Thus the considered correlation rule is a correlated

equilibrium, and it achieves the desired payoffs.

6.2 Proofs of Section 4

Proof of Proposition 6. Denote by U∗i (vi) and Ui (vi) the interim expected payoffs of player i

of type vi in the Nash equilibrium (µ∗1, µ
∗
2) and in the communication equilibrium µ, respectively.

By the definition of Nash equilibrium

U∗i (vi) = vi

∫

Tj

(∫

Aj

∫

Ai

ρi (b)µ
∗
i (dbi|vi)µ

∗
j(dbj|vj)

)
Pj (dvj)−

∫

Ai

biµ
∗
i (dbi|vi) (7)

≥ vi

∫

Tj

(∫

Aj

∫

Ai

ρi (b) µ̃i(dbi|vi)µ
∗
j (dbj |vj)

)
Pj (dvj)−

∫

Ai

biµ̃i(dbi|vi)
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for every i, Pi-a.e. vi, and every µ̃i(·|vi). By the definition of communication equilibrium

Ui (vi) = vi

∫

Tj

(∫

A

ρi (b)µ(db|vi, vj)

)
Pj (dvj)−

∫

Ai

biµi(dbi|vi) (8)

≥ vi

∫

Tj

(∫

A

(∫

Ai

ρi

(
b̂i, bj

)
µ̃i(db̂i|vi)

)∫

Tj

µ(db|v̂i, vj)dPi (dv̂i)

)
Pj (dvj)−

∫

Ai

b̂iµ̃i(db̂i|vi)

= vi

∫

Tj

(∫

Aj

∫

Ai

ρi

(
b̂i, bj

)
µ̃i(db̂i|vi)µj(dbj |vj)

)
Pj (dvj)−

∫

Ai

b̂iµ̃i(db̂i|vi)

for every i, Pi-a.e. vi, and every µ̃i(·|vi). Add (7) and (8), with µ̃i = µi in (7), and µ̃i = µ∗i in (8),

and divide by vi for every vi �= 0

∫

Tj

(∫

Aj

∫

Ai

ρi (b)µ
∗
i (dbi|vi)µ

∗
j(dbj |vj) +

∫

A

ρi (b)µ(db|vi, vj)

)
Pj (dvj) (9)

≥

∫

Tj

(∫

Aj

∫

Ai

ρi (b)µi(dbi|vi)µ
∗
j(dbj|vj) +

∫

Aj

∫

Ai

ρi (b)µ
∗
i (dbi|vi)µj(dbj|vj)

)
Pj (dvj)

If vi = 0, then such bidder bids 0 with probability 1 both in the Nash equilibrium and in the

communication equilibrium. This implies that inequality (9) holds with equality for vi = 0.

Next integrate (9) with respect to Pi, and sum up over i:

∫

T



∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µ∗i (dbi|vi)µ

∗
j(dbj|vj) +

∫

A


∑

k=1,2

ρk (b)


µ(db|vi, vj)


P (dv) (10)

≥

∫

T



∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µi(dbi|vi)µ

∗
j(dbj|vj) +

∫

Aj

∫

Ai


∑

k=1,2

ρk (b)


µ∗i (dbi|vi)µj(dbj|vj)


P (dv)

Since
∑
k=1,2 ρk (b) = 1 for every b, the inequality (10) holds as an equality. This implies that

the following inequalities hold as equalities as well for Pi-a.e. vi: (7) when µ̃i = µi, and (8) when

µ̃i = µ∗i .

Next we show that
(
µ∗i , µj

)
is a Nash equilibrium. By the above argument, the payoff of bidder

j of type vj from
(
µ∗i , µj

)
is U∗j (vj), and µj is a best response to µ∗i . The payoff of bidder i of type
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vi from
(
µ∗i , µj

)
is Ui (vi). If µ

∗
i is not a best response to µj , then for some µ̃i (·|vi)

vi

∫

Tj

(∫

Aj

∫

Ai

ρi (bi, bj)µ
∗
i (dbi|vi)µj(dbj|vj)

)
Pj (dvj)−

∫

Ai

biµ
∗
i (dbi|vi)

< vi

∫

Tj

(∫

Aj

∫

Ai

ρi (bi, bj) µ̃i(dbi|vi)µj(dbj|vj)

)
Pj (dvj)−

∫

Ai

biµ̃i(dbi|vi) ≤ Ui (vi)

where the second inequality follows from (8), which gives a contradiction.

Since by assumption the Nash equilibrium is unique, we have µi = µ∗i , and thus U∗i (vi) = Ui (vi)

for every i, and Pi-a.e. vi.

Proof of Proposition 7. First, note that in any Nash equilibrium types 0 of both bidders bid

0. For bidder i of type v, let Gi : {0} ∪ [r,∞) → [0, 1] be the equilibrium distribution function, bi

and bi be the infimum and the supremum of the support of the equilibrium bids, and Ui ≥ 0 be the

equilibrium payoff.

Note that it is not possible to have Ui < Uj , since this implies Uj ≤ v − bj , and thus bidder i

has a profitable deviation to bj + ε, for ε > 0 small: v−
(
bj + ε

)
≥ Uj − ε > Ui. Thus Ui = Uj = U .

Also note that by bidding r (or slightly above) each bidder of type v can secure a payoff of pv − r.

Thus U ≥ max {0, pv − r}.

If U > max {0, pv − r}, then neither bidder bids 0 with positive probability, and thus bi ≥ r.

Also note that to get such a payoff each bidder of type v with positive probability must win against

the opponent of type v. Hence, we cannot have bi �= bj; but if bi = bj = b, then both bidders must

bid b with positive probability, which cannot happen in equilibrium. Thus U = max {0, pv − r}.

By a standard argument, bi = bj = v − U , and there can be no gaps and no atoms in the

distribution of bids on (r, v − U ]. Thus Gi (b) =
1

(1−p)v (b+ U − pv) on [r, v − U ]. If p ∈
[
0, r
v

)
,

then Gi (r) =
1

(1−p)v (r − pv) on [r, v], and Gi (r) − Gi (0) can be positive for at most one bidder.

It is straightforward to see that every such possibility constitutes an equilibrium of the game. If

p ∈
[
r
v
, 1
]
, then Gi (b) =

1
(1−p)v (b− r) on [r, (1− p) v − r], and Gi (r) = 0.

Proof of Proposition 8. We show that for p ∈
[
0, r
v

)
there exists a communication equilibrium

such that each bidder of type v gets a payoff of
(r2−p2v2)(v−r)
v2+r2−2pv2

. Consider the following symmetric

communication rule, where each bidder is given one of three recommendations: bid 0; bid r; or bid

“high”, i.e. uniformly on (r, v]. If a bidder reports type 0, then he is suggested to bid 0. If a bidder
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reports type v and his opponent reports type 0, then this bidder is suggested to bid r or high, with

probabilities π̂ = (r−pv)(v+r)
v2+r2−2pv2 and 1 − π̂, respectively. If both bidders report type v, then they are

given recommendations according to the following probability distribution.24

1’s bid \ 2’s bid bid 0 bid r bid high

bid 0 0 πr =
(r−pv)r

v2+r2−2pv2
πh =

(r−pv)(v−r)
v2+r2−2pv2

bid r πr =
(r−pv)r

v2+r2−2pv2
0 0

bid high πh =
(r−pv)(v−r)
v2+r2−2pv2

0 πhh =
(v−r)2

v2+r2−2pv2

We need to check the incentives to tell the truth and to comply with the recommendations only

for the bidders of type v, since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0, then he knows that his opponent

must be of type v and bids r or high, with probabilities πr
πr+πh

and πh
πr+πh

, respectively. If this bidder

bids b ∈ (r, v] instead, then his payoff is25

(
πr

πr + πh
+

πh

πr + πh

(
b− r

v − r

))
v − b =

(
r

v
+

v − r

v

(
b− r

v − r

))
v − b = 0

If a bidder of type v has reported v and is suggested to bid r, then it is clearly optimal to comply,

since the opponent bids 0, regardless of the type, in such case.

If a bidder of type v has reported v and is suggested to bid above r, then he knows that either

his opponent is of type 0 and thus bids 0, or his opponent is of type v and bids 0 or high, with

probabilities p(1−π̂)
p(1−π̂)+(1−p)(πh+πhh)

, (1−p)πh
p(1−π̂)+(1−p)(πh+πhh)

, and (1−p)πhh
p(1−π̂)+(1−p)(πh+πhh)

, respectively. The

expected payoff of this bidder from bidding any b ∈ [r, v] is

(
p (1− π̂) + (1− p)πh

p (1− π̂) + (1− p) (πh + πhh)
+

(1− p)πhh
p (1− π̂) + (1− p) (πh + πhh)

(
b− r

v − r

))
v − b

=

(
r

v
+

v − r

v

(
b− r

v − r

))
v − b = 0

To summarize, if a bidder of type v truthfully reports his type and follows the recommendations,

then he gets a payoff of v − r when he is suggested to bid low, and zero payoff otherwise. Hence,

24 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative (since r > pv).
25Bidding exactly r is dominated by bidding slightly above r if there is a positive probability that the opponent

bids r.
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his ex ante payoff is (pπ̂ + (1− p)πr) (v − r) =
(r2−p2v2)(v−r)
v2+r2−2pv2 .

If a bidder of type v has reported 0, then he is suggested to bid 0. He knows that either

his opponent is of type 0 and thus bids 0, or his opponent is of type v and bids r or high, with

probabilities p, (1− p) π̂, and (1− p) (1− π̂), respectively. If this bidder bids b ∈ (r, v], then his

payoff is

(
(p+ (1− p) π̂) + (1− p) (1− π̂)

(
b− r

v − r

))
v−b ≤ max {(p+ (1− p) π̂) v − r, 0} =

(
r2 − p2v2

)
(v − r)

v2 + r2 − 2pv2

where the first equality follows from the fact that payoff is a linear function of b and is thus

maximized either at b = r or at b = v.

Thus the considered communication rule is a communication equilibrium, and it achieves the

desired payoffs.

Proof of Proposition 9. First, note that in any Nash equilibrium types 0 of both bidders bid

0. For bidder i of type v, let Gi : {0} ∪ [r,∞) → [0, 1] be the equilibrium distribution function, bi

and bi be the infimum and the supremum of the support of the equilibrium bids, and Ui ≥ 0 be the

equilibrium payoff.

Note that it is not possible to have Ui < Uj , since this implies Uj ≤
∏
k �=j

(
p+ (1− p)Gk

(
bj
))

v−

bj, and thus bidder i has a profitable deviation to bj + ε, for ε > 0 small:

∏
k �=j,i

(
p+ (1− p)Gk

(
bj + ε

))
v −

(
bj + ε

)
≥ Uj − ε > Ui

Thus Ui = U for every i. Also note that by bidding r (or slightly above) each bidder of type v can

secure a payoff of pn−1v − r. Thus U ≥ max
{
0, pn−1v − r

}
.

If U > max
{
0, pn−1v − r

}
, then neither bidder bids 0 with positive probability, and thus bi ≥ r.

Also note that to get such a payoff each bidder of type v with positive probability must win against

the opponents of type v. Hence, we cannot have bi �= bj ; but if bi = b for every i, then all bidders must

bid b with positive probability, which cannot happen in equilibrium. Thus, U = max
{
0, pn−1v − r

}
.

Proof of Proposition 10. We show for sufficiently small p > 0 there exists a communication

equilibrium such that each bidder of type v gets a payoff of 2pn−1v. Consider the following symmetric

communication rule, where each bidder is given one of three recommendations: bid 0; bid “low”, i.e.
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uniformly on
(
0, 12v

]
; or bid “high”, i.e. uniformly on

(
1
2v, v

]
. If all bidders report 0, then everyone

is suggested to bid 0. If exactly one bidder reports v, then this bidder is suggested to bid low, and

the others to bid 0. If m ≥ 1 bidders report v and the others report 0, then two out m bidders

are chosen by a fair lottery, say bidders i and j, and all the other bidders are recommended to bid

0. The chosen bidders are given recommendations according to the probability distribution in the

table below, where

g =
n−1∑
k=1

(n− 1)!

k! (n− 1− k)!
(1− p)k pn−1−k

(
2

k + 1

)
= 2

(
1

n

1− pn

1− p
− pn−1

)

is the probability that a bidder who submitted report v was not the only one who submitted v and

was chosen.26

i’s bid \ j’s bid bid 0 bid low bid high

bid 0 0 πl =
1
g
pn−1 0

bid low πl =
1
g
pn−1 πll =

1
4 +

1
g
pn−1 πhl =

1
4 −

1
g
pn−1

bid high 0 πhl =
1
4 −

1
g
pn−1 πhh =

1
4 −

1
g
pn−1

We need to check the incentives to tell the truth and to comply with the recommendations only

for the bidders of type v, since the bidders of type 0 have no incentive to lie or to disobey.

If a bidder of type v has reported v and is suggested to bid 0, then he knows that either he

was not chosen (which happens with probability 1− pn−1 − g), or that he was chosen but only his

opponent is suggested to bid above 0 (which happens with probability gπl).

If this bidder bids b ∈
(
0, 12v

]
instead, then he has a chance to win only if none of his opponents

bid high. In particular, bidder i could win if (i) he was not chosen, and one chosen bidder bids low

(which happens with probability
(
1− pn−1 − g

)
2πl); (ii) he was not chosen, and two chosen bidders

bid low (which happens with probability
(
1− pn−1 − g

)
πll); (iii) he was chosen, and his opponent

bids low (which happens with probability gπl). The expected payoff of this bidder is then



(
1− pn−1 − g

)
2πl + gπl

1− g

(
b
1
2v

)
+

(
1− pn−1 − g

)
πll

1− g

(
b
1
2v

)2
 v − b (11)

26 It is straightforward to verify that the entries in table: (i) sum up to one; and (ii) are nonnegative for p sufficiently
small (since g = 2

n
when p = 0).
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Note that (11) is equal to 0 if b = 0. If b = 1
2v, then (11) becomes

((
1− pn−1 − g

)
(2πl + πll) + gπl

1− g

)
v −

1

2
v =




(
31−p

n−1

g
− 9

4

)
pn−1

1− g
−
1

4


 v (12)

Note that (12) is equal to −1
4v if p = 0, and thus it is nonpositive for p small enough. Since (11) is

convex in b, this implies that it is nonpositive for every b ∈
(
0, 12v

]
.

If this bidder bids b ∈
(
1
2v, v

]
instead, then he wins for sure if none of his opponents bid high,

and has a chance to win otherwise. In particular, bidder i wins for sure if (i) he was not chosen, and

none of the chosen bidders bid high (which happens with probability
(
1− pn−1 − g

)
(2πl + πll));

(ii) he was chosen, and his opponent does not bid high (which happens with probability gπl). Also

bidder i could win if (i) he was not chosen, and one chosen bidder bids high (which happens with

probability
(
1− pn−1 − g

)
2πhl); (ii) he was not chosen, and two chosen bidders bid high (which

happens with probability
(
1− pn−1 − g

)
πhh). The expected payoff of this bidder is then

((
1− pn−1 − g

)
(2πl + πll) + gπl

1− g
+

(
1− pn−1 − g

)
2πhl

1− g

(
b− 1

2v
1
2v

)
+ (13)

+

(
1− pn−1 − g

)
πhh

1− g

(
b− 1

2v
1
2v

)2
 v − b

Note that (13) is equal to (12) if b = 1
2v, and (13) is equal to zero if b = v. Since (13) is convex in

b, this implies that it is nonpositive for every b ∈
(
1
2v, v

]
.

If a bidder of type v has reported v and is suggested to bid low, then he knows that either he

faces no opponents (with probability pn−1), or that he was chosen and faces one chosen opponent

who bids 0, low, or high with probabilities gπl, gπll, and gπhl, respectively. The expected payoff of

this bidder from bidding any b ∈
(
0, 12v

]
is

(
pn−1 + gπl

pn−1 + g (πl + πll + πhl)
+

gπll

pn−1 + g (πl + πll + πhl)

b
1
2v

)
v − b =

2pn−1v

2pn−1 + 1
2g
≥ 0
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If he bids b ∈
(
1
2v, v

]
instead, then his payoff is

(
pn−1 + g (πl + πll)

pn−1 + g (πl + πll + πhl)
+

gπhl

pn−1 + g (πl + πll + πhl)

(
b− 1

2v
1
2v

))
v − b =

2pn−1v

2pn−1 + 1
2g

(
v − b
1
2v

)

<
2pn−1v

2pn−1 + 1
2g

If a bidder of type v has reported v and is suggested to bid high, then he knows that he was

chosen and faces one chosen opponent who bids low or high, with equal probabilities. Thus the

expected payoff of this bidder from bidding any b ∈ (0, v] is equal to zero.

To summarize, if a bidder of type v truthfully reports his type and follows the recommendations,

then he gets a payoff of 2pn−1v
2pn−1+ 1

2
g
when he is suggested to bid low, and zero payoff otherwise. Hence,

his ex ante payoff is 2pn−1v.

If a bidder of type v has reported 0, then he is suggested to bid 0. He knows that he faces no

active opponents (with probability pn−1); one active opponent who bids on low (with probability

(n− 1) (1− p) pn−2+d2πl, where d =
(
1− pn−1 − (n− 1) (1− p) pn−2

)
); two active opponents who

both bid low, both bid high, or one bids low and another high with probabilities dπll, dπhh, and

d2πhl, respectively.

If this bidder bids b ∈
(
0, 12v

]
, then his payoff is


pn−1 +

(
(n− 1) (1− p) pn−2 + d2πl

)
(

b
1
2v

)
+ dπll

(
b
1
2v

)2
 v − b (14)

Note that if b = 0, then (14) is equal pn−1v which is smaller than the payoff from truthtelling

2pn−1v. If b = 1
2v then (14) becomes

(
pn−1 + (n− 1) (1− p) pn−2 + d (2πl + πll)

)
v −

1

2
v (15)

Note that (15) is equal to −1
4v if p = 0, and thus it is nonpositive for p small enough. Since (14) is

convex in b, this implies that it is nonpositive for every b ∈
(
0, 12v

]
.
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If this bidder bids b ∈
(
1
2v, v

]
, then his payoff is


pn−1 + (n− 1) (1− p) pn−2 + d (2πl + πll) + d2πhl

(
b− 1

2v
1
2v

)
+ dπhh

(
b− 1

2v
1
2v

)2
 v − b (16)

Note that (16) is equal to (15) if b = 1
2v, and (16) is equal to zero if b = v. Since (16) is convex in

b, this implies that it is nonpositive for every b ∈
(
1
2v, v

]
.

Thus the considered communication rule is a communication equilibrium, and it achieves the

desired payoffs.
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