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Abstract

This paper studies second-degree price discrimination in matching markets, that is, in markets

where the product sold by a platform is access to other agents. In order to investigate the

optimality of a large variety of pricing strategies, we tackle the problem from a mechanism design

approach and allow the platform to offer any many-to-many matching rule that satisfies a weak

reciprocity condition. In this context, we derive necessary and suffi cient conditions for the welfare-

and the profit-maximizing mechanisms to employ a single network or to offer a menu of non-

exclusive networks (multi-homing). We characterize the matching schedules that arise under a

wide range of preferences and deliver testable comparative statics results that relate the pricing

strategies of a profit-maximizing platform to conditions on demand and the distribution of match

qualities. Our analysis sheds light on the distortions brought in by the private provision of

broadcasting, health insurance and job matching services.
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1 Introduction

This paper studies second-degree price discrimination in matching markets, that is, in markets where

the product sold by the monopolist is the access to other agents. In such markets, platforms engage

in second-degree price discrimination by offering menus of matching plans. For concreteness, consider

the problem of a Cable TV provider contracting with TV channels on one side of the market and

with home customers (i.e., viewers) on the other side. The Cable company’s problem can be seen

from two perspectives. The more familiar one is that of designing a menu of packages of channels to

offer to its customers. The mirror image of this problem consists in designing a price schedule for the

channels whereby prices are contingent on the number of viewers the channel will be able to reach

(more viewers yields higher advertising revenue). By the very nature of the matching problem, the

menu of channels offered to the viewers pins down the quantity schedule faced by the channels and

the price schedule offered to the channels pins down the packages that the platform can offer to the

viewers. As such, when designing its profit-maximizing menus, the Cable company has to internalize

the cross-side effects of the schedules offered to both the viewers and the channels.

Such interdependency is ubiquitous in two-sided matching markets. Health care providers, for

example, offer menus of health plans that differ in the access that patients (on one side of the market)

have to doctors (on the other side of the market). Analogously to the cable TV example, the design

of health plans on the patient side determines what services the platform has to procure on the

doctor side of the market. As such, market conditions on the doctor side greatly matter for the

profitability of different price-discriminatory strategies on the patient side.

As is often the case in this type of environments, what prevents the platform from appropriating

the entire surplus is the fact that agents on both sides have private information both about their

willingness to pay for the quality of the matching set they receive as well as about idiosyncratic

characteristics that determine their attractiveness to those agents they are matched to.

The Model. To examine the problem described above in full generality (i.e., without imposing a

priori restrictions on the possible matching schedules and/or on the admissible pricing strategies), we

tackle the problem from a mechanism design approach. We consider the problem of a monopolistic

platform that operates in a market with two sides (as explained below, the “group design”problem

of a platform operating on a single side consisting in assigning agents to non-exclusive groups is a

special case of the more general problem considered in the paper). Each agent on each side of the

market has a multi-dimensional type, which is his/her private information. The first component

captures the agent’s willingness to pay for the quality of the matching set he/she receives (i.e., for

the attributes of the agents from the other side he/she is matched to). In the Cable TV example,

viewers have private information on their willingness to pay for different TV packages and channels

have private information on the extra advertisement revenue they expect from reaching more viewers.

All other components are idiosyncratic characteristics that determine the agent’s attractiveness from
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the eyes of the agents on the other side (education, consumption habits, income, for viewers; the

attractiveness of the shows and the quality of the advertisement, for channels1). All agents on the

same side agree on the quality of the agents on the other side but may have different values (and hence

different willingness to pay) for such quality. Importantly, we allow such values to be negative for

some agents: for example, in the case of health care provision, the (negative) willingness to pay that

certain doctors may have for accepting the patients included in a given HMO (Health Maintenance

Organization) or PPO (Preferred Provider Organization) may originate from the opportunity costs

of the doctors’ time; in this example, the patients’ relevant idiosyncratic characteristics are their

medical conditions.2

In this environment, the platform’s problem consists in choosing a matching rule together with a

pricing rule so as to maximize profits (alternatively, welfare). A matching rule assigns each agent on

each side to a set of agents on the other side of the market. We only impose that these rules satisfy

a minimal feasibility constraint, which we call reciprocity condition. The latter requires that if agent

i from side A is matched to agent j from side B, then agent j is matched to agent i. In the cable

TV example, if viewer John is matched to BBC News, then BBC News is matched to John.

The Main Results. At the theoretical level, what distinguishes the problem described above

from a standard monopolistic screening problem (e.g., Mussa and Rosen (1978) and Maskin and Riley

(1983)) is twofold. First, by the very nature of the matching problem, the platform faces feasibility

constraints with no equivalent in the adverse selection and price discrimination literatures. Second,

each agent is both a customer and an input in the matching production function. The “customer”

role of an agent is summarized in his/her willingness to pay while the“input” role is captured by

the idiosyncratic characteristics that determine the agent’s attractiveness for the other side. This

feature of matching markets implies that the cost of procuring an input is endogenous (it depends

on the entire matching rule) and incorporates nontrivial strategic considerations.

As standard in the mechanism design literature, the problem of designing a profit-maximizing

mechanism can be recasted entirely in terms of designing an optimal matching rule. This makes the

profit-maximization problem analogous to welfare-maximization, except that the agents’willingness

to pay for the quality of their matching sets are replaced with their virtual-valuation counterparts.

The novelty and the intricacies here come from the characterization of the properties of the optimal

(i.e., welfare- or profit-maximizing) matching rule.

First, we show that under two fairly natural conditions, namely (i) (weakly) decreasing marginal

1While it is easy for the platform to verify what shows and advertisement the channels offer, it is believed that the

channels possess superior information about the attractiveness of their shows and advertisement for the viewers. Such

superiority may originate for example from market research as well as past experiences.
2 In settings richer than the one considered in our baseline model, the same agent may derive positive profits/utility

from being matched to certain agents from the other side but negative profits/utility from being matched to other

agents. This is a possibility we discuss in an extension and that we plan to examine further in future work.
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utility for the quality of the matching set, and (ii) (weak) positive affi liation between willingness

to pay and attractiveness, then both the profit-maximizing and the welfare-maximizing matching

rules discriminate only on the basis of willingness to pay. In other words, two agents with the same

willingness to pay are matched to the same group of agents, irrespective of any other unobservable

characteristics that may differentiate the two agents in terms of their attractiveness for those agents

they are matched to.

Second, we show that the welfare- and profit-maximizing matching rules have a threshold struc-

ture, according to which each agent is matched to all agents on the other side whose willingness to

pay is greater than some threshold. This result also hinges on the assumptions of positive affi liation

between willingness to pay and attractiveness and diminishing marginal utility for match quality. To

understand this result, first note that, under positive affi liation, the expected matching quality of an

agent increases with his willingness to pay for quality. Second, under diminishing marginal utility,

using the same agent as an input to provide match quality to many agents is less costly than using

different agents. As a consequence, the cost-minimizing way to provide a given matching quality to

an agent with a given willingness to pay is to match him with the highest willingness-to-pay agents

from the other side.

Building on the aforementioned results, we then show that both the welfare-maximizing and the

profit-maximizing matching rule belong to one of the following two classes, and identify necessary and

suffi cient conditions for each of the two classes to be optimal. The first class includes matching rules

that employ a single network. Here, any two agents from the same side whose matching set is non-

empty have the same matching sets. A single network is thus the analog in matching environments

to a single price (that is, the absence of quantity/quality discrimination) in the contest of a single-

product monopolist. The second class is that of nested multi-homing matching rules. These rules

work as follows: the platform offers a menu of non-exclusive networks that agents can join and sets

prices in a way that agents with a higher willingness to pay join an increasing number of networks.

Under a nested multi-homing rule, the matching sets of any two agents from the same side either

coincide or are nested in the set-theoretic sense. Nested multi-homing is the equivalent in matching

environments to active quantity/quality price discrimination by a single-product monopolist.

We prove that a single network is (profit-) welfare-maximizing if and only if, starting from a

complete network, receding the link between the two agents from each side with the lowest (virtual)

valuations, while leaving all other links untouched, decreases (profits) welfare. When this is not the

case, then the (profit-) welfare-maximizing matching rule exhibits nested multi-homing. Because

valuations are always larger than their virtual analogs, this result implies that matching rules that

employ a single network are more often associated to welfare-maximizing platforms, while multi-

homing matching rules are more often associated to profit-maximizing platforms. This prediction

appears consistent with casual empiricism: the public provision of broadcasting, health insurance,
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and job-matching services tends to employ a single network structure, while their private counterparts

often offer discriminatory menus (that is, multi-homing matching rules).

To understand the intuition behind this result, consider the platform’s profit-maximization prob-

lem (the welfare problem is analogous) in the following situation. Assume that virtual valuations for

quality are positive for all agents and that the total quality q of a given matching set is determined

by the sum of the interaction qualities provided by each of its members, i.e., that q =
∑

j σ(uj),

where σ(uj) is the interaction quality provided by an agent with attributes uj . Lastly assume that

the payoff that each agent with virtual valuation ϕ(v) obtains from being matched to a set of agents

with total quality q is given by ϕ(v) · g(q) where g is a weakly concave function. That is, ϕ · g(q) is

the agent’s total willingness to pay for quality q. In this case, optimality clearly requires that each

agent be matched to all other agents, i.e., a complete network.

Things are different (and more interesting) when virtual valuations are negative for certain types

on one or both sides of the market. In this case, it remains true that all agents with positive

virtual valuations shall be matched to all agents with positive virtual valuations on the other side

of the market. However, the platform can increase profits by adding to the matching sets of those

agents with the highest positive virtual valuations on one side some agents on the other side with

negative (but small) virtual valuations. This cross-subsidization strategy is a general feature of

matching markets, in which the platform might be willing to accept revenue losses on one side to

boost rent extraction on the other side. Whether, at the optimum, this cross-subsidization leads to

a single network or to multi-homing is then determined by the marginal effect on profits of linking

the two agents with the lowest virtual valuations on each side. If this effect is positive, then the

optimal matching rule consists in creating a single (complete) network where each agent is matched

to any other agent. If this effect is negative, the optimal rule separates agents based on their virtual

valuations. Those agents with the highest virtual valuations are assigned matching sets which are

supersets of those assigned to agents with lower virtual valuations; that is, the optimal matching

rule exhibits nested multi-homing.

Next, we offer a complete characterization of the (profit-) welfare-maximizing matching rule

when nested multi-homing is optimal. We show that the thresholds associated to the matching

sets of each agent solve a nice Euler equation that equalizes the marginal (revenue) effi ciency gains

from expanding the matching set on one side to the marginal (revenue) effi ciency losses that, by

reciprocity, arise on the other side of the market. This endogenous cost structure is one of the

fundamental features of price discrimination in matching markets.

Similarly to the standard price discrimination problem analyzed in Mussa and Rosen (1978) and

Maskin and Riley (1983), we identify conditions that ensure that the platform is willing to separate

types as finely as possible. It turns out that the familiar regularity condition (Myerson, 1981),

according to which virtual values ϕ(v) are monotonically increasing, is not the right condition in
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our matching environment. As pointed out by Bulow and Roberts (1989), this condition controls for

the marginal effect on revenue of providing a higher quality to an agent with value v. In a standard

setting, because the marginal cost is independent of the agent’s type, the monotonicity of the virtual

values then implies the monotonicity of the trades. In contrast, in a matching environment, by virtue

of reciprocity, the marginal cost is also a function of the agent’s type, through the effect of adding

the agent to the matching sets of other agents on the opposite side. For the optimal matching rule

to be maximally separating, one must then require that the virtual values ϕ(v) increase faster (with

type v) than their corresponding marginal cross-side effects. The latter are given by the marginal

effect of adding type v from side A to the matching set of any agent from side B who is currently

matched to any other agent from side A with type above v. In analogy to Myerson (1981), we refer

to this condition as Strong Regularity. Under this condition, bunching can only occur at "the top,"

i.e., for the highest v due to capacity constraints, that is, because the stock of agents on the other

side of the market has been exhausted.

Public and Private Provision in Matching Markets. As a by-product of the characteriz-

ation results described above, our analysis reveals that profit-maximization leads to two distortions

relative to welfare maximization. The first distortion, the exclusion effect, comes from the fact that

too many agents are completely excluded by the platform. For example, in the context of health care

provision, too many patients are left without any insurance. The second effect, the isolation effect,

comes from the fact that, under profit-maximization, each agent (who is not excluded) is matched

only to a subset of his effi cient matching set. Unlike in standard mechanism design problems, this

distortion applies also to the agents with the highest valuations on each side of the market. To

see why, note that the size of an agent’s matching set depends on his virtual valuation for quality

as well as on the cross-side effect of adding this agent to the matching sets of other agents on the

opposite side. Although the virtual valuations of those agents with the highest valuations coincide

with the true valuations, the cross-side effect for such agents is always lower under profit maximiz-

ation than under welfare maximization. Indeed, while such cross-side effect is proportional to the

true value of the marginal agent on the opposite side under welfare maximization, it is proportional

to the virtual value of the marginal agent under profit maximization. Because virtual values are

lower than true values on both sides, this implies that the matching sets are strictly smaller under

profit maximization than under welfare maximization for all agents, including those at the top of the

distribution.

Comparative Statics. The model offers a convenient framework for studying various com-

parative statics. In particular, our analysis delivers testable predictions about the effects on the

platform’s pricing strategy of shocks that alter the distribution of valuations and/or the distribu-

tion of the cross-side effects of the match qualities. For example, in the context of the Cable TV

application, consider a positive shock to the viewers income distribution that leaves unchanged the
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distribution of the viewers’willingness to pay for the TV packages but that raises the profits that

the channels expect from reaching these viewers (via an increase in advertisement revenue). Take a

viewer with a high willingness to pay for TV packages. If nested multi-homing was optimal before

the shock, then the package of channels offered to this viewer must necessarily include channels with

a negative virtual valuation. These are channels whose value vchannel for extra viewers is positive but

low enough (possibly because of low advertisement revenue) that its virtual value ϕchannel is negative.

In other words, with these channels, the platform makes losses on the channel side but profits on the

viewer side. Now, a positive income shock that leaves the distributions of values unaltered on each

side but that raises the attractiveness of the viewers has the perverse effect of increasing the cost

of adding low-willingness-to-pay channels to the packages offered to high-willingness-to-pay viewers.

This is because these shocks leave the positive marginal revenue on the viewer side ϕviewer · qchannels
unaltered while increasing the (negative) marginal revenue on the channel side ϕchannel · qviewers
(ϕchannel < 0 is unaltered but qviewers has gone up as a consequence of the shock). Putting it differ-

ently, holding constant the matching function, the platform’s cost of cross-subsidizing viewers with

high valuations goes up when they become more valuable to the channels.3 In contrast, the benefit

of expanding the packages of those viewers with a low willingness to pay goes up, since these viewers

are always matched to channels with a positive virtual value. As consequence, our model predicts

that the platform’s optimal response to a positive income shock to the viewers (more generally, to

any shock that increases the viewers’attractiveness) is to improve the quality of the "basic" pack-

ages (those targeted to low-valuation viewers) and worsen the quality of the "premium" packages

(those targeted to the high-valuation viewers). In terms of consumer surplus, these shocks thus make

low-end viewers better off at the expenses of high-end ones.

Extensions. In order to implement the optimal matching rule, platforms offer price schedules

to agents on both sides of the market who simultaneously choose their matching sets. Given such

price schedules, agents play a coordination game. By design, this game has one equilibrium that

implements the desired matching rule. This equilibrium, however, needs not be unique (weak im-

plementation, in the mechanism design parlance, or the chicken-and-egg problem, in the two-sided

markets parlance). We build on Weyl (2010) and construct insulating payment rules that, by condi-

tioning payments on each side on the participation of agents from the opposite side, implement the

optimal matching rule as a unique equilibrium (in dominant strategies).

In our baseline model, the platform matches agents on opposite sides without incurring any

explicit costs (all “costs”are endogenous and stem from cross-side effects). We develop two extensions

that introduce explicit costs to the platform’s problem. First, we consider the effect of quasi-fixed

costs, which are costs incurred by the platform for each agent that receives a non-empty matching

3This is because incentive compatibility requires that the platform offers larger discounts to those channels with a

higher willingness to pay than the marginal channel.
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set (in the Cable TV example, this is the cost of connecting the household to the underground

cable system). Second, we introduce menu costs and study the coarse matching rules that appear in

environments where the number of non-exclusive networks offered by the platform is finite.

A special case of our model is that of a principal operating in a single-sided, rather than in a two-

sided, market populated by multiple agents who experience differentiated peer effects from the other

agents they interact with. In this setting, the principal’s problem consists in assigning the agents to

non-exclusive groups (rather than networks). We show that this one-sided group formation problem

is equivalent to a two-sided matching problem where both sides have symmetric primitives and where

the platform is constrained to selecting a symmetric matching rule. As it turns out, in two-sided

markets with symmetric primitives, the effi cient (as well as the profit-maximizing) matching rules

are naturally symmetric. As such, all our results apply to this problem as well. It suffi ces to replace

“single network” by “single group” and “nested multi-homing matching rule” by “mutually non-

exclusive groups”. In particular, our results can be applied to problems in organization economics

(e.g., the design of working groups).

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the

introduction by briefly reviewing the pertinent literature. Section 2 presents the model. Section 3

derives the main results: first, it identifies necessary and suffi cient conditions for the effi cient (or

profit-maximizing) matching rule to employ a single network or to exhibit nested multi-homing.

Next, it characterizes properties of optimal multi-homing rules and discusses the distortions brought

in by profit maximization relative to effi ciency. It then uses these results to derive testable predictions

about the effects on prices and matching outcomes of shocks to the distributions of valuations and to

the distribution of the interaction qualities. Section 4 considers a few extensions. Section 5 concludes.

All proofs omitted in the main text are in the Appendix at the end of the document.

Related Literature

As discussed above, this paper contributes to the literature on second-degree price discrimination

(e.g., Mussa and Rosen (1978) and Maskin and Riley (1983)) by considering a setting where the

product sold by the monopolist is access to other agents.4 In addition, the paper is related to the

following literatures.

Two-Sided Markets. Markets where agents buy access to other agents are the focus of the

literature that studies monopolistic pricing in two-sided markets. This literature, however, restricts

attention to a single network or to mutually exclusive networks (e.g., Rochet and Tirole (2003, 2006),

Armstrong (2006), Hagiu (2008), Ambrus and Argenziano (2009), and Weyl (2010)).5 In contrast,

4For models of second-degree price discrimination on quality, see Deneckere and McAfee (1996), Ellison and Fuden-

berg (2000) and Anderson and Dana (2009).
5See Rysman (2009) for a recent survey of the two-sided markets literature.
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here we assume that platforms can design arbitrary matching functions and provide conditions for

the optimality of a single network relative to more sophisticated pricing schemes consistent with

multi-homing matching rules.

Matching Design with Transfers. In the context of one-to-one matching, Damiano and Li

(2007) and Johnson (2010) derive conditions on primitives for a profit-maximizing platform to induce

positive assortative matching. In turn, Hoppe, Moldovanu and Sela (2009) derive one-to-one positive

assortative matching as the equilibrium outcome of a costly signaling game. The key difference

with respect to this literature is that we study second-degree price discrimination in many-to-many

matching environments.

Group Design. As mentioned above, our two-sided matching model can be applied to solve

(one-sided) group design problems with peer effects. Arnott and Rowse (1987) and Lazear (2001)

study the problem of a school that, under complete information, wants to allocate students to

disjoint classes. Besides restricting attention to mutually exclusive groups, these papers disregard

the incomplete information issues that lie at the core of the present work.

Under incomplete information, Helsley and Strange (2000) analyze an economy with peer effects

where agents can choose to stay in the public sector or secede to a private community. They allow

for a single private community and disregard the matching design issues which are the focus of our

analysis.6

More recently, Board (2009) and Rayo (2010) study profit-maximization by a monopolistic plat-

form that can induce agents to self-select into mutually exclusive groups. Relative to these papers,

we extend the analysis of matching design to two-sided environments and allow for matching rules

that assign agents to non-exclusive groups.7

Cooperative Matching Theory. Our paper considers a many-to-many matching market in

which agents have common preferences for agents on the other side of the market. In contrast, the

matching theory surveyed in Roth and Sotomayor (1990) (for a more recent treatment, see Hatfield

and Milgrom (2005)) and the recent literature on the school assignment problem (see, for example,

Abdulkadiroglu, Pathak and Roth (2005a, 2005b) and Abdulkadiroglu and Sonmez (2003)) study

one-to-one (or many-to-one) matching in a setting where agents have different rankings over agents

on the other side. Moreover, these literatures are methodologically distinct from this paper, in that

they focus on solution concepts such as stability and do not allow for transfers.

Decentralized Matching. In a decentralized economy, Shimer and Smith (2000), Shimer

(2005), Smith (2006), Atakan (2006) and Eeckhout and Kircher (2010) consider extensions of the

assignment model of Becker (1973) to a setting with search/matching frictions. These papers show

that the resulting one-to-one matching allocation is positive assortative provided that the match

6See also Epple and Romano (1998).
7 In subsection 4.4, we specialize our model to solve the (one-sided) group design problem, and discuss in further

detail the relation to the works of Board and Rayo.
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value function satisfies strong forms of supermodularity. Relative to this literature, we abstract

from search frictions and consider many-to-many matching rules. In a decentralized economy with

perfect information, Farrell and Scotchmer (1998), Ellickson, Grodal, Scotchmer and Zame (1999)

and Scotchmer (2002) characterize the core allocations of equilibrium models of group formation.

Instead, we analyze centralized matching markets and allow for the information to be asymmetrically

distributed.

2 The Model

A monopolistic platform is in the business of bringing together agents from two sides of a market.

Each side k, l ∈ {A,B} is populated by a unit-mass continuum of agents indexed by i, j ∈ [0, 1]. Each

agent i from each side k has a type θik = (uik, v
i
k) ∈ Θk ≡ Uk×Vk that has two components. The first

component uik is a vector of individual characteristics that determines the attractiveness of agent i as

seen from the eyes of each agent on side l 6= k. The second component vik is a parameter that controls

for agent i’s willingness to pay for the quality of the set of agents from side l he is matched to. The

support of uik is some arbitrary set Uk which can assume discrete or continuous values on each of its

dimensions. In contrast, the support of vik is the real interval Vk ≡ [vk, vk] ⊆ R. To accommodate
the case where agent i dislikes interacting with agents from side l (negative externalities), we allow

the support of vik to take negative values.

In the cable TV example, let viewers belong to side A and channels to side B. In this case,

uiA contains information about demographics, income, and educational background of viewer i ∈ A,
whereas ujB contains information about the quality of the shows as well as the type of advertisement

offered by channel j ∈ B. In this example, viA then captures viewer i’s willingness to pay for a better
package of channels, while vjB stands for the marginal value of an extra viewer to channel j (reflecting

an increase in advertisement revenues, for example).

Let σk(u
j
l ) denote the interaction quality that each agent from side k obtains from being matched

to an agent from side l with characteristics ujl . The function σk : Ul → R++ thus maps the

characteristics of an agent from side l to the interaction quality enjoyed by each agent on side k. For

any given (Lebesgue measurable) set of agents s from side l with type profile (θjl )j∈s, we then denote

by

|s|k =

∫
j∈s

σk(u
j
l )dλ(j),

the total quality of of the set from the eyes of each agent on side k, where λ(·) is the Lebesgue
measure.

Given any type profile θ ≡(θik)
i∈[0,1]
k=A,B, the payoff enjoyed by each agent i on each side k when

matched, at a price p, to a set s of agents from side l is given by

πik(s, p;θ) ≡ vik · gk (|s|k)− p, (1)
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where gk(·) is a positive, strictly increasing, continuously differentiable, function. Importantly, note
that the parameter vik summarizes all the information contained in agent i’s type that is relevant for

agent i’s preferences.

The type θik = (uik, v
i
k) of each agent i from each side k is an independent drawn from the

distribution Fk with support on Θk. Letting F
v,σ
k denote the joint distribution of (vk, σl(uk)), we

then assume that such distribution is absolutely continuous and then denote by F vk the marginal

distribution of F v,σk with respect to vk (and by fvk its density) and by F
σl(uk)
k (·|vk) the conditional

distribution of the interaction quality σl(uk) given vk. We will assume that the function family〈
F
σl(uk)
k (·|vk)

〉
vk
is uniformly continuous in vk in the L1-norm.

As is standard in the mechanism design literature, we also assume that the marginal distribution

F vk of the willingness to pay is regular in the sense of Myerson (1981), meaning that the virtual values

vk − [1− F vk (vk)]f
v
k (vk) are strictly increasing.

In addition to the above technical conditions, we will assume that the following two key economic

properties hold.

Condition 1 (Diminishing marginal utility) The function gk is weakly concave, k = A,B.

Condition 2 (Affi liation) The distribution Fk is such that (σl(ũk), ṽk) are positively affi liated.

In the cable TV example, the assumption of positive affi liation has two implications: first, chan-

nels that are willing to pay more for viewers (e.g., because their advertisers are willing to pay more)

can afford better shows and more pleasant advertisement. Second, those viewers who are willing to

pay more for the packages of channels they receive are the ones that the channels value the most

(e.g., because these are the viewers preferred by the advertisers).

The following examples describe two important special cases of the preference structure outlined

above.

Example 1 (Linear Network Externalities for Quantity) Suppose that agents from side k

only care about the total mass of agents from side l they are matched to. In this case, gk(x) = x and

σk(·) ≡ 1 for k ∈ {A,B}, so that, πik(s, p;θ) ≡ vik · λ (s)− p.

These preferences are the ones typically considered in the two-sided markets literature (e.g.,

Rochet and Tirole (2003, 2006), Armstrong (2006), Hagiu (2006) and Weyl (2010)).

Example 2 (Supermodular Matching Values) Let uk be a one-dimensional random variable

identical to vk, and suppose that gk(x) = x and σk(uk) ≡ σk(vk) = vk for k ∈ {A,B}. The match
between agent i from side k and agent j from side l produces a surplus of vik · v

j
l to each of the two

agents. As such, the total payoff that each agent i from side k obtains from being matched to a set s

of agents from side l is given by πik(s, p;θ) = vik ·
∫
j∈s v

j
l dλ (j)− p.
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This production function appears, for example, in Damiano and Li (2007), Hoppe, Moldovanu

and Sela (2009), as well as in the assignment/search literature (e.g., Becker (1973), Lu and McAfee

(1996) and Shimer and Smith (2000)).

Matching mechanisms

A direct revelation mechanism consists of a matching rule
{
ŝik(·)

}i∈[0,1]

k=A,B
along with a payment rule{

p̂ik(·)
}i∈[0,1]

k=A,B
such that, for any given type profile θ ≡(θik)

i∈[0,1]
k=A,B, ŝ

i
k(θ) represents the set of agents

from side l 6= k that are matched to agent i from side k, whereas p̂ik(θ) denotes the payment made

by agent i to the platform (i.e., to the match maker).8

A matching rule is feasible if and only if the following reciprocity condition holds: whenever agent

j from side B belongs to the matching set of agent i from side A, then agent i belongs to j’s matching

set. Formally:

j ∈ ŝiA(θ)⇔ i ∈ ŝjB(θ). (2)

Because there is no aggregate uncertainty and because individual identities are irrelevant for

payoffs, without any loss of optimality, hereafter we will restrict attention to anonymous mechanisms.

In these mechanisms, the composition (i.e., the cross-sectional type distribution) of the matching set

that each agent i from each side k receives, as well as the payment by agent i, depend only on agent

i’s reported type as opposed to the entire collection of reports θ by all agents (whose distribution

coincides with F by the analog of the law of large numbers for a continuum of random variables).

Furthermore, any two agents i and i′ (from the same side) reporting the same type are matched to

the same set and are required to make the same payments. Formally, an anonymous mechanism

M = {sk(·), pk(·)}k=A,B can be fully described by means of a pair of matching rules and a pair of

payment rules such that, for any θk ∈ Θk, pk(θk) is the payment made by each agent on side k

reporting a type θk, whereas sk(θk) ⊂ Θl is the set of types from side l to which each agent i from

side k is matched to when reporting type θk. Note that sk maps Θk into a sigma algebra over Θl.

With some abuse of notation, hereafter we will then denote by |sk(θk)|k the total quality of the
matching set assigned to each agent i on side k reporting a type θk. Also note that, by virtue of

reciprocity, θl ∈ sk(θk) implies that θk ∈ sl(θl). As such, a matching rule can be fully described
by its side-k correspondence sk(·). By the Revelation Principle, we will restrict attention to direct
revelation mechanisms which are individually rational (IR) and incentive compatible (IC). Denote by

Π̂k(θk, θ̂k;M) ≡ vik · gk(|sk(θ̂k)|k)− pk(θ̂k) the payoff that type θk = (uk, vk) obtains when reporting

a type θ̂k = (ûik, v̂
i
k), and by Πk(θk;M) ≡ Π̂k(θk, θk;M) the payoff that type θk obtains by reporting

8To simplify notation, we do not allow the platform to randomize across matching sets, that is, we restrict attention

to deterministic mechanisms. Deterministic mechanisms can be shown to be optimal in a more general model where

stochastic matching rules are allowed. The proof is available upon request by the authors.
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truthfully. In our setting, a mechanism M is

IR if Πk(θk;M) ≥ 0 for all θk ∈ Θk, (3)

IC if Πk(θk;M) ≥ Π̂k(θk, θ̂k;M) for all θk, θ̂k ∈ Θk. (4)

A matching rule sk(·) is implementable if there is a payment rule {pk(·)}k=A,B such that the

mechanism M = {sk(·), pk(·)}k=A,B satisfies the IR and IC constraints (3) and (4). Implicit in the

aforementioned specification is the assumption that the platform must charge the agents before they

observe their payoff. This seems a reasonable assumption in most applications of interest. Without

such an assumption, the platform could extract all surplus and implement the effi cient matching rule

by using payments similar to those in Cremer and McLean (1988) —see also Mezzetti (2007).

3 Effi ciency and Profit-Maximization

We start by defining what we mean by “effi cient” and “profit-maximizing”mechanisms. For any

given type profile θ, the welfare generated by the mechanism M is given by

ΩW (M) =
∑
k=A,B

∫ 1

0
vik · gk(

∣∣̂sik(θ)
∣∣
k
)dλ(i) =

∑
k=A,B

∫
Θk

vk · gk (|sk(uk, vk)|k) dFk(uk, vk),

whereas the expected profits generated by the mechanism M are given by

ΩP (M) =
∑
k=A,B

∫ 1

0
p̂ik(θ)dλ(i) =

∑
k=A,B

∫
Θk

pk(uk, vk)dFk(uk, vk)

Because there is no aggregate uncertainty, a mechanism MW (respectively, MP ) is then said to be

effi cient (respectively, profit-maximizing) if it maximizes ΩW (M) (respectively, ΩP (M)) among all

mechanisms that are individually rational and incentive compatible, that is, among all mechanisms

M that satisfy (3) and (4) above.

3.1 Preliminaries

Our first result provides necessary and suffi cient conditions for a mechanism M to be individually

rational and incentive compatible.

Lemma 1 A mechanism M is individually rational and incentive compatible if and only if the fol-

lowing conditions jointly hold.

1. for all θk = (uk, vk) and θ′k = (u′k, v
′
k), vk = v′k implies that Πk(θk;M) = Πk(θ

′
k;M);
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2. for all θk = (uk, vk) and θ′k = (u′k, v
′
k), vk > v′k implies that gk (|sk(uk, vk)|k) ≥ gk

(
|sk(u′k, v′k)|k

)
;

furthermore, except for a countable subset of Vk,

gk (|sk(uk, vk)|k) = gk
(∣∣sk(u′k, vk)∣∣k)

for all uk,u′k ∈ Uk;

3. expected payments are given by

pk(uk, vk) = vk · gk (|sk(uk, vk)|k)−Πk((uk, vk);M)−
∫ vk

vk

gk (|sk(uk, x)|k) dx

for all (uk, vk) ∈ Θk, with Πk((uk, vk);M) ≥ 0.

To understand the result in Lemma 1, recall that agents’ payoffs do not depend directly on

their own characteristics uk, but only on the characteristics of those agents they are matched with.

Therefore, incentive-compatible mechanisms have to deliver identical payoffs to all agents who share

the same preference for quality vk but have different characteristics uk. This result, however, does not

mean that the platform cannot condition the value of the matching set gk (|sk(uk, vk)|k) on individual
characteristics uk. By designing the payment scheme appropriately, the platform can in fact preserve

the indifference condition required by part 1 while letting the value of the matching set vary with

uk. Condition 2 in the lemma establishes that this can be done at most over a countable subset

of Vk. To see this, note that, because payoffs satisfy the increasing difference property between

vk and gk, incentive compatibility requires that the quality of the matching set be nondecreasing

in vk. In turn, this implies that the expected quality E[gk (|sk(ũk, vk)|k)] must be nondecreasing
in vk, where the expectation is with respect to ũk given vk Now at any point vk ∈ Vk at which

gk (|sk(uk, vk)|k) depends on uk, the expectation E[gk (|sk(ũk, vk)|k)] is necessarily discontinuous in
vk. Because monotone functions can be discontinuous at most over a countable set of points, this

means that the value of the matching set may vary with the characteristics uk only over a countable

subset of Vk. Note, however, that this result pertains the value gk of the matching set and not the

matching set sk itself (matching sets may vary with uk over a continuous subset of Vk) implying

that the platform may indeed find it useful to condition matching sets on characteristics other than

willingness to pay.

The remaining condition on payments is the familiar envelope condition which pins down the

payments from the matching rule, up to a scalar. An immediate implication of Lemma 1 is that a

matching rule sk(·) is implementable if and only if it satisfies condition 2 above.
Using Lemma 1, we then have that, under any individually rational and incentive compatible

mechanism M that gives zero surplus to each agent reporting the lowest willingness to pay, welfare,

as well as the platform’s profits, can be conveniently represented as follows

Ωh(M) =
∑
k=A,B

∫
Θk

ϕhk(vk) · gk (|sk(uk, vk)|k) dFk(uk, vk) (5)
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where ϕWk (vk) = vk if h = W (i.e., in the case of welfare) and ϕPk (vk) = vk −
1−F vk (vk)

fvk (vk) if h = P (i.e.,

in the case of profits).9 Hereafter, we will denote by {shk(·)}k=A,B the matching rule that maximizes

(5). We will then assume that v̄k > 0 for k = A,B, thus guaranteeing that an empty network is

never optimal. For future reference, we also define the reservation value rhk as the unique solution to

ϕhk(vk) = 0 whenever this equation has a solution.

3.2 Single network vs nested multi-homing

We now describe two important classes of matching rules: single- and multi-homing matching rules.

Under a single-homing matching rule, agents on both sides of the market are assigned to mutually

exclusive networks. As such, if two agents from side k are both matched to the same agent on side

l (again, because identities play no role in our model, this formally means that they are matched to

the same type θl on side l) then this means that their matching sets are the same, a property which

is not imposed in case of multi-homing.

Definition 1 A matching rule sk(·) exhibits single-homing if for all θk, θ′k ∈ Θk

sk(θk) ∩ sk(θ′k) 6= � ⇒ sk(θk) = sk(θ
′
k).

Single-homing matching rules can be implemented by offering the agents access to mutually

exclusive networks and by charging appropriate fees for the different networks (we will come back

to a precise description of the fees at the end of the document). Single-homing matching rules are

at the heart of the two-sided markets literature (e.g., Rochet and Tirole (2003, 2006), Armstrong

(2006), Hagiu (2006), Ambrus and Argenziano (2009) and Weyl (2010)). This literature studies

optimal pricing by platforms that are restricted to use single-homing matching rules. Part of the

contribution of the analysis here is to derive conditions under which such rules are optimal.

A particularly simple type of single-homing matching rule is one that employs a single network.

Definition 2 A matching rule sk(·) employs a single network if for all θk, θ′k ∈ Θk

sk(θk), sk(θ
′
k) 6= � ⇒ sk(θk) = sk(θ

′
k).

In contrast, under a multi-homing matching rule, the platform establishes a certain number of

non-exclusive networks and allows agents on each side to join multiple networks. Of particular

interest are nested multi-homing rules. Under these rules, if agents i1 and i2 from side k commonly

meet agent j from side l, then the matching sets of agents i1 and i2 are nested.

9 It is immediate to see that restricting attention to mechanisms that give zero surplus to each agent reporting the

lowest willingness to pay is without loss of optimality both in case of profit maximization as well as in case of welfare

maximization (subject to budget balance).
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Definition 3 A matching rule sk(·) exhibits nested multi-homing if for all θk, θ′k ∈ Θk

sk(θk) ∩ sk(θ′k) 6= � ⇒ sk(θk) ⊆ sk(θ′k) or sk(θk) ⊇ sk(θ′k),

where the inclusion is strict for some θk, θ′k ∈ Θk.

An example of a nested multi-homing matching rule is given by the cable TV application discussed

above. In this case, the provider offers (mutually non-exclusive) packages that can be added to

a "standard plan" and which grant access to extra channels. Multi-homing matching rules are

also pervasive in online advertising (where advertisers can “buy” access to an increasing set of

browsers) and health-care provision (where patients enroll in health plans that include different sets

of doctors and hospitals). More generally, multi-homing is the equivalent in matching environments

to quantity/quality price discrimination under standard (single-market) monopolistic screening.

The following proposition identifies important properties of optimal matching rules.

Proposition 1 Let h = P in case of profit-maximization and h = W in case of welfare maximiza-

tion. The h-optimal mechanism Mh does not depend on the vector of characteristics uk, k = A,B.

Suppressing the dependence on uk, k = A,B, the h-optimal matching rule shk(·) then has the following
threshold structure

shk(vk) =

{
[thk(vk), vl] if vk ∈ [ωhk , vk]

� otherwise
(6)

where the threshold ωhk ∈ [vk, vk] determines which types are excluded and where the nonincreasing

function thk(·) determines the matching sets.

The result that optimal matching rules have the threshold structure outlined in the proposition

hinges on two important assumptions: the weak concavity of the externality function gk(·) and the
positive affi liation of (σl(uk), vk). To understand the result, consider an agent with type θk = (uk, vk)

with ϕhk(vk) ≥ 0. Ignoring for a moment the monotonicity constraints, it is easy to see that it is

always optimal to assign to this type a matching set sk(uk, vk) ⊃ {θl = (ul, vl) : ϕhl (vl) ≥ 0} that
includes all types θl = (ul, vl) whose ϕhl -valuation is non-negative. This is because, (i) irrespective of

their ul characteristics, these types contribute positively to type θk’s payoff (recall that σk(ul) > 0

for all ul) and (ii) these types have a non-negative ϕhl -valuation, and therefore adding type θk to

these types’matching sets never reduces the platform’s payoffΩh(M), as shown by (5). Now imagine

that the platform wants to assign to this type θk a matching set sl whose intrinsic quality q is higher

than the quality of the set of types on side l whose ϕhl -valuation is non-negative, i.e., such that

|sl|k = q >

∫
{(ul,vl):ϕhl (vl)≥0}

σk(ul)dFl(ul, vl)

Because of reciprocity, adding an agent whose ϕhl -valuation is negative to type θk’s matching set now

comes at a cost, through its negative effect on type θl’s payoff. In this case, the assumption that
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(σk(ul), vl) are positively affi liated along with the assumption that the externality function gk(·) is
weakly concave imply that the least costly way to provide type θk with a matching set of quality q

is by matching him with all types θl whose ϕhl -valuation is the least negative, irrespective of their

ul characteristics. This means that type θk’s matching set takes the form Ul ∪ [thk(vk), vl] where the

threshold tk(vk) is computed so that∫
{(ul,vl):vl∈[tk(vk),vl]}

σk(ul)dFl(ul, vl)k = q.

Monotonicity of the matching quality in the willingness to pay vk, as required by incentive compat-

ibility, then implies that the threshold function thk(·) is nonincreasing. The proof in the Appendix
formalizes the heuristics described above.

The following corollary is a direct implication of Proposition 1.

Corollary 1 The optimal mechanism Mh either employs a single network or exhibits nested multi-

homing.

Given the result in Proposition 1, from now on, we restrict attention to mechanisms whose

matching rule takes the form given in (6). Under such mechanisms, the quality of the matching set

that each agent i on each side k obtains when reporting a type θk = (uk, vk) is given by

gk

(∣∣∣shk(uk, vk)
∣∣∣
k

)
= ĝk(t

h
k(vk))

where the function ĝk : Vl → R+ is given by

ĝk(vl) ≡ gk
(∫ vl

vl

∫
Ul

σk(ul) · dFl(ul, v)

)
.

The platform’s objective then rewrites as

Ωh(M) =
∑
k=A,B

∫ vk

ωhk

ĝk(t
h
k(vk)) · ϕhk(vk) · dF vk (vk). (7)

The next proposition provides a necessary and suffi cient condition for the h-optimal mechanism to

employ a single network or to exhibit nested multi-homing. This is obtained by assuming that the

following condition holds, which strengthens the standard monotonicity of virtual values, as required

in a two-sided matching environment.

Condition 3 (Strong Regularity) The function

ψhk(vk) ≡
fvk (vk) · ϕhk(vk)

−ĝ′l(vk)
=

ϕhk(vk)

g′l (|Uk × [vk, v̄k]|l) · E [σl(ũk)|ṽk = vk]

is strictly increasing for all vk ∈ [vk, vk].
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Take the case of profit-maximization, where h = P . The numerator in ψhk(vk) accounts for the

effect as a consumer of an agent from side k with valuation vk on the platform’s revenue (as his

virtual valuation ϕhk(vk) is proportional to the marginal revenue produced by this agent). In turn,

the denominator accounts for the effect of this agent as an input on the platform’s revenue (as −ĝ′l(vk)
is proportional to the marginal utility brought by this agent to every agent on side l who is already

matched to any other agent with valuation above vk). The assumption of positive affi liation between

vk and σl(uk), together with the assumption of weak concavity of gl(·), imply that the denominator
of ψhk(vk) is strictly increasing in vk. The strong regularity condition above then requires that the

value of an agent as a consumer increases faster than his value as an input as marginal willingness to

pay grows. In the linear model, ψhk(vk) =
ϕhk(vk)

E[σl(ũk)|ṽk=vk] , which is strictly increasing provided that the

positive affi liation between σl(uk) and vk is not“too strong”. As we will see in Proposition 3 below,

the key role played by strong regularity is to guarantee that bunching occurs only at the top or at

the bottom of the value distribution. In this sense, it is the analog of Myerson standard regularity

condition in two-sided matching problems. It also plays a role in the following proposition, but only

in the special case where virtual valuations are always positive on one-side and both positive and

negative on the other side.

Proposition 2 Assume Condition 3 holds. The h-optimal matching rule employs a single (complete)

network if

4h ≡
∑
k=A,B

g′k(|Θl|k) · E[σk(ũl)|ṽl = vl] · ϕhk(vk) ≥ 0,

and exhibits nested multi-homing otherwise.

To see why the result above is true, consider first the case where ϕhk(vk) ≥ 0 for k = A,B implying

that 4h ≥ 0. Because valuations (or virtual valuations) are all nonnegative, one can easily see from

(7), that effi ciency (respectively, profits) are maximized by matching each agent on each side to all

agents on the other side, meaning that the optimal matching rule employs a single network which

includes all agents (i.e., a complete network).

Next, consider the case where ϕhk(vk) < 0 for k = A,B, so that 4h < 0. To see why in this case

nested multi-homing is h-optimal, suppose instead that the platform were to use a single network

and let ω̂k denote the threshold type on side k so that agents on this side are excluded if and only if

vk < ω̂k. We will argue that for a single network to be optimal it must be that ω̂hk ≤ rhk for k = A,B,

where the reservation value rhk is given by the unique solution to ϕ
h
k(rhk) = 0. Indeed, suppose,

towards a contradiction, that for k ∈ {A,B}, ω̂hk > rhk so that ϕ
h
k(ω̂hk) > 0. The platform could then

improve upon its payoffby employing a nested multi-homing matching rule that assigns to each agent

on side k with valuation vk ≥ ω̂hk the same matching set as the original matching rule while it assigns
to each agent with valuation vk ∈ [rhk , ω̂

h
k ] the matching set [v̂#

l , vl], where v̂
#
l ≡ max{rhl , ω̂

h
l }. The

new matching rule is clearly monotone (and hence implementable) and gives the platform a higher
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h-payoff than the original mechanism. Hence, for a single network to be optimal, it must be that

ω̂hk ≤ rhk for k = A,B.

Now suppose that ω̂hk < rhk for k = A,B. Starting from this single network, the platform could

then increase her payoff generated from side k by switching to a nested multi-homing rule sh#
k (·)

such that

s#k (vk) =


[ω̂hl , vl] ⇔ vk ∈ [rhk , vk]

[rhl , vl] ⇔ vk ∈ [ω̂hk , r
h
k ]

� ⇔ vk ∈ [vk, ω̂
h
k ]

.

The new matching rule strictly improves upon the original one because it eliminates all matches

between agents whose valuations (or virtual valuations) are both negative. Next, suppose that

ω̂hk = rhk for k ∈ {A,B} whereas ω̂
h
l ≤ rhl . The platform could then do better by lowering the

threshold type on side k and switching to the following multi-homing matching rule

s#k (vk) =


[ω̂hl , vl] ⇔ vk ∈ [rhk , vk]

[rhl , vl] ⇔ vk ∈ [ω̂#
k , r

h
k ]

� ⇔ vk ∈ [vk, ω̂
#
k ]

By setting the new exclusion threshold ω̂#
k suffi ciently close to r

h
k the platform increases her payoff.

To see this, note that, starting from ω̂#
k = rhk , the marginal effect of decreasing the threshold ω̂

#
k by

ε > 0 small enough is proportional to

−ĝk(rhl ) · ϕhk(rhk)fvk (rhk)− ĝ′l(rhk)

∫ vl

rhl

ϕhl (vl)dF
v
l (vl) = −ĝ′l(rhk)

∫ vl

rhl

ϕhl (vl)dF
v
l (vl) > 0 (8)

where the equality follows from the fact that ϕhk(rhk) = 0 whereas the inequality follows from the fact

that ĝ′l(·) < 0. In words, the benefit of offering a matching set of higher quality to those agents on

side l whose ϕhl -valuation is positive more than offsets the cost of getting on board a few more agents

on side k whose ϕhk-valuation is negative. Note that for this network expansion to be profitable, it

is essential that the platform assigns the newly added agents on side k only to those users on side l

with positive valuation, which requires employing a multi-homing matching rule. We conclude that

when ϕhk(vk) < 0 for k = A,B, the h-optimal mechanism necessarily exhibits nested multi-homing.

In the Appendix, we complete the proof by analyzing the remaining case where ϕhl (vl) < 0 while

ϕhk(vk) ≥ 0. Note that this is the only case in which the strong regularity condition plays a role.

An interesting implication of Proposition 2 is that, since 4W > 4P , multi-homing matching

rules are more often employed by profit-maximizing platforms, rather than by welfare-maximizing

platforms. This is illustrated by the next two examples.

Example 3 Consider the case of linear network externalities, as described in Example 1 above, and

assume that values vk are uniformly distributed over [vk, vk]. Then, the welfare-maximizing matching
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rule employs a single network if

4W = vA + vB ≥ 0,

and exhibits nested multi-homing otherwise. In turn, the profit-maximizing matching rule employs a

single network if

4P = 2 (vA + vB)− (vA + vB) = 4W − [(vA − vA) + (vB − vB)] ≥ 0,

and exhibits nested multi-homing otherwise.

Example 4 Consider the case of supermodular matching values, as described in Example 2 above,

and assume that values vk are uniformly distributed over [vk, vk] with vk > 0. Then, the welfare-

maximizing matching rule employs a single network, since

4W = 2 · vA · vB > 0.

In turn, the profit-maximizing matching rule employs a single network if

4P =
∑
k=A,B

vl · (2vk − vk) = 4W · 1

2
·
[(

2− vA
vA

)
+

(
2− vB

vB

)]
≥ 0,

and exhibits nested multi-homing otherwise.

3.3 Properties of optimal multi-homing rules

We now further investigate the properties of optimal matching rules when nested multi-homing is

optimal, that is, when 4h < 0. In order to do so, we use the characterization of Proposition 1

to rewrite the feasibility constraint in terms of the threshold functions that describe the optimal

matching rule. Because thA(·), thB(·) are weakly decreasing, reciprocity requires that

thk(vk) = inf{vl : thl (vl) ≤ vk}, (9)

that is, the threshold thk(vk) of an agent with valuation vk is the smallest value vl on side l whose

matching set contains vk.

The platform’s problem then consists of maximizing the objective (7) subject to the feasibility

constraint (9) and the monotonicity condition, required by incentive compatibility, that thA(·), thB(·)
be weakly decreasing.

The next definition extends to the present two-sided matching model the notion of separating

schedules, as it appears in Maskin and Riley (1984).

Definition 4 The h-optimal matching rule shk(·) is said to be maximally separating if thk(·) is strictly
decreasing in [ωhk , t

h
l (ωhl )]. If ωhk > vk, we say that the h-optimal matching rule exhibits exclusion

at the bottom on side k. In turn, if thl (ωhl ) < v̄k we say that the h-optimal matching rule exhibits

bunching at the top on side k.
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When there is bunching at the top on side k, all agents with valuation vk ∈ [tl(ω
h
l ), v̄k] obtain

the same matching set [ωhl , v̄l]. Reciprocity then implies that maximally separating matching rules

can only exhibit bunching at the top when all agents on side l with valuation above ωhl are assigned

to some agent on side k with valuation vk < v̄k.

The next proposition characterizes the h-optimal matching rule under the assumption that the

strong regularity condition holds.

Proposition 3 Let 4h < 0 and assume Condition 3 holds. Then the h-optimal matching rule shk(·)
is maximally separating. Define

4h
k(vk, vl) ≡ −ĝ′k(vl) · ϕhk(vk) · fvk (vk)− ĝ′l(vk) · ϕhl (vl) · fvl (vl).

The h-optimal matching rule shk(·) is such that if 4h
k(v̄k, vl) > 0, there is bunching at the top on side

k and no exclusion at the bottom on side l. In turn, if 4h
k(v̄k, vl) < 0, there is exclusion at the bottom

on side l and no bunching at the top on of side k. Else, in the knife-edge case where 4h
k(v̄k, vl) = 0,

there is neither bunching at the top on side k nor exclusion at the bottom on side l.

Moreover, for all values vk in the separating range, the h-optimal threshold thk(·) satisfies the
Euler equation

4h
k(vk, t

h
k(vk)) = 0, (10)

which yields thk(vk) =
(
ψhl
)−1 (−ψhk(vk)

)
.

Assume vk < 0, k = A,B. An important feature of the maximally separating h-optimal rule

described above is that thk(vk) ≤ rhl if and only if vk ≥ rhk . In the case of profit-maximization, this

means that agents with positive virtual values on side k are matched to all agents with positive virtual

values on side l, plus a measure of agents with negative virtual values on side l (cross-subsidization).

The optimal level of cross-subsidization for an agent with ϕhk(vk) > 0 is determined by the Euler

equation, which equalizes the marginal benefits and the marginal costs of enlarging the matching

sets. The term −ĝ′k(thk(vk))·ϕhk(vk)·fvk (vk) captures the marginal gain on side k (in terms of effi ciency

or revenue), while the term −ĝ′l(vk) ·ϕhl (thk(vk)) ·fvl (thk(vk)) captures the associated marginal losses on

side l from further decreasing thk(vk) (recall that ϕhl (thk(vk)) < 0 for any vk > rhk). At the optimum,

these two effects must balance each other, as implied by (10).

It is also worth noticing that optimality implies that there is bunching at the top on side k if and

only if there is no exclusion at the bottom on side l. This means that bunching can only occur at

the optimum due to binding capacity constraints, that is, when the “stock”of agents on side l has

been exhausted. This is illustrated in the next example.

Example 5 (Patients and doctors with linear network externalities for quantity) Let the

platform be a health insurance company that provides patients on side A with access to doctors on side
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B. Each patient only cares about the number of doctors included in his health plan, while doctors only

care about the number of patients they assist. Accordingly, the environment features linear network

externalities, as defined in Examples 1 and 3. Patients have values for an extra doctor drawn from a

uniform distribution on [1, 3
2 ], while doctors face costs (negative values) of treating an extra patient

drawn from a uniform distribution on [−1, 0]. Since 4W = 0, the welfare-maximizing (say, public)

provision of health insurance entails the adoption of a single (complete) network where all patients

have access to all doctors. In turn, since 4P = −3
2 , the profit-maximizing (say, private) provision of

health insurance entails the adoption of a nested multi-homing matching rule. It follows from (10)

that this rule is described by the threshold function tPA(vA) = 3
4 − vA defined over vA ∈ [1, 3

2 ]. Under

profit-maximization, there is bunching at the top on side B (that is, cheap doctors are included in

the network offered to all patients) and exclusion at the bottom on side B (that is, very expensive

doctors are excluded from any health plan). Figure 1 depicts the situation described above.

The example above shows that, as implied by Proposition 2, welfare-maximizing matching rules

are more likely to implement single-homing matching rules. In turn, profit-maximizing platforms tend

to employ nested multi-homing matching rules, since this allows for finer price discrimination. A

salient feature of the health-care example is that, relative to welfare, the profit-maximizing matching

rule (i) excludes more agents, and (ii) assigns matching sets which are strict subsets of the ones

assigned by the effi cient rule. As we discuss next, these two distortions generalize well beyond the

case of linear network externalities and uniform valuations assumed in the example above.

3.4 Distortions Relative to Effi ciency: The Exclusion and Isolation Effects

Relative to welfare maximization, profit-maximization leads to two distortions, as explained in the

following proposition.
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Proposition 4 Relative to the welfare-maximizing matching rule sWk (·), the profit-maximizing match-
ing rule sPk (·):

1. completely excludes a larger group of agents (exclusion effect); i.e., ωPk ≥ ωWk for k = A,B,

and

2. matches each agent on each side of the market to a subset of his effi cient matching set (isola-

tion effect); i.e., sPk (vk) ⊆ sWk (vk) for all vk > ωPk , k = A,B.

The intuition for both effects can be seen from equation (10): under profit-maximization, the

platform only internalizes the cross-effects on marginal revenues (which are proportional to virtual

values ϕPk (vk)), rather than the cross-effects on welfare (which are proportional to the true values

vk). Since virtual values are always smaller than the true values, the platform fails to internalize

part of the marginal gains from new matches. This leads to smaller matching sets potentially for all

types (including the highest types on each side of the market) and to exclusion of a larger group of

agents.

The next example illustrates the exclusion and isolation effects in the supermodular matching

value case of Example 2.

Example 6 (Free-lancers and firms with supermodular matching values) Let the platform

be an employment agency that matches free-lancers on side A to firms on side B. The match between

a free-lancer and a firm generates a project whose output is 2vAvB, which we assume is evenly split

between the firm and the free-lancer. Accordingly, this environment features supermodular matching

values, as defined in Examples 2 and 4. Free-lancers and firms have productivity values drawn from

a uniform distribution on [v, v], where v > 0 and 2v < v̄. Since 4W = 2v2, the welfare-maximizing
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(say, public) employment agency creates a single (complete) network where all free-lancers have access

to all firms. In turn, since 4P = 2v(2v − v̄) < 0, the profit-maximizing (say, private) employment

agency offers a menu of access plans that allows free-lancers to reach an increasing number of firms.

It follows from (10) that the threshold function associated to this menu is tPk (vk) = vk·v̄
4·vk−v̄ defined

over (ωk, v̄) = ( v̄3 , v̄). Under profit-maximization, there is exclusion at the bottom on both sides

(that is, free-lancers and firms with low productivity develop no projects). Moreover, under profit-

maximization, all free-lancers and firms develop a proper subset of their effi cient number of projects.

Figure 2 describes the profit-maximizing solution when [v, v] = [1, 6].

3.5 Comparative Statics under Profit-Maximization

In matching markets agents play the dual role of consumers (“purchasing”sets of agents from the

other side of the market) and inputs (generating value to the agents on the other side of the market

they are matched with). In our model, the consumer role of the agents on each side k is associated

to the marginal distribution of the valuations F vk , whereas the input role is associated to the family

of conditional distribution functions F σl(uk)
k (·|v) for the interaction qualities σl(uk).

3.5.1 The Detrimental Effects of Becoming More Popular

Shocks that alter the cross-side effects of matches are common in two-sided markets. Changes in

the income distribution of households, for example, shall affect the pricing strategies of Cable TV

providers, since channels’profits change given the same set of viewers (e.g., because advertisers are

willing to pay more for viewers with higher purchasing power).

The next definition uses a standard stochastic order relation to formalize the notion that the

popularity (or attractiveness) of agents on a given side has changed.

Definition 5 We say that side k is more popular under F σl(uk)
k (·|vk) than under F̂ σl(uk)

k (·|vk) if, for
all vk, F

σl(uk)
k (·|vk) dominates F̂ σl(uk)

k (·|vk) in the usual stochastic order, and F vk = F̂ vk .

The next proposition describes how the profit-maximizing matching rule changes as side k be-

comes more popular. Perhaps surprisingly, an increase in the popularity of agents from side k can

be hurtful to agents from both sides of the market.

Proposition 5 Consider the platform’s profit-maximization problem when network effects are linear

(gA(x) = gB(x) = x), let4P < 0, and assume Condition 3 holds. If the popularity of side k increases,

then the platform moves from a matching rule sPk (·) to a matching rule ŝPk (·) such that

1. ŝPk (vk) ⊇ sPk (vk) if and only if vk ≤ rPk ,

2. ŝPl (vl) ⊇ sPl (vl) if and only if vl ≥ rPl ,
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3. there exists ν̂k ∈ (rPk , v̄k] such that Πk(θk; M̂
P ) ≥ Πk(θk;M

P ) if and only if vk ≤ ν̂k,

4. suppose there exists a type θ̂l with ν̂l ≥ rPl such that Πl(θ̂l; M̂
P ) ≥ Πl(θ̂l;M

P ); then Πl(θl; M̂
P ) ≥

Πl(θl;M
P ) for any type θl with vl ≥ ν̂l.

The proposition above shows that changes in the popularity of side k have heterogeneous effects

on the matching sets and on the payoffs of agents from sides k and l. To see why this is true, note

that as side k becomes more popular, the cost in terms of the negative revenue collected on side l

from matching an agent with value vk ≥ rPk to an agent with value vl ≤ rPl increases, whereas the

marginal benefit is unaltered. As a consequence, the matching sets of agents on side k with value

vk ≥ rPk shrink and, by reciprocity, the matching sets of agents on side l with vl ≤ rPl also shrink.
In contrast, the benefit, in terms of the positive revenue collected from side l from matching

agents with value vl ≥ rPl to agents with value vk ≤ rPk increases (since σl(uk) is higher on average).
As a consequence, the matching sets of agents on side l with vl ≥ rPl expand and, by reciprocity, the
matching sets of agents on side k with vk ≤ rPk also expand.

To evaluate the impact on payoffs, we can use the characterization of Lemma 1 to obtain that

for all vk ≤ rPk

Πk(θk;M
P ) =

∫ vk

vk

|sk(ṽk)|k dṽk ≤
∫ vk

vk

|̂sk(ṽk)|k dṽk = Πk(θk; M̂
P ),

and therefore the payoffs of all agents on side k with vk ≤ rPk necessarily increase. On the other

hand, since |̂sk(vk)|k ≤ |sk(vk)|k for all vk ≥ rPk , then either payoffs increase for all agents on side k,
or there exists a threshold type ν̂k > rPk such that the payoff of each agent on side k is higher under

the new rule than under the original one if and only if vk ≤ v̂k. Intuitively, an increase in popularity
on side k alters the costs of cross-subsidization across sides. Agents with vk ≥ rPk are valued by the
platform mainly by their role as consumers. As these agents become more popular, cross-subsidizing

their “consumption”using agents from side l whose addition to the network is detrimental becomes

more expensive, which explains why their matching sets shrink. The opposite is true for agents with

vk ≤ rPk : these agents are valued by the platform mainly by their role as inputs. As they become

better inputs, their matching sets expand and their payoffs increase.

The effect on the payoffs of the agents on the opposite side is in general ambiguous. On the one

hand, by virtue of reciprocity, the matching sets on side l expand for all agents with value vl ≥ rPl

and shrink for all agents with value vl < rPl . On the other hand, the payoff that each agent on side k

derives from interacting with side k increases as a result of the increase in popularity on side k. The

net effect on payoffs can thus be ambiguous and nonmonotone in vl. What remains true, though, is

that, if there exists a type ν̂l ≥ rPl who is better off, then necessarily the same is true for all types

vl > ν̂l.
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The results from Proposition 5 offer testable predictions about the pricing strategies of many

two-sided platforms. In the case of Cable TV providers, it implies that shocks on the wealth of

households (which do not affect their valuation for channels) shall be accompanied by improvements

on the standard packages and worsening of the premium packages offered by the platform.

Let q denote the quality of a given matching set s, and let ρPk (q) denote the price that agents

on side k have to pay for a matching set of quality q under the profit-maximizing mechanism MP .

Clearly, for any quality q that is attainable under the mechanism MP

ρPk (q) = pPk (uk, vk) for all (uk, vk) such that |sPk (vk)|k = q.

The tariff ρPk (q) offers an indirect implementation of the mechanism MP ; it is designed so that each

type (uk, vk) finds it optimal to choose the quality |sPk (vk)|k prescribed by the matching rule sPk (·).
The next corollary translates Proposition 5 in terms of the tariff ρPk (q).

Corollary 2 Consider the platform’s profit-maximization problem when network effects are linear

(gA(x) = gB(x) = x), let 4P < 0, and assume Condition 3 holds. If the popularity of side k

increases, then the platform moves from a price/quality schedule ρPk (·) to a price/quality schedule
ρ̂Pk (·) such that

1. there exists q̂k >
∣∣sPk (rPk )

∣∣
k

=
∣∣̂sPk (rPk )

∣∣
k
such that ρ̂Pk (q) ≤ ρPk (q) if and only if q ≤ q̂k,

2. suppose there exists a type θ̂l with ν̂l ≥ rPl such that Πl(θ̂l; M̂
P ) ≥ Πl(θ̂l;M

P ); Let q̂l =∣∣̂sPl (v̂l)
∣∣
l
. Then for any q ≥ q̂l, ρ̂Pl (q) ≤ ρPl (q).

In terms of quality/price schedules, an increase in the popularity of side k increases the prices for

high quality matching sets on side k, and decreases the price for low quality matching sets. In turn,

qualities above some threshold q̂l become uniformly cheaper for agents on side l as side k becomes

more popular.

3.5.2 The Cross-Side Effects of Changes in Demand Elasticity

The next definition formalizes the notion of a decrease in the demand elasticity of side k.

Definition 6 We say that side k is less elastic under F̃ vk than under F
v
k if F̃

v
k dominates F

v
k in the

hazard-rate order, and, for any vk, F̃
σl(uk)
k (·|vk) = F

σl(uk)
k (·|vk).

The seminal works of Rochet and Tirole (2006) and Armstrong (2006) argued that the structure

of prices set by two-sided platforms that employ a single network shall depend on how demand

elasticities compare across sides. The next proposition extends their analyses to the case of a two-

sided platform that price-discriminates agents by offering them menus of networks.
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Proposition 6 Consider the platform’s profit-maximization problem when network effects are linear

(gA(x) = gB(x) = x), let 4P < 0, and assume Condition 3 holds. If the elasticity of side k decreases,

then the platform moves from a matching rule sPk (·) to a matching rule s̃Pk (·) such that

1. s̃Pk (vk) ⊆ sPk (vk) for all vk,

2. s̃Pl (vl) ⊆ sPl (vl) for all vl,

3. Πk(θk; M̃
P ) < Πk(θk;M

P ) for all vk ≥ ωPk ..

Moreover, in the case of linear network externalities for quantity (where σk(·) ≡ 1 for k ∈ {A,B}),
there exists ν̃l ∈ [vl, v̄l) such that Πl(θl; M̃

P ) < Πl(θl;M
P ) if vl ≥ ν̃l.

The proposition above extends to a matching environment the familiar result for one-sided mar-

kets that quantities go down (and prices go up) as the demand of side k becomes less elastic. As a

result, the payoffs of agents on side k uniformly decrease. In addition to these familiar results, in a

matching market, reciprocity implies that the matching sets of agents from side l also have to shrink.

Interestingly, while the quality of the matching sets offered to agents from side k decreases, the same

might not be true to some agents on side l (since more agents from side k have higher valuations;

recall that if F̃ vk dominates F
v
k in the hazard-rate order then it also does it in the usual first-order

sense).

It is unambiguous however that in the case of linear network externalities for quantity the payoffs

for agents with high valuations on side l have to decrease. To see why this is true, note that reciprocity

implies the following aggregate condition:

∫ v̄k

vk

|sk(ṽk)|k dṽk =

∫ v̄l

vl

|sl(ṽl)|l dṽl,

which, heuristically, means that the total number of links departing from either side is the same.

Since

Πl((v̄l,ul); M̃
P ) =

∫ v̄l

vl

|̃sl(ṽl)|l dṽl =

∫ v̄k

vk

|̃sk(ṽk)|k dṽk

<

∫ v̄k

vk

|sk(ṽk)|k dṽk =

∫ v̄l

vl

|sl(ṽl)|l dṽl = Πl((v̄l,ul);M
P )

we can conclude by continuity that Πl(θl; M̃
P ) < Πl(θl;M

P ) if vl ≥ ν̃l for some ν̃l ∈ [vl, v̄l).

In the case of health care provision, Proposition 6 tells us that, under the profit-maximizing menu

of health coverage plans, the number of patients that can access each doctor has to decrease as the

costs of medical services go up. Moreover, patients with great need for doctors are certainly worse

off as a result of this price increase.

The next corollary builds on Proposition 6 to determine the effects of a decrease in the elasticity

of side k on the quality/price schedule ρPk (·).

26



Corollary 3 Consider the platform’s profit-maximization problem when network effects are linear

(gA(x) = gB(x) = x), let 4P < 0, and assume Condition 3 holds. If the elasticity of side k decreases,

then the platform moves from a price schedule ρPk (·) to a price schedule ρ̃Pk (·) such that ρ̃P (q) ≥ ρPk (q)

for all q.

The next example combines the lessons from Propositions 5 and 6 to analyze the effect of an

increase in the productivity of firms in the profit-maximizing problem of a job employment agency.

Example 7 (Positive shock on the productivity of firms) Let the platform be an employment

agency that matches free-lancers on side A to firms on side B, as described in Example 6. Consider

an increase in the productivity of firms, as captured by a shift from F vB to Ḟ
v
B such that Ḟ

v
B dominates

F vB according to the hazard rate order. Since in this example uk = vk, the productivity shock described

above combines a change in the popularity with a change in the elasticity of side B. By combining

Propositions 5 and 6, we can conclude that high productivity firms are hurt by a positive productivity

shock, since the new matching rule ṡPB(·) is such that ṡPB(vB) ⊆ sPB(vB) for all vB ≥ rPB, and its

associated payoff ΠB(θB; ṀP ) is such that ΠB(θB; ṀP ) ≤ ΠB(θB;MP ) for all vB ≥ ν̇B > rPB. The

effect on the payoffs of low productivity firms is ambiguous, though, since an increase in popularity

makes them better off, while an increase in demand elasticity makes them worse off.

4 Extensions

4.1 Insulating Tariffs and Robust Implementation

In order to implement an h-optimal mechanism Mh =
{
shk(·), phk(·)

}
k=A,B

, the platform designs a

coordination game which agents from both sides of the market simultaneously play. In the direct-

revelation form of this game, an agent with type (uk, vk) sends a report (ûk, v̂k), makes a payment

phk(ûk, v̂k) as defined in Lemma 1, and is granted access to all agents on the opposite side who

reported valuations above th(v̂k). The construction of
{
phk(·)

}
k=A,B

in Lemma 1 ensures that this

game has one Nash equilibrium that implements the matching rule shk(·).
The implementation achieved by the payment rule

{
phk(·)

}
k=A,B

is, however, partial since the

coordination game described above has in general multiple equilibria. To see this, consider Example

6, in which the platform maximizes profits by matching free-lancers and firms according to the rule

sPk (·). In order to implement sPk (·), the platform sets payments
{
pPk (·)

}
k=A,B

following Lemma 1.

While reporting one’s type θk = (uk, vk) truthfully is a Nash equilibrium in the coordination game

induced by
{
pPk (·)

}
k=A,B

, this game has another (strict) Nash equilibrium in which free-lancers and

firms report the lowest possible productivities vA and vB, develop no projects and enjoy zero payoffs.

Indeed, if all firms report vB, it is a strict best reply for every free-lancer to report vA and pay

nothing, since in equilibrium the platform offers no firms that free-lancers can work with. In the
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two-sided market literature, the multiplicity of equilibria (and the issue of partial implementation)

is known as the “chicken and egg”problem (see Caillaud and Jullien (2001, 2003)) or the “failure to

launch”problem (see Evans and Schmalensee (2009)).10

As pointed out by Weyl (2010) in the context of a monopolistic platform that employs a single

network, the platform can circumvent this equilibrium multiplicity problem by designing insulating

tariffs that condition the payment of each agent from side k on the joint reports of agents from

side l (see also White and Weyl (2010)). In our model, consider an h-optimal matching rule shk(·)
described by the threshold function thk(·). Starting from shk(·), define the insulating payment rule
%hk(vk, (θ̂

i

l)
i∈[0,1]) according to

%hk(vk, (θ̂
i

l)
i∈[0,1]) = vk · gk

(∣∣{i : v̂il ≥ tk(vk)}
∣∣
k

)
−
∫ vk

vk

gk
(∣∣{i : v̂il ≥ tk(x)}

∣∣
k

)
dx,

where {i : v̂il ≥ tk(vk)} is the set of all agents from side l who reported valuations above tk(vk) and∣∣{i : v̂il ≥ tk(vk)}
∣∣
k
≡
∫
{i:v̂il≥tk(vk)} σk(u

i
l)dλ(i).

The coordination game induced by
{
%hk(vk, (θ̂

i

l)
i∈[0,1])

}
k=A,B

possesses a unique equilibrium; in

this equilibrium, it is dominant for each agent to report truthfully. To see why this is the case, note

that for any profile of reports (θ̂
i

l)
i∈[0,1] by all agents on the other side, the quality of the matching set

for each agent on side k = A,B is increasing in his/her report. Along with the fact that the payments

%hk(vk, (θ̂
i

l)
i∈[0,1]) satisfy the envelope formula, this ensures that reporting truthfully is optimal for

each agent. Furthermore, the IR constraints are satisfied, since the payoff that each agent obtains

by reporting truthfully is ∫ vk

vk

gk
(∣∣{i : v̂il ≥ tk(x)}

∣∣
k

)
dx ≥ 0,

which is positive, irrespective of the other agents’reports. The payment rule %hk(vk, (θ̂
i

l)
i∈[0,1]) thus

implements the allocation rule sPk (·) in dominant strategies.

4.2 Coarse Matching

The welfare and profit-maximizing matching rules when ∆h < 0 (that is, when multi-homing is

optimal) employ menus with a continuum of matching sets that agents can choose from. In reality,

however, matching platforms typically offer menus with a handful of alternatives. Cable companies,

for example, offer a small number of packages of channels (although some of them allow viewers to

add to these packages extra channels at an additional cost), and health care providers typically offer

only a limited number of coverage plans. As pointed out by McAfee (2002) and Hoppe, Moldovanu

and Ozdenoren (2010), the reason for such coarse matching is that platforms face costs for offering

more complex menus (for example, menu costs for adding extra alternatives).11

10See also Ellison and Fudenberg (2003) and Ambrus and Argenziano (2009).
11See also Wilson (1989).
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The analysis developed in the previous sections can be easily adapted to accommodate restrictions

on the coarseness of the matching rules available to the platform. Denote by N the number of

alternatives in the platform’s menu. A matching rule implemented by a menu with N alternatives

is referred to as an N -coarse matching rule. By the same logic of Proposition 1, the h-optimal rule

in the class of all N -coarse matching rules does not depend on the vector of characteristics uk, and

has a threshold structure. It therefore takes the following form:

sk(vk) =



[ωl, vl] ⇔ vk ∈ [t1k, vk]

[tN−1
l , vl] ⇔ vk ∈ [t2k, t

1
k)

...
...

...

[t2l , vl] ⇔ vk ∈ [tN−1
k , tN−2

k )

[t1l , vl] ⇔ vk ∈ [ωk, t
N−1
k )

, (11)

where for k ∈ {A,B}

vk ≤ ωk ≡ tNk ≤ tN−1
k ≤ . . . ≤ t2k ≤ t1k ≤ t0k ≡ vk (12)

are the N thresholds that determine the matching sets on each side of the market. Incentive com-

patibility requires that tnk ≤ t
n−1
k for all n ∈ {1, ..., N}.

Such rules can be indirectly implemented by offering a menu ofN mutually non-exclusive networks

{[ωk, tN−1
k ), [tN−1

k , tN−2
k ), ..., [t2k, t

1
k), [t

1
k, vk)}. All agents on side l who are not completely excluded

by the platform obtain the “basic package” [t1k, vk]. On top of the basic package [t1k, vk], agents can

add “premium packages”represented by the lower intervals [t2k, t
1
k), [t

3
k, t

2
k), ..., [ωk, t

N−1
k ). The price

of each “extra package” typically depends on the list of packages already purchased by the agent,

and can be obtained through the familiar integral pricing formula from Lemma 1.

The h-optimal N -coarse matching rule then solves the following 2N -dimensional optimization

problem:

max
{tNk ,t

N−1
k ,...,t2k,t

1
k}k=A,B

∑
k=A,B

N∑
n=1

∫ tn−1k

tnk

ĝk(t
N−n+1
l ) · ϕhk(vk) · dF vk (vk) (13)

subject to the monotonicity constraint (12). As the number of alternatives N increases (e.g., because

menu costs decrease), the solution to (13) uniformly converges to the h-optimal nested multi-homing

rule identified in Proposition 3. This follows from the fact that any weakly decreasing threshold

function tk(·) which is admissible under program (7) can be approximated arbitrarily well by step

functions of the form (11) (in the sup-norm, i.e., in the norm of uniform convergence). As such,

the maximally-separating nested multi-homing rules of Proposition 3 are the limit as N grows large

enough of those offered when the number of non-exclusive networks is finite.
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4.3 Quasi-Fixed Costs

Integrating an agent into a network structure typically involves a quasi-fixed cost. In the Cable TV

example, the Cable company must connect an individual household to its underground cable system

in order to permit the household to get access to its channels. Similarly, in the case of job matching

services, firms and workers must incur the cost of setting up online profiles and building professional

portfolios.12 From the perspective of the platform, these costs are quasi-fixed, in the sense that they

depend on the number of agents included in the network, but not on the matching sets offered to

these agents.

In this subsection, we show how the analysis developed above can be extended to incorporate

such costs. To this purpose, suppose that the platform has to incur a quasi-fixed cost ck > 0 for

each agent from side k who is included in the network (formally, for each agent who is matched to a

non-empty set of agents from side l). The platform’s problem of designing an h-optimal mechanism

can then be solved in two steps.

Step 1 Ignore quasi-fixed costs and maximize (7) among all weakly decreasing threshold functions

thk(·).

Step 2 Given the optimal threshold function thk(·) from Step 1, choose the h-optimal exclusion types

ωhA, ω
h
B by solving the following problem:

max
ωA,ωB

∑
k=A,B

∫ vk

ωk

(
ĝk(max{thk(vk), ωl}) · ϕhk(vk)− ck

)
· dF vk (vk).

At any interior solution (i.e., whenever ωhk > vk), the exclusion types ω
h
A, ω

h
B therefore solve the

following first-order conditions for k, l ∈ {A,B}:

ĝk(max{thk(ωhk), ωhl }) · ϕhk(ωhk)− ĝ′l(ωhk) ·
∫ vl

max{thk(ωhk),ωhl }
ϕhl (vl) · dF vl (vl) = ck, (14)

where thk(·) is the threshold rule characterized in Proposition 3 when ∆h < 0 (i.e., when nested multi-

homing is optimal in the absence of quasi-fixed costs) and is given by thk(vk) = vl for all vk ∈ [vk, v̄k]

when ∆h ≥ 0 (i.e., when a single network is optimal). The left-hand side of condition (14) reflects

the effects on both sides k and l of marginally decreasing the exclusion type ωhk . At any interior

optimum, these effects must offset the quasi-fixed cost ck of adding type ωk to the network.

12 In the Cable TV example, the quasi-fixed cost is incurred by the platform, whereas in the job-matching example,

the entry cost of uploading resumes and job profiles are paid by the firms and by the workers, i.e., by the agents on

the two sides of the market. As long as these costs are common knowledge, this distinction is however irrelevant when

it comes to the properties of the optimal mechanism.
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The first-order condition above reveals that the exclusion types ωhk(cA, cB) are strictly increasing

in the quasi-fixed costs cA, cB at any point where ωhk > vk.
13 This observation leads to a testable

empirical implication. Let ∆h < 0, that is, assume that, absent quasi-fixed costs, the h-optimal

matching rule exhibits nested multi-homing. As quasi-fixed costs increase, so do the exclusion types

ωhA, ω
h
B. For ck suffi ciently high, the exclusion types reach the reservation values r

h
k , in which case

the platform switches from multi-homing to a single network. Therefore, our model predicts that,

ceteris paribus, single networks are more often employed in matching markets with high quasi-fixed

costs, while nested multi-homing is more prevalent in markets where the quasi-fixed costs of including

agents into the network structure are low.

4.4 The Group Design Problem

The analysis so far studied the design of optimal many-to-many matching schemes in a two-sided

market. As anticipated in the Introduction, the results apply also to one-sided matching problems.

Consider, for example, the problem of a firm that has to design its internal communication system.

This system determines which employees are directly connected in the firm’s organizational chart.

Young employees typically have greater willingness to interact (high v’s) with other employees than

senior employees (whose low, negative, v’s, may stem from high opportunity costs). Furthermore,

the value that an employee assigns to interacting with another employee typically depends on the

latter’s intrinsic characteristics (competence, work attitude, etc.) and these characteristics are often

private information. The firm’s problem then consists in designing the communication chart that

maximizes the performance of the organization.

The problem described above is an example of the more general theme of how to assign agents

to different groups in the presence of peer effects which is central to organization design. Such

one-sided matching problem is a special case of the two-sided matching problems studied above. To

understand why, note that the problem of designing non-exclusive groups in a one-sided matching

setting is mathematically equivalent to the problem of designing an optimal matching rule in a two-

sided matching setting with the additional requirement that the matching rule be symmetric across

the two sides. Formally, this problem consists in choosing weakly decreasing threshold functions

tA(·), tB(·) so as to maximize (7) subject to the reciprocity constraint (9) and the additional symmetry
constraint

tA(v) = tB(v). (15)

Under this new constraint, maximizing (7) is equivalent to maximizing twice the objective associated

to the one-sided matching problem (depending on the specific application, this objective could either

be welfare, i.e., the sum of the payoffs of the individual agents forming the organization, or the

platform’s profits).

13This follows from applying Cramer rule to the system defined by (14).
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As it turns out, the symmetry constraint (15) in a two-sided matching problem is slack when

the preferences and type distributions of sides A and B coincide (as is necessarily the case in the

corresponding one-sided matching problem). This is immediate when 4h ≥ 0, that is, when a single

complete network is h-optimal. Under nested-multi-homing, 4h < 0, the characterization from

Proposition 3 reveals that, at any point where tk(·) is strictly decreasing, because ψhl (·) = ψhk(·),

thk(v) =
(
ψhl

)−1 (
−ψhk(v)

)
=
(
ψhk

)−1 (
−ψhl (v)

)
= thl (v).

Similarly, it is easy to see that (15) is also slack in the case the optimal rule exhibits bunching at

the top. As a consequence, one can reinterpret all the results derived of the previous sections in

terms of the group design problem. In this regard, a single complete network shall be interpreted

as a single complete group, and nested multi-homing matching rules should be interpreted as nested

non-exclusive groups.

In a recent paper on one-sided matching design, Board (2009) studies the problem of a mono-

polistic platform that assigns agents to mutually exclusive groups. In this context, Board shows

that the partition induced by a profit-maximizing rule will never be coarser than the one induced by

the effi cient rule (note that this result, however, does not imply that the partition induced by the

profit-maximizing rule will be finer!). Relative to Board’s paper, we extend the analysis of matching

design to two-sided environments and allow for matching rules that assign agents to non-exclusive

groups. By considering more general matching rules we obtain stronger results. For example, the

isolation effects discussed above imply that the profit-maximizing rule indeed matches each agent

to a subset of his/her effi cient set. On the other hand, Board allows for more general preferences

than the ones considered in this paper. Interestingly, in the class of preferences described by (1),

our Proposition 2 reveals when Board’s restriction to mutually exclusive groups entails any loss of

generality.

Related is also the work by Rayo (2010) who considers a one-sided matching problem where the

peer effect of a group is the average valuation of its members. As in Board (2010), Rayo restricts the

platform to form mutually exclusive groups. In contrast to Board and the present paper, Rayo also

characterizes the profit-maximizing group design problem when the hazard rate fails to be monotone.

5 Conclusions

In this paper we studied second-degree price discrimination in matching markets. We derived ne-

cessary and suffi cient conditions for the platform to employ a single network or to engage in price-

discriminatory matching (multi-homing). Interestingly, our model predicts that single networks

are more often associated to the public (welfare-maximizing) provision of matching services, while

multi-homing is more often employed by private (profit-maximizing) platforms. When multi-homing

prevails, the platform designs its matching sets by weighting the effi ciency (revenue) gains on one side
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of the market with the cross-subsidization losses on the other side. This endogenous cost structure

leads to novel (sometimes perhaps counter-intuitive) comparative statics. In particular, we showed

that high-valuation agents may lose from a positive shock to their popularity, since the endogenous

cost of cross-subsidization goes up.

The analysis is worth extending in a number of important directions. First, in the present paper

we assumed that the utility/profit that an agent assigns to any given matching set is independent

of who else has access to it. In other words, we abstracted from "same-side" competitive effects.

In advertising markets, for example, reaching a certain set of households becomes more valuable if

competitors are excluded from reaching the same households. Given that "same-side" effects (e.g.,

congestion) are present in many matching markets, extending the analysis in this direction seems

particularly promising.

Second, we assumed that each agent on a given side either benefits from being matched to any

agent on the opposite side or dislikes being matched to any agent on the opposite side (the intensity

varying with the particular agent he/she is matched to). In other words, we considered only "same-

sign"externalities. In settings richer than the one analyzed here, the same agent may derive positive

profits/utility from being matched to certain agents from the opposite side but negative profits/utility

from being matched to other agents. More broadly, relaxing the assumption that agents agree on

how to rank the attractiveness of agents on the opposite side also appear to be an interesting topic

for future research.

Third, matching markets are often populated by a handful of competing matching platforms.

Extending the analysis to the study of competition by matching platforms (in the spirit of Rochet

and Stole (2002), for example) is likely to deliver new insights on the properties of these markets.14

6 Appendix

Proof of Proposition 1. If ϕhk(vk) ≥ 0 for k = A,B, then it is immediate from (5) that effi ciency

(respectively, profit) maximization requires that each agent on each side be matched to all agents on

the other side, in which case shk(θk) = Θl for all θk ∈ Θk. This rule trivially satisfies the threshold

structure described in (6).

Thus consider the situation where ϕhk(vk) < 0 for some k ∈ {A,B}. Denote by Θ+
k ≡ {θk =

(uk, vk) : ϕhk(vk) ≥ 0} the set of types θk = (uk, vk) whose ϕhk-valuation is non-negative, and by

Θ−k ≡ {θk = (uk, vk) : ϕhk(vk) < 0} the set of types with strictly negative ϕhk-valuation.
Let s′k(·) be any implementable matching rule. We will show that, starting from s′k(·), one can

construct another implementable matching rule ŝk(·) that satisfies the threshold structure described
14See Damiano and Li (2008) for a model in which two matchmakers compete through entry fees for agents on both

sides of the market. They assume a one-to-one matching environment and restrict the platforms to establish single

networks, where agents are randomly matched.
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in (6) and that weakly increases the platform’s objective Ωh(M).

In order to do so, for each θk ∈ Θ+
k , let tk(vk) be defined as follows:

1. If |s′k(θk)|k ≥
∣∣Θ+

l

∣∣
k
, then let tk(vk) be such that

|Ul × [tk(vk), v̄l]|k =
∣∣s′k(θk)∣∣k ;

2. If |s′k(θk)|k ≤
∣∣Θ+

l

∣∣
k

= |Θl|k, then tk(vk) = vl.

3. If 0 < |s′k(θk)|k ≤
∣∣Θ+

l

∣∣
k
< |Θl|k (in which case rhl ∈ (vl, v̄l)), then let tk(vk) = rhl .

Now apply the construction above to k = A,B and consider the matching rule ŝk(·) such that

ŝk(θk) =

{
Ul × [tk(vk), v̄l] ⇔ θk ∈ Θ+

k

{(ul, vl) ∈ Θ+
l : tl(vl) ≤ vk} ⇔ θk ∈ Θ−k .

By construction, ŝk(·)k satisfying Condition 2 of Lemma 1, i.e., ŝk(·) is implementable. Moreover,
gk (|̂sk(θk)|k) ≥ gk (|s′k(θk)|k) for all θk ∈ Θ+

k , implying that∫
Θ+
k

ϕhk(vk) · gk (|̂sk(uk, vk)|k) dFk(uk, vk) ≥
∫

Θ+
k

ϕhk(vk) · gk
(∣∣s′k(uk, vk)∣∣k) dFk(uk, vk), k = A,B

(16)

The rest of the proof shows that the matching rule ŝk(·) reduces the costs of cross-subsidization,
that is, the costs of serving agents with negative ϕhk-valuations, relative to the original matching rule

s′k(·). That is,∫
Θ−k

ϕhk(vk) · gk
(∣∣s′k(uk, vk)∣∣k) dFk(uk, vk) ≤ ∫

Θ−k

ϕhk(vk) · gk (|̂sk(uk, vk)|k) dFk(uk, vk). (17)

Summing up (16) and (17) shows that the platform’s objective is weakly greater under ŝk(·) than
under s′k(·), thus proving the result.

To establish (17), we start with the following definition.

Definition 7 Take two random variables z1, z2 : [a, b] → R and denote by F the probability meas-

ure on [a, b]. We say that z2 is smaller than z1 in the monotone concave order if E [g (z2(ω̃))] ≤
E [g (z1(ω̃))] for all weakly concave and weakly increasing functions g : R→ R.

Since the function g(x) = x is strictly increasing and weakly concave, it follows that if z2 is

smaller than z1 in the monotone concave order, then E [z2(ω̃)] ≤ E [z1(ω̃)]. Now let z1(vk) ≡
Eũk [|s′k(ũk, vk)|k |vk] and z2(vk) ≡ Eũk [|̂sk(ũk, vk)|k |vk], defined over the domain [vk, r

h
k ].

From the construction of ŝk(·) and the assumption of positive affi liation, it follows that for all
x ∈ [vk, r

h
k ] ∫ x

vk

∫
Uk

∣∣s′k(uk, vk)∣∣k dFk(uk, vk) ≥ ∫ x

vk

∫
Uk

|̂sk(uk, vk)|k dFk(uk, vk),
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or, equivalently, ∫ x

vk

z1(vk)dF
v
k (vk) ≥

∫ x

vk

z2(vk)dF
v
k (vk) (18)

Incentive compatibility implies that z1(·), z2(·) are weakly increasing in vk. Denote by [v̇1
k, v̇

2
k],

[v̇3
k, v̇

4
k], ..., [v̇2T−2

k , v̇2T
k ] the T (where 0 ≤ T < ∞) intervals in which z1(vk) < z2(vk). Because∫ rhk

vk
z1(vk)dF

v
k (vk) ≥

∫ rhk
vk
z2(vk)dF

v
k (vk), it is clear that Ṫ ≡ ∪T−1

t=0 [v̇2t+1
k , v̇2t+2

k ] is a proper subset of

[vk, r
h
k ] whenever the inequality is strict.

Now construct ż2(·) on the domain [vk, r
h
k ] so that:

1. ż2(vk) = z1(vk) < z2(vk) for all vk ∈ Ṫ ;

2. z2(vk) ≤ ż2(vk) = αz1(vk) + (1− α)z2(vk) ≤ z1(vk), where α ∈ [0, 1], for all vk ∈ [vk, r
h
k ]\Ṫ ;

3.
∫

[vk,r
h
k ]\Ṫ {ż2(vk)− z2(vk)} dF vk (vk) =

∫
Ṫ {z2(vk)− z1(vk)} dF vk (vk).

Because
∫ rhk
vk
z1(vk)dF

v
k (vk) ≥

∫ rhk
vk
z2(vk)dF

v
k (vk), there always exists some α ∈ [0, 1] such that 2

and 3 hold.

From the construction above, ż2(·) is weakly increasing and
∫ rhk
vk
ż2(vk)dF

v
k (vk) =

∫ rhk
vk
z2(vk)dF

v
k (vk).

As a consequence, z2(·) is a mean-preserving spread of ż2(·). This implies that for all weakly concave
and weakly increasing functions g : R→ R,∫ rhk

vk

g (z2(vk)) dF
v
k (vk) ≤

∫ rhk

vk

g (ż2(vk)) dF
v
k (vk) ≤

∫ rhk

vk

g (z1(vk)) dF
v
k (vk),

where the first inequality follows from the weak concavity of g(·) and the second inequality follows
from the fact that ż2(vk) ≤ z1(vk) for all vk ∈ [vk, r

h
k ] and g(·) is weakly increasing. This shows that

z2 is smaller than z1 in the monotone concave order.

The following lemma is useful.

Lemma 2 Consider the positive random variables z1, z2 : [a, b] → R+ which are weakly increasing

functions of ω ∈ [a, b] and denote by F the probability measure on [a, b]. If z2 is smaller than z1 in

the monotone concave order, then for any weakly concave and weakly increasing function g(·) and
any weakly increasing function h : [a, b]→ R−

E [h(ω̃)g (z1(ω̃))] ≤ E [h(ω̃)g (z2(ω̃))] .

Proof of Lemma 2. The proof argues that the inequality above is true for any weakly increasing

step function hn : [a, b]→ R−, where n is the number of steps. Because the set of weakly increasing
step functions is dense (in the topology of uniform convergence) in the set of weakly increasing

functions, the result follows.
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Because z2 is smaller than z1 in the monotone concave order, the inequality above is obviously

true for the one-step function h1. Induction shows that this is true for all n ∈ N. Q.E.D.

We are now ready to prove inequality (17). As it turns out,∫
Θ−k

ϕhk(vk) · gk
(∣∣s′k(uk, vk)∣∣k) dFk(uk, vk) =

∫ rhk

vk

ϕhk(vk) · Eũk
[
gk
(∣∣s′k(ũk, vk)∣∣k) |vk] dF vk (vk)

=

∫ rhk

vk

ϕhk(vk)gk (z1(vk)) dF
v
k (vk)

= F vk (rhk) · E
[
ϕhk(ṽk)gk (z1(ṽk)) |vk ≤ rhk

]
≤ F vk (rhk) · E

[
ϕhk(vk)gk (z2(vk)) |vk ≤ rhk

]
=

∫ rhk

vk

ϕhk(vk) · gk (Eũk [|̂sk(ũk, vk)|k |vk]) dF
v
k (vk)

=

∫
Θ−k

ϕhk(vk) · gk (|̂sk(ũk, vk)|k) dFk(uk, vk).

The first equality follows from changing the order of integration. The second equality follows

from the fact that, since s′k(·) is implementable, gk (|s′k(uk, vk)|k) is invariant in uk except in a
countable subset of [vk, r

h
k ]. The first inequality follows from Lemma 2. The equality in the fifth line

follows again from the fact that, by construction, ŝk(·) is implementable, and hence invariant in uk
except in a countable subset of [vk, r

h
k ]. The series of equalities and inequalities above establishes

(17), as we wanted to show. Q.E.D.

Proof of Proposition 2: There are three cases to consider: (i) ϕhk(vk) ≥ 0 for k = A,B, (ii)

ϕhk(vk) < 0 for k = A,B, and (iii) ϕhl (vl) < 0 while ϕhk(vk) ≥ 0. Cases (i) and (ii) are discussed

in the main text, so here we consider case (iii). Below, we show that a single network is optimal if

4h > 0, whereas a nested multi-homing is optimal if 4h < 0.

From the same arguments as in case (ii) in the main text, if a single network is optimal, it

must be that ω̂hl < rhl and ω̂
h
k = vk . In turn, if nested multi-homing is optimal, it must be that

thk(vk) ∈ (vl, r
h
l ].

First, suppose that ∆h > 0 and, towards a contradiction, assume that the optimal mechanism

employs a multi-homing rule. Take an arbitrary point vk ∈ [vk, v̄k] at which the function t
h
k(·) is

strictly decreasing in a right neighborhood of vk.Consider the effect of a marginal reduction in the

threshold thk(vk) around the point vl = thk(vk). This is given by

var(vk, vl) ≡ −ĝ′k(vl)ϕhk(vk)f
v
k (vk)− ĝ′l(vk)ϕhl (vl)f

v
l (vl)

It is easy to see that

sign{var(vk, vl)} = sign{V ar(vk, vl)}
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where

V ar(vk, vl) ≡ g′k(|Ul × [vl, v̄l]|k) · E[σk(ũl)|ṽl = vl] · ψhk(vk) + ϕhl (vl)

Because (i) gk is strictly positive, strictly increasing, and weakly concave, (ii) σk(ul) and vl are

positively affi liated, (iii) ψhk(·) is strictly increasing and nonnegative, we then have that V ar(vk, vl)
is strictly increasing in vk and vl. Next, note that, given any interval [v′k, v

′′
k ] over which the function

thk(·) is constant and equal to vl, the marginal effect of decreasing the threshold below vl for any type

vk ∈ [v′k, v
′′
k ] is given by ∫ v′′k

v′k

[var(vl, vk)]dvk

Finally note that ∆h ≥ 0 implies var(vk, vl) ≥ 0 and hence var(vk, vl) > 0 for all (vk, vl). The

results above then imply that, starting from a multi-homing rule, the platform can strictly increase

its objective by decreasing the threshold for any type for which thk(vk) > vl, proving that a single

complete network is optimal.

Next, suppose that ∆h < 0 and, towards a contradiction, suppose that a single network is

optimal. First consider the case where such a network is complete (that is, ω̂hl = vl or, equivalently,

thk(vk) = vl). The fact that ∆h < 0 implies that var(vk, vl) < 0 which in turn implies that the

marginal effect of raising the threshold thk(vk) for the lowest type on side k, while leaving the threshold

untouched for all other types is positive. By continuity of the marginal effects, the platform can then

improve its objective by switching to a multi-homing rule that is obtained from the complete network

by increasing thk(·) in a right neighborhood of vk while leaving thk(·) untouched elsewhere, contradicting
the optimality of a single network.

Then consider the case where ω̂hl > vl. For a single network to be optimal, it must then be that

ω̂hl satisfies the following first-order condition

ĝl(vk)ϕ
h
l (ω̂hl )− ĝ′k(ω̂hl )

∫ vk

vk

ϕhk(vk)dF
v
k (vk) = 0,

which requires that the total effect of a marginal increase of the size of the network on side l (obtained

by reducing the threshold thk(vk) below ω̂hl for all types vk) be zero. This rewrites as∫ vk

vk

[var(vk, ω̂
h
l )]dvk = 0.

Because sign{var(vk, ω̂hl )} = sign{V ar(vk, ω̂hl )} and V ar(vk, ω̂hl ) is strictly increasing in vk, this

means that there exists a v#
k ∈ (vk, v̄k) such that∫ vk

v#k

[var(vk, ω̂
h
l )]dvk > 0.
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This means that there exists a ω#
l < ω̂hl such that the platform could increase her payoff by switching

to the following nested multi-homing rule

shk(vk) =

{
[ω#
l , vl] ⇔ vk ∈ [v#

k , vk]

[ω̂hl , vl] ⇔ vk ∈ [vk, v
#
k ]

thus contradicting the optimality of a single (incomplete) network. We thus conclude that multi-

homing is necessarily optimal when ∆h < 0. Q.E.D.

Proof of Proposition 3. Using the result in Proposition 1, the h-optimal matching rule solves

the following program, which we call the Full Program (PF ) :

PF : max
{ωk,tk(·)}k=A,B

∑
k=A,B

∫ vk

ωk

ĝk(tk(vk)) · ϕhk(vk) · dF vk (vk) (19)

subject to the following constraints for k, l = A,B, l 6= k

tk(vk) = inf{vl : tl(vl) ≤ vk}, (20)

tk(·) weakly decreasing (21)

and tk(·) : [ωk, vk]→ [ωl, vl] (22)

with ωk ∈ [vk, v̄k] and ωl ∈ [vl, v̄l]. Constraint (20) is the reciprocity condition, rewritten using the

result in Proposition 1. Constraint (21) is the monotonicity constraint of Lemma 1, also rewritten

using the result in Proposition 1. Finally, constraint (22) is a domain-codomain restriction which

requires the function tk(·) to map each type from side k that is included in the network into the set

of types from side l that is also included in the network.

Because 4h < 0 (i.e., because multi-homing is optimal), it must be that rhk > vk for some

k ∈ {A,B}. Furthermore, from the arguments in the proof of Proposition 1, at the optimum,

ωhk ∈ [vk, r
h
k ] and, whenever rhl exists (which, given the assumption that v̄l > 0, is the case if and

only if ϕhl (vl) ≤ 0), then ωhl ∈ [vl, r
h
l ] and thk(rhk) = rhl . Hereafter, we will assume that r

h
l exists.

When this is not the case, then ωhl = vl and t
h
k(vk) = vl for all vk ≥ rhk , while the optimal ω

h
k and

thk(vk) for vk < rhk are obtained from the solution to program P kF below by replacing r
h
l with vl).

Thus assume ϕhk(vk) ≤ 0 for k = A,B. Program PF can then be decomposed into the following

two independent programs P kF , k = A,B:

P kF : max
ωk,tk(·),tl(·)

∫ rhk

ωk

ĝk(tk(vk)) · ϕhk(vk) · dF vk (vk) +

∫ vl

rhl

ĝl(tl(vl)) · ϕhl (vl) · dF vl (vl) (23)

subject to tk(·) and tl(·) satisfying the reciprocity and monotonicity constraints (20) and (21), along
with the following constraints

tk(·) : [ωk, r
h
k ]→ [rhl , vl], tl(·) : [rhl , vl]→ [ωk, r

h
k ].15 (24)
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Program P kF is not a standard calculus of variations problem. As an intermediate step, we will

thus consider the following Auxiliary Program (P kAu), which strengthens constraint (21) and fixes

ωk = vk and ωl = vl:

P kAu : max
tk(·),tl(·)

∫ rhk

vk

ĝk(tk(vk)) · ϕhk(vk) · dF vk (vk) +

∫ vl

rhl

ĝl(tl(vl)) · ϕhl (vl) · dF vl (vl) (25)

subject to (20),

tk(·), tl(·) strictly decreasing (26)

and tk(·) : [vk, r
h
k ]→ [rhl , vl], tl(·) : [rhl , vl]→ [vk, r

h
k ] are bijections.16 (27)

By virtue of (26), (20) can be rewritten as tk(vk) = t−1
l (vk). Plugging this into the objective

function (25) yields∫ rhk

vk

ĝk(tk(vk)) · ϕhk(vk) · fvk (vk)dvk +

∫ vl

rhl

ĝl(t
−1
k (vl)) · ϕhl (vl) · fvl (vl)dvl. (28)

Changing the variable of integration in the second integral in (28) to ṽl ≡ t−1
k (vl), using the fact

that tk(·) is strictly decreasing and hence differentiable almost everywhere, and using the fact that
t−1
k (rhl ) = rhk and t

−1
k (vl) = vk, the auxiliary program can be rewritten as follows:

P kAu : max
tk(·)

∫ rhk

vk

{
ĝk(tk(vk)) · ϕhk(vk) · fvk (vk)− ĝl(vk) · ϕhl (tk(vk)) · fvl (tk(vk)) · t

′
k(vk)

}
dvk

(29)

subject to tk(·) being continuous, strictly decreasing, and satisfying the boundary conditions

tk(vk) = vl and tk(r
h
k) = rhl . (30)

Consider now the Relaxed Auxiliary Program (P kR) that is obtained from P kAu by dispensing with

the condition that tk(·) be continuous and strictly decreasing and instead allowing for any measurable
control tk(·) : [vk, r

h
k ] → [rhl , vl] with bounded subdifferential that satisfies the boundary condition

(30).

Lemma 3 P kR admits a piece-wise absolutely continuous maximizer t̃k(·).

Proof of Lemma 3. Program P kR is equivalent to the following optimal control problem PkR:

PkR : max
y(·)

∫ rhk

vk

{
ĝk(x(vk)) · ϕhk(vk) · fvk (vk)− ĝl(vk) · ϕhl (x(vk)) · fvl (x(vk)) · y(vk)

}
dvk

subject to

x′(vk) = y(vk) a.e., x(vk) = vl, x(rhk) = rhl y(vk) ∈ [−K,+K] and x(vk) ∈ [rhl , vl],
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where K is a large number. Program PkR satisfies all the conditions of the Filipov-Cesari Theorem
(see Cesari (1983)). By that theorem, we know that there exists a measurable function y(·) that
solves PkR. By the equivalence of P kR and PkR, it then follows that P kR admits a piece-wise absolutely
continuous maximizer t̃k(·). Q.E.D.

Lemma 4 Let ṽk ≡ inf{vk ∈ [vk, r
h
k ] :(31) admits a solution}, where (31) is given by

ĝ′k(η(vk)) · ϕhk(vk) · fvk (vk) + ĝ′l(vk) · ϕhl (η(vk)) · fvl (η(vk)) = 0. (31)

The solution to P kR is given by

t̃k(vk) =

{
v̄l if vk ∈ [vk, ṽk]

η(vk) if vk ∈ (ṽk, r
h
k ].

(32)

Proof of Lemma 4. From Lemma 3, we know that P kR admits a piece-wise absolutely continuous

solution. Standard results from calculus of variations then imply that such solution t̃k(·) must satisfy
the Euler equation at any interval I ⊂ [vk, r

h
k ] where its image t̃k(vk) ∈ (rhl , vl) (rhl , vl). The Euler

equation associated to program P kR is given by (31). Condition 3 ensures that (i) there exists a

ṽk ∈ [vk, r
h
k) such that (31) admits a solution if and only if vk ∈ [ṽk, r

h
k ], (ii) that at any point

vk ∈ [ṽk, r
h
k ] such solution is unique and given by η(vk) =

(
ψhl
)−1 (−ψhk(vk)

)
, and (iii) that η(·) is

continuous and strictly decreasing over [ṽk, r
h
k ].

When ṽk > vk, (31) admits no solution at any point vk ∈ [vk, ṽk], in which case t̃k(vk) ∈ {rhl , vl}.
Because ϕhk(vk) < 0 for all vk ∈ [vk, ṽk] and because ĝk(·) is decreasing, it is then immediate from
inspecting the objective (29) that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk].

It remains to show that t̃k(vk) = η(vk) for all vk ∈ [ṽk, r
h
k ]. Because the objective function in

P rk is not concave in (tk, t
′
k) for all vk, we cannot appeal to standard suffi ciency arguments. Instead,

using the fact that the Euler equation is a necessary optimality condition for interior points, we will

prove that t̃k(vk) = η(vk) by arguing that there is no function t̂hk(·) that improves upon t̃k(·) and such
that t̂k(·) coincides with t̃k(·) except on an interval (v1

k, v
2
k) ⊆ [ṽk, r

h
k ] over which t̂hk(vk) ∈ {rhl , vl}.

To see that this is true, fix an arbitrary (v1
k, v

2
k) ⊆ [ṽk, r

h
k ] and consider the problem that consists

in choosing optimally a step function t̂k(·) : (v1
k, v

2
k)→ {rhl , vl}. Because step functions are such that

t̂′k(vk) = 0 at all points of continuity and because ϕhk(vk) < 0 for all vk ∈ (v1
k, v

2
k), it follows that the

optimal step function is given by t̂k(vk) = vl for all vk ∈ (v1
k, v

2
k). Notice that the value attained

by the objective (29) over the interval (v1
k, v

2
k) under such step function is zero. Instead, an interior

control tk(·) : (v1
k, v

2
k)→ (rhl , vl) over the same interval with derivative

t
′
k(vk) <

ĝk(tk(vk)) · ϕhk(vk) · fvk (vk)

ĝl(vk) · ϕhl (tk(vk)) · fvl (tk(vk))

for all vk ∈ (v1
k, v

2
k) yields a strictly positive value. This proves that the solution to P

k
R must indeed

satisfy the Euler equation (31) for all vk ∈ [ṽk, r
h
k ]. Together with the property established above
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that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk], this establishes that the unique piece-wise absolutely continuous

function that solves P kR is the control t̃k(·) that satisfies (32). Q.E.D.

Denote by max{P kR} the value of program P kR (i.e., the value of the objective (29) evaluated under

the control t̃hk(·) defined in Lemma 4). Then denote by sup{P kAu} and sup{P kF } the supremum of

programs P kAu and P
k
F , respectively. Note that we write sup rather than max as, a priori, a solution

to these problems might not exist.

Lemma 5 sup{P kF } = sup{P kAu} = max{P kR}.

Proof of Lemma 5. Clearly, sup{P kF } ≥ sup{P kAu}, for P kAu is more constrained than P kF . Next
note that sup{P kF } = sup{P̂ kF } where P̂ kF coincides with P kF except that ωk is constrained to be

equal to vk and tk(vk) is constrained to be equal to v̄l. This follows from the fact that excluding

types below a threshold ω′k gives the same value as setting tk(vk) = v̄l for all vk ∈ [vk, ω
′
k). That

sup{P̂ kF } = sup{P kAu} then follows from the fact any pair of measurable functions tk(·), tl(·) satisfying
conditions (20), (21) and (24), with ωk = vk and tk(vk) = v̄l can be approximated arbitrarily well

in the L2-norm by a pair of functions satisfying conditions (20), (26) and (27). That max{P kR} ≥
sup{P kAu} follows from the fact that P kR is a relaxed version of P

k
Au. That max{P kR} = sup{P kAu} in

turn follows from the fact that the solution t̃hk(vk) to P kR can be approximated arbitrarily well in the

L2-norm by a function tk(·) that is continuous and strictly decreasing. Q.E.D.

From the results above, we are now in a position to exhibit the solution to P kF . Let ω
h
k = ṽk, where

ṽk is the threshold defined in Lemma 4. Next for any vk ∈ [ṽk, r
h
k ], let thk(vk) = t̃k(vk) where t̃k(·) is

the function defined in Lemma 4. Finally, given thk(·) : [ωhk , r
h
k ]→ [rhl , vl], let t

k
l (·) : [rhl , vl]→ [ωhk , r

h
k ]

be the unique function that satisfies (20). It is clear that the tripe ωhk , t
h
k(·), thl (·) constructed this

way satisfies conditions (20), (21) and (24), and is therefore a feasible candidate for program P kF . It

is also immediate that the value of the objective (23) in P kF evaluated at ω
h
k , t

h
k(·), thl (·) is the same

as max{P kR}. From Lemma 5, we then conclude that ωhk , t
h
k(·), thl (·) is a solution to P kF .

Applying the construction above to k = A,B and combining the solution to program PAF with

the solution to program PBF then gives the solution
{
ωhk , t

h
k(·)
}
k∈{A,B} to program PF .

By inspection, it is easy to see that the corresponding rule is maximally separating. Furthermore,

from the arguments in Lemma 4, one can easily verify that there is exclusion at the bottom on side k

(and no bunching at the top on side l) if ṽk > vk and bunching at the top on side l (and no exclusion

at the bottom on side k) if ṽk = vk. By the definition of ṽk, in the first case, there exists a v
′
k > vk

such that

−ĝ′k(v̄l) · ϕhk(v′k) · fvk (v′k)− ĝ′l(v′k) · ϕhl (v̄l) · fvl (v̄l) = 0.

Using the definition of ψhk(·) this is equivalent to

ψhk(v′k) + ψhl (v̄l) = 0
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The strict monotonicity of ψhk(·) then implies that, in this case, ψhk(vk) +ψhl (v̄l) < 0 or, equivalently,

that 4h
k(vk, v̄l) = 4h

l (v̄l, vk) < 0. Hence, whenever 4h
k(vk, v̄l) = 4h

l (v̄l, vk) < 0, there is exclusion at

the bottom on side k and no bunching at the top on side l. Symmetrically, 4h
l (vl, v̄k) = 4h

k(v̄k, vl) <

0, implies that there is exclusion at the bottom on side l and no bunching at the top on of side k, as

stated in the proposition.

Next, consider the case where ṽk = vk. In this case there exists a η(vk) ∈ [rhl , vl] such that

−ĝ′k(η(vk)) · ϕhk(vk) · fvk (vk)− ĝ′l(vk) · ϕhl (η(vk)) · fvl (η(vk)) = 0

or equivalently

ψhk(vk) + ψhl (η(vk)) = 0.

Assume first that η(vk) < vl. By the strict monotonicity of ψhl (·) it then follows that ψhk(vk)+ψ
h
l (v̄l) >

0 or, equivalently, that 4h
k(vk, v̄l) = 4h

l (v̄l, vk) > 0. Hence, whenever 4h
k(vk, v̄l) = 4h

l (v̄l, vk) > 0,

there is no exclusion at the bottom on side k and bunching at the top on side l. Symmetrically,

4h
l (vl, v̄k) = 4h

k(v̄k, vl) > 0, implies that there is bunching at the top on side k and no exclusion at

the bottom on side l, as stated in the proposition.

Next, consider the case where η(vk) = vl. In this case ωhk = vk and t
h
k(vk) = v̄l. This is the

knife-edge case where 4h
k(vk, v̄l) = 4h

l (v̄l, vk) = 0 in which there is neither bunching at the top on

side l nor exclusion at the bottom on side k.

Finally, note that the Euler equation (31) is equivalent to 4h
k(vk, η(vk)) = 0. Using the fact

that thk(vk) = η(vk) for all vk in the separating range together with the fact that 4h
k(vk, t

h
k(vk)) ≡

ψhk(vk)+ψ
h
l (thk(vk)) then establishes the last claim in the proposition that thk(vk) =

(
ψhl
)−1 (−ψhk(vk)

)
.

Q.E.D.

Proof of Proposition 4. The result trivially holds when 4E ≥ 0, for in this case the welfare-

maximizing matching rule always employs a single complete network. Thus suppose that 4W < 0.

Because ϕPk (vk) ≤ ϕWk (vk) for all vk ∈ [vk, vk], with strict inequality for all vk < v̄k, then 4P is also

strictly negative. Furthermore, the same property implies that ψPk (vk) ≤ ψWk (vk) for all vk ∈ [vk, vk].

Now recall, from the arguments in the proof of Proposition 3, that the h-optimal rule exhibits

exclusion at the bottom on side k if and only if 4h
k(vk, v̄l) = 4h

l (v̄l, vk) < 0 or, equivalently, if and

only if ψhk(vk)+ψ
h
l (v̄l) < 0. In this case, the threshold ωhk is the unique solution to ψ

h
k(ωhk)+ψhl (v̄l) = 0.

The fact that ωPk ≥ ωEk then follows directly from the ranking between ψPk (·) and ψWk (·) along with
the strict monotonicity of these functions. This establishes the exclusion effect.

Next, take any vk > ωPk (≥ ωWk ) and suppose that tWk (vk) > vl. The threshold t
W
k (vk) then solves

ψWk (vk) + ψWl (tWk (vk)) = 0. The same monotonicities discussed above then imply that tPk (vk) >

tWk (vk). This establishes the exclusion effect. Q.E.D.

Proof of Proposition 5. Hereafter, we denote by "ˆ" all the variables in the mechanism M̂P
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corresponding to the new distribution F̂ σl(uk)
k (·|·) and continue to denote the variables in the mech-

anism MP corresponding to the original distribution F σl(uk)
k (·|·) without annotation. By definition,

we have that ψ̂
P

k (vk) ≥ ψPk (vk) for all vk ≤ rPk while ψ̂
P

k (vk) ≤ ψPk (vk) for all vk ≥ rPk . Recall, from

the arguments in the proof of Proposition 3, that for any vk < ωPk , ∆P
k (vk, v̄l) < 0 or, equivalently,

ψPk (vk) + ψPl (v̄l) < 0, whereas for any vk ∈ (ωk, r
P
k ], tPk (vk) satisfies ψPk (vk) + ψPl (tPk (vk)) = 0. The

ranking between ψ̂
P

k (·) and ψPk ·), along with the strict monotonicity of these functions then implies
that ω̂Pk ≤ ωPk and, for any vk > ωPk , t̂

P
k (vk) ≤ tPk (vk). Symmetrically, because ψ̂

P

k (vk) + ψPl (vl) <

ψPk (vk)+ψPl (vl) for all vk > rPk , all vl, we have that t̂
P
k (vk) ≥ tPk (vk) for all vk > rPk . These properties

together with the reciprocity condition that links tPl (·) to tPk (·) establish parts (1) and (2) in the
proposition.

Next note that, because Fl is unchanged, parts (1) and (2) also imply |̂sk(vk)|k ≥ |sk(vk)|k if and
only if vk ≤ rPk . We can then use Lemma 1 to conclude that for all types θk with value vk ≤ rPk∫ vk

vk

|̂sk(ṽk)|k dṽk = Πk(θk; M̂
P ) ≥ Πk(θk;M

P ) =

∫ vk

vk

|sk(ṽk)|k dṽk.

Furthermore, since |̂sk(vk)|k ≤ |sk(vk)|k for all vk ≥ rPk , there exists a threshold type ν̂k > rPk

(possibly equal to v̄k) such that Πk(θk; M̂
P ) ≥ Πk(θk;M

P ) if and only if vk ≤ ν̂k, which establishes
part (3) in the proposition.

Finally notice that, for all vl ≥ rPl , because t̂Pl (vl) ≤ tPl (vl) (and hence ŝl(vl) ⊇ sl(vl)) and because
F̂
σl(uk)
k (·|vk) dominates F σl(uk)

k (·|vk) while F̂ vk = F vk , then necessarily |̂sl(vl)|l ≥ |sl(vl)|l. In contrast,
for vl < rPl the comparison between |sl(vl)|l and |̂sl(vl)|l is ambiguous, On the one hand, these types
are now matched to a smaller matching set, i.e., ŝl(vl) ⊆ sl(vl). On the other hand, the expected
quality of each agent in the matching set is now higher given that F̂ σl(uk)

k (·|vk) � F σl(uk)
k (·|vk) in the

usual stochastic order. Nonetheless, if there exists a v̂l ≥ rPl who is better off, i.e., for whom∫ v̂l

vl

|̂sl(ṽl)|k dṽl ≥
∫ v̂l

vl

|sl(ṽl)|k dṽl

then necessarily Πl(θl; M̂
P ) ≥ Πl(θl;M

P ) for each type θl whose valuation vl ≥ ν̂l, which establishes
part (4). Q.E.D.

Proof of Corollary 2. Let xk(vk) ≡
∣∣sPk (vk)

∣∣
k
denote the quality of the matching set that each

agent with value vk obtains under the original mechanism, and x̂k(vk) ≡
∣∣̂sPk (vk)

∣∣
k
the corresponding

quantity under the new mechanism. Using Lemma 1, for any q ∈ xk(Vk) ∩ x̂k(Vk), i.e., for any q
offered both under M and M̂

ρPk (q) = x−1
k (q)q −

∫ x−1k (q)

vk

xk(v)dv

ρ̂Pk (q) = x̂−1
k (q)q −

∫ x̂−1k (q)

vk

x̂k(v)dv
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where x−1
k (q) = inf{vk : xk(vk) = q} is the generalized inverse of xk(·) and x̂−1

k (q) = inf{vk : x̂k(vk) =

q} the corresponding inverse for x̂k(·). We thus have that

ρPk (q)− ρ̂Pk (q) =

∫ x−1k (q)

vk

[x̂k(v)− xk(v)]dv +

∫ x̂−1k (q)

x−1k (q)
[x̂k(v)− q]dv

From the results in Proposition 5, we know that [xk(vk) − x̂k(vk)][vk − rPk ] ≥ 0 with xk(rPk ) =

x̂k(r
P
k ). Therefore, for all q ∈ xk(Vk) ∩ x̂k(Vk), with q ≤ xk(rPk ) = x̂k(r

P
k ),

ρPk (q)− ρ̂Pk (q) =

∫ x−1k (q)

vk

[x̂k(v)− xk(v)]dv −
∫ x−1k (q)

x̂−1k (q)
[x̂k(v)− q]dv

=

∫ x̂−1k (q)

vk

[x̂k(v)− xk(v)]dv +

∫ x−1k (q)

x̂−1k (q)
[q − xk(v)]dv

≥ 0

whereas for q ≥ xk(rPk ) = x̂k(r
P
k ),

ρPk (q)− ρ̂Pk (q) =

∫ rPk

vk

[x̂k(v)− xk(v)]dv +

∫ x−1k (q)

rPk

[x̂k(v)− xk(v)]dv +

∫ x̂−1k (q)

x−1k (q)
[x̂k(v)− q]dv

= ρPk (xk(r
P
k ))− ρ̂Pk (xk(r

P
k )) +

∫ x−1k (q)

rPk

[x̂k(v)− xk(v)]dv +

∫ x̂−1k (q)

x−1k (q)
[x̂k(v)− q]dv

= ρPk (xk(r
P
k ))− ρ̂Pk (xk(r

P
k )) +

(∫ x̂−1k (q)

rPk

x̂k(v)dv − x̂−1
k (q)q

)
−
(∫ x−1k (q)

rPk

xk(v)dv − x−1
k (q)q

)

Integrating by parts, using the fact that xk(rPk ) = x̂k(r
P
k ), and changing variables we have that(∫ x̂−1k (q)

rPk

x̂k(v)dv − x̂−1
k (q)q

)
−
(∫ x−1k (q)

rPk

xk(v)dv − x−1
k (q)q

)

=

(
rPk x̂k(r

P
k )−

∫ x̂−1k (q)

rPk

v
dx̂k(v)

dv
dv

)
−
(
rPk xk(r

P
k )−

∫ x−1k (q)

rPk

v
dxk(v)

dv
dv

)

= −
∫ q

xk(rPk )
(x̂−1
k (z)− x−1

k (z))dz.

Because x̂−1
k (z) ≥ x−1

k (z) for z > xk(r
P
k ), we then conclude that the price differential ρPk (q)− ρ̂Pk (q),

which is positive at q = xk(r
P
k ) = x̂k(r

P
k ), declines as q grows above xk(rPk ). Going back to the original

notation, it follows that there exists q̂k >
∣∣sPk (rPk )

∣∣
k

=
∣∣̂sPk (rPk )

∣∣
k
(possibly equal to

∣∣̂sPk (v̄k)
∣∣
k
) such

that ρ̂Pk (q) ≤ ρPk (q) if and only if q ≤ q̂k. This establishes part (1) in the proposition.
Next, consider part (2). Suppose there exists a type θ̂l ≥ rPl such that Πl(θ̂l; M̂

P ) ≥ Πl(θ̂l;M
P ).

Using Lemma 1, this means that ∫ v̂l

vl

[x̂l(v)− xl(v)]dv ≥ 0.
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Let q̂l ≡
∣∣̂sPl (ν̂l)

∣∣
l
. From Proposition 5, we then know that, for any vl ≥ ν̂l, x̂l(vl) > xl(vl). This in

turn implies that for any q > q̂l, with q ∈ xl(Vl) ∩ x̂l(Vl),

ρPl (q)− ρ̂Pl (q) =

∫ x−1l (q)

vl

[x̂l(v)− xl(v)]dv −
∫ x−1l (q)

x̂−1l (q)
[x̂l(v)− q]dv

=

∫ x̂−1l (q)

vl

[x̂l(v)− xl(v)]dv +

∫ x−1l (q)

x̂−1l (q)
[q − xl(v)]dv

≥ 0

which establishes the result. Q.E.D.

Proof of Proposition 6. Denote by ψ̃
P
k (vk) the psi-function associated to the new distribution

F̃ vk (·), and by ϕ̃Pk (vk) the virtual values associated to F̃ vk (·). Since F̃ vk (·) dominates F vk (·) in the hazard
rate order, it follows that ϕ̃Pk (vk) ≤ ϕPk (vk) and, because gk and gl are linear, ψ̃

P
k (vk) ≤ ψPk (vk) for

all vk ∈ Vk. Therefore for all vk ∈ Vk,

ψ̃
P
k (vk) + ψPl (tPk (vk)) < ψPk (vk) + ψPl (tPk (vk)).

From the arguments in the proof of Proposition 3, we then have that ω̃Pk ≥ ωPk and t̃Pk (vk) ≥ tPk (vk)

for vk, which establishes part 1. Part 2 follows from reciprocity.

Because Fl is unchanged, it then follows that |̃sk(vk)|k ≤ |sk(vk)|k for all vk ≥ ωPk . Furthermore,
because necessarily |̃sk(vk)|k < |sk(vk)|k for all vk < rPk , we have that Πk(θk; M̃

P ) < Πk(θk;M
P ) for

all vk ≥ ωPk , which proves part 3. Part (4) is proved in the main text. Q.E.D.

Proof of Corollary 3. Because |sk(vk)|k ≥ |̃sk(vk)|k for all vk ∈ Vk, the result follows from the

same steps as in the proof of Corollary 2. Q.E.D.
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