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Abstract

We study the e¤ects of institutional constraints on stability, e¢ ciency and
network formation. An exogenous �societal cover� consisting of a collection of
possibly overlapping subsets that covers the set of players and no set in this col-
lection is contained in another speci�es the social organization in di¤erent groups
or �societies�. It is assumed that a player may initiate links only with players
that belong to at least one society that s/he also belongs to, thus restricting the
feasible networks. In this setting, we examine the impact of societal constraints
on stable architectures and on dynamics, without and with decay.
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1 Introduction

In recent years the study of the economics of networks has attracted considerable
attention from researchers and become one of the hottest topics of economic research1.
The economics of networks is, in Goyal�s words, �an ambitious research program which
combines aspects of markets (e.g., prices and competition) along with explicit patterns
of connections between individual entities to explain economic phenomena� (Goyal,
2007, p. 6).
Several seminal papers provide the basic models of strategic formation of networks

paying special attention to stability and e¢ ciency. In the simplest model links are
formed unilaterally (Goyal (1993), Bala (1996)). In this setting Bala and Goyal (2000a)
study Nash and strict Nash stability and provide a dynamic model. A model where
links are formed on the basis of bilateral agreements is studied by Jackson andWolinsky
(1996), who introduce the notion of pairwise stability. In these seminal papers it is
assumed that there is homogeneity across players and also that the current network is
common knowledge to all node-players. These models have been extended in di¤erent
directions. Bala and Goyal (2000b) introduce imperfect reliability of links. Galeotti
et al. (2006) consider heterogeneous players, while Bloch and Dutta (2009) consider
endogenous link strength. The common knowledge assumption may be unrealistic in
many cases, and indeed is dropped by McBride (2006), who studies the e¤ects of limited
perception, namely, assuming that each node-player perceives the current network only
up to a certain distance from the node.
In the seminal models networks provide a means for the �ow of information or

other bene�ts through the links, but the current network is assumed to be common
knowledge to all players, who may unrestrictedly initiate links with any other players.
In some cases this may be an unrealistic assumption, and in general the larger the
number of agents and the network are the more unrealistic it will be. Due to what
we generically refer here to as �institutional constraints� (social, cultural, linguistic,
geographical, economic, etc.), often individuals may see only �part of the world�and
initiate links only within that part or a part of that part. Thus it seems more realistic to
assume that a set of possibly overlapping groups (family, tribe, clan, club, gender, age,
linguistic community, nationality, professional association, department, etc., depending
on the context) con�gures the social constraints within which individuals interact2.
More precisely, we assume that each individual may initiate links only within the
groups she belongs to. In a way this is an unorthodox approach if, as put by Goyal,

1Some recent books surveying this literature are Goyal (2007), Jackson (2008) and Vega-Redondo
(2007).

2The importance of group membership is nowadays widely recognized. A vast literature in psys-
cology deals with the relationship between identity and group membership since at least Tajfel and
Turner (1979) (see also Brewer (1991) and Brewer and Gardner (1996)). In the economic literature
Akerlof and Kranton (2000) introduce a model where group membership enters the de�nition of a
utility function. In the experimental �eld see Chen and Li (2009). For a recent attempt to relate
networks and identity formation see Dev (2010).
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�the theoretical research on network e¤ects (..) is motivated by the idea that, within
the same group [in italics], individuals will have di¤erent connections and that this
di¤erence in connections will have a bearing on their behavior.�(Goyal, 2007, p. 7).
Nevertheless, this is the approach adopted here, and it is worth remarking that the
orthodox single-group assumption is in fact a particular case of the more general setting
adopted here. In particular, this allows Bala and Goyal�s (2000a) �two-way �ow�basic
model, on which we concentrate in this paper, to be integrated into a wider model
which sheds new light on various conclusions of their model, showing which prevail
and up to which point, and which do not in this wider setting.
Based on this idea, in this paper we focus on the e¤ects of such institutional con-

straints on stability, e¢ ciency and network formation. More precisely, an exogenous
�societal cover� speci�es social organization in di¤erent groups or �societies�. A so-
cietal cover is a collection of possibly overlapping subsets of the set of players or �so-
cieties�that covers the whole set (i.e., each player belongs to at least one set in this
collection) such that no set in this collection is contained in another. It is assumed that
a player may initiate links only with players that belong to one or more of the societies
that she also belongs to, thus restricting her feasible strategies, and as a consequence
the feasible networks.
Note that in this scenario only the players in the possibly empty �societal core�,

i.e., those that belong to all societies, may have direct access to all individuals. It is
also assumed that only the part of the current network within each �component� of
the societal cover (in a sense to be speci�ed later) is common knowledge to all players
in that �component�. Note also that this model collapses to Bala and Goyal�s (2000a)
unrestricted setting for the particular case of the simplest societal cover consisting of a
single society including all players. The notion of societal cover seems a rather natural
constraining structure in the link-formation context. Moreover, we prove a somewhat
con�rming result relative to this naturalness: the societal cover model provides the most
general symmetric link-formation constraint that can be considered. This in particular
means that in the context of bilateral link formation (Jackson and Wolinsky, 1996),
where only symmetric constraints make sense, the societal cover provides a general
model of constraint. Of course, in the context of unilateral link-formation other (i.e.,
non symmetric) types of constraints can be considered.
For any given societal cover we constrain our attention to the admissible networks

(i.e., those consistent with the cover) and �rst extend Bala and Goyal�s (2000a) notion
of a Nash network as those admissible networks where no player has an incentive to
change her strategy, i.e., her choice of admissible links. We then easily extend their
characterization of Nash networks as those among the admissible networks which are
minimally connected. In this way the set of such Nash networks is a subset of the set of
Bala and Goyal�s unrestricted Nash networks. Then Bala and Goyal�s (2000a) notion
of strict Nash network is also naturally extended to this setting. Now a strict Nash
network is a network consistent with the societal cover where no player may initiate
and/or delete any admissible link(s) without loss. By contrast with Nash networks,
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things turn out to be more complicated with strict Nash networks. In Bala and Goyal�s
setting the center-sponsored star is the only (non empty) architecture of strict Nash
networks, while in our setting the center-sponsored star architecture is feasible only
when the societal core, i.e. the set of players belonging to all societies, is not empty.
Moreover, even when the center-sponsored star architecture is feasible, this is not the
only possible architecture of strict Nash networks. A variety of architectures of strict
Nash networks appear for any non single-society cover, and the more complex the
societal cover the greater this variety is. Nevertheless, some patterns are common to
these architectures. Moreover, a full characterization of all strict Nash networks for a
societal cover is provided by means of a condition that encapsulates synthetically the
essence of the architecture of these networks, embodying a clear hierarchical principle.
The main features of their architectures, where stars continue to play a prominent role,
are studied. Particular attention is paid to the role of players who belong to more than
one society, by means of whom di¤erent but overlapping societies can be connected. It
turns out that the two-way �ow model under societal constraints yields as strict Nash
networks the paradigm of hierarchical structures: either oriented diverging trees (also
called �arborescences�in graph theory) or a sort of �grafted�oriented trees. The latter
are proved to be possible only when there are �hinge-players�, i.e., players who are the
unique common member of two or more societies.
We then apply Bala and Goyal�s dynamic model, where starting from any initial

network each player with some positive probability plays a best response or randomizes
across them when there is more than one, otherwise the player exhibits inertia, i.e.,
keeps her links unchanged. In this way a Markov chain on the state space of all networks
is de�ned. In Bala and Goyal�s setting, the absorbing states are precisely the strict Nash
networks and they prove that starting from any network the dynamic process converges
to a strict Nash network (i.e., the empty network or a center-sponsored star) with
probability 1. When adapted to our setting the best response dynamic model does not
necessarily lead to strict Nash networks. The reason is that in our more complex setting
this dynamic process may lead to the formation of partially stable �incomplete�strict
Nash incompatible networks that cannot be part of the same strict Nash network, thus
blocking the converging process. Therefore institutional constraints may hinder the way
towards strict Nash networks. Nevertheless, best response dynamics lead to absorbing
sets of minimally connected networks that we call �quasi-strict Nash networks� and
characterize them. Thus, with probability 1, best response dynamics would lead either
to a strict Nash network (whenever the set of quasi-strict Nash networks reached is
a singleton) or one of these absorbing sets of quasi-strict Nash networks where the
best response dynamics would oscillate for ever. Nevertheless stability is reached in
terms of payo¤s as it is proved that all quasi-strict Nash networks within each of these
absorbing sets yield the same payo¤s to all players.
Finally we examine the impact of decay in this setting. We �rst partially extend

some of Bala and Goyal�s results studying the relative robustness of di¤erent strict Nash
networks in the presence of decay for certain societal covers. It turns out that when
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feasible, i.e., when the societal core is not empty, stars are the most robust strict Nash
networks. More precisely, in the presence of decay stars remain strictly stable within a
wider range of values for the parameters, while other strict Nash architectures remain
stable only within narrower ranges. Then we study stochastically stable networks
using Feri�s (2007) dynamic model. We obtain similar conclusions about the relative
robustness of di¤erent strict Nash architectures. We extend Ferri�s (2007) showing in
particular how when the societal core is not empty and for all the societies the number
of individuals that belong to that society and only that one is su¢ ciently large, stars
are the only stochastically stable architectures. As to e¢ ciency in the presence of
decay, a general conclusion arises: in the presence of decay e¢ ciency and stability go
hand in hand in the following sense: the greater the robustness of the stability is, the
greater the e¢ ciency, i.e. the greater the aggregated utility.
The rest of the paper is organized as follows. In section 2 the basic model is

speci�ed along with the necessary notation and terminology. Section 3 studies stability
and e¢ ciency under institutional constraints. In section 4 Bala and Goyal�s dynamic
model is extended to this setting. In section 5 we study the e¤ects of introducing decay
in the model. Finally, section 6 summarizes the main conclusions and points out some
lines of further research.

2 The model

Let N = f1; 2; ::; ng denote the set of nodes or players. Players may initiate or delete
links with other players. By gij 2 f0; 1g we denote the existence (gij = 1) or not
(gij = 0) of a link connecting i and j initiated by i. Vector gi = (gij)j2Nni 2 f0; 1gNni
speci�es3 the set of links initiated or supported4 by i and will be referred to as an
(unrestricted) strategy of player i. Gi := f0; 1gNni denotes the set of i�s (unrestricted)
strategies and GN = G1 �G2 � ::�Gn the set of (unrestricted) strategy pro�les. An
unrestricted strategy pro�le g 2 GN univocally determines a directed network5 (N;�g),
where

�g := f(i; j) 2 N �N : gij = 1g;
that we identify with g and refer to as network g. If M � N we denote by g jM the
subnetwork (M;�gjM ) with

�gjM := f(i; j) 2M �M : gij = 1g:

We now consider the following situation. An exogenous �societal cover�speci�es a
set of possibly overlapping �societies�that represent a social constraint in the following

3We always drop the brackets �f::g�in expresions such as Nnfig:
4We use indistinctly both terms, with preference for the �rst when dynamics considerations are

involved and for the second otherwise.
5In graph theory this is called a �digraph�without loops, i.e., edges connecting a node with itself

(see, for instance, Tutte (1984)).
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sense: each player in N can initiate links with any other player as long as they belong
to the same society. Formally, we have the following

De�nition 1 A �societal cover� of N is a collection of subsets of N (called �soci-
eties�), K � 2N , such that: (i)

S
A2K

A = N; and (ii) for all A;B 2 K (A 6= B),

A * B:

Condition (i) ensures that every player belongs to at least one society; while con-
dition (ii) precludes super�uous societies: if A � B; A would be super�uous given the
interpretation of societies.
We denote by Ki � K the set of societies that i belongs to, and by N(Ki) � N the

set of nodes that i may directly access, that is:

Ki := fA 2 K : i 2 Ag

and
N(Ki) :=

[
A2Ki

A:

Two nodes i; j have identical a¢ liation if they belong to the same societies, i.e.,
Ki = Kj. Two nodes i; j have the same reach if N(Ki) = N(Kj). Note that identical
a¢ liation implies the same reach, but the converse is not true.

Example 1 If N = f1; 2; 3; 4; 5; 6; 7; 8; 9g and

K := ff1; 2; 3; 4; 5; 6g; f4; 5; 6; 7; 8; 9g; f1; 2; 4; 5; 7; 8g; f2; 3; 5; 6; 8; 9gg;

then 2 and 4 have the same reach: N(K2) = N(K4) = N , but di¤erent a¢ liations as
K2 6= K4:

K2 = ff1; 2; 3; 4; 5; 6g; f1; 2; 4; 5; 7; 8g; f2; 3; 5; 6; 8; 9gg
and

K4 = ff1; 2; 3; 4; 5; 6g; f1; 2; 4; 5; 7; 8g; f4; 5; 6; 7; 8; 9gg:
Observe that we consider a particular type of a more general situation where an

exogenous �link-constraining system�speci�es for each player in N with which other
players she can initiate links. Formally, we have the following

De�nition 2 A �link-constraining system� in N is a collection of subsets of N , L =
fLigi2N , such that, for all i, i 2 Li.

With the interpretation anticipated: each player i is assumed to be able to initiate
links with any player in Li (di¤erent from himself, as it is only a matter of convenience
to include i in set Li). Note that this allows for asymmetric situations, where it may
be the case that a player i may initiate a link with j but j cannot initiate a link
with i. In particular, a societal cover K imposes a link-constraining system, namely
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fN(Ki)gi2N , by limiting the reach of each player. This arises the reciprocal issue:
under which conditions a link-constraining system L can be interpreted as associated
with or imposed by a societal cover? The answer is given by the following condition: a
link-constraining system L is symmetric if for all i; j 2 N : i 2 Lj if and only if j 2 Li.
Then we have the following

Proposition 1 A link-constraining system L can be interpreted as associated with or
imposed by a societal cover if and only if it is symmetric.

Proof. Necessity ()): It follows immediately from the constraints imposed by a
societal cover.
Su¢ ciency ((): Let L be a symmetric link-constraining system. De�ne K(L)

as the set of nonempty subsets A of N s.t. (i) for all i 2 A, A � Li, and (ii) no
A0 ! A exists that satis�es condition (i). First note that K(L) is well-de�ned given
that the set of subsets that satisfy condition (i) is partially ordered by inclusion, and
consequently maximal elements do exist. K(L) consists of such maximal elements.
Note also that for all i, i 2 A for some A 2 K(L), given that fig � Li, and for all
A;A0 2 K(L) s.t. A 6= A0, A * A0. Therefore K(L) is a societal cover. Only remains
to be shown that for all i, N(Ki(L)) = Li, i.e., that [A:i2A2K(L)A = Li. First, assume
j 2 N(Ki(L)) = [A:i2A2K(L)A, i.e., j 2 A 2 K(L) for some A s.t. i 2 A. Then
by condition (i) in the de�nition of K(L), A � Li and consequently j 2 Li. Now
reciprocally, assume j 2 Li. Then, given that L is symmetric, i 2 Lj. Therefore fi; jg
satis�es condition (i) in the de�nition of K(L), and consequently fi; jg � A for some
A 2 K(L). Thus j 2 [A:i2A2K = N(Ki(L)).
Proposition 1 provides a di¤erent (but equivalent) interpretation: a societal cover

means a symmetric link-constraining system6. It is worth remarking the generality of
the type of constraint a societal cover imposes: all the results that follow apply to any
symmetric link-constraining system7. Nevertheless we �nd the societal cover notion
closer to, or at least embodying a more intuitive perception of, real world constraints,
and it is in these terms that all results are presented.
The following terminology is used. A component C of a societal cover K is a subset

C � K such that (i) for all A;B 2 C there exist A1; ::; Ak 2 K s.t. A1 = A and B = Ak,
and Ai \Ai+1 6= ? for i = 1; ::; k� 1, and (ii) for all B 2 KnC; B \ ([A2CA) = ?. The
subset [A2CA of N covered by a component C is denoted by N(C). For each i, Ci(K)
denotes the component of K that contains Ki. A societal cover is connected if it has a

6Di¤erent societal covers may yield the same link-constraining system. Nevertheless, for a
link-constraining system L the cover K(L) constructed in the proof of Proposition 1 is the max-
imal one that yields it in the following sense: any society of any cover that yields that link-
constraining system is contained in some society of K(L). For instance, the maximal societal
cover that represents the link-constraining system imposed by the societal cover in Example 1 is
fNnf1; 3g; Nnf3; 9g; Nnf7; 9g; Nnf1; 7gg:

7In particular, in the context of bilateral link formation (Jackson and Wolinsky, 1996) only sym-
metric link-constraining make sense. In other words in the context of bilateral link formation the
societal cover provides a general model of constraint.
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unique component. The societal core of a societal cover is the set of nodes that belong
to all societies

core(K) :=
\
A2K

A:

This set may be empty. Note that only the players in the societal core may have direct
access to all individuals in N .
Let K be a societal cover of N , if K0 � K we say that K0 is a subcover of K if K0 is

a societal cover of N(K0) := [A2K0A s.t. for all A 2 K; A � N(K0) implies A 2 K0. In
particular, a component of a a societal cover K is a (connected) subcover of K.
The following de�nition constrains the structure of a network so as to be consistent

with a given societal cover of N by ruling out links connecting individuals who are not
members of at least one society in common.

De�nition 3 A network g is consistent with a societal cover K (or is a K-network) if
for every link gij = 1 there exists some A 2 K s.t. i; j 2 A (i.e., Ki \ Kj 6= ?).

A vector gi = (gij)j2N(Ki)ni 2 f0; 1gN(Ki)ni speci�es a set of K-feasible links initiated
by i and is referred to as a K-admissible strategy of player i, as we assume i�s capacity
to choose which links to initiate in N(Ki). Gi(K) := f0; 1gN(Ki)ni denotes the set of i�s
K-admissible strategies and GK = G1(K)�G2(K)� ::�Gn(K) the set of K-admissible
strategy pro�les. A K-admissible strategy pro�le g univocally determines a K-network
that we identify with g.
Observe that this setting is not narrower than Bala and Goyal�s standard one. It

is in fact more general as the standard (i.e., unrestricted) notions of network, strategy
and strategy pro�le correspond to the particular case of the simplest societal cover
K = fNg, where a single society includes all players and all links are feasible.
Given a network g, we denote �gij := maxfgij; gjig. In this way a nondirected

network �g is de�ned8. �g represents the e¤ective communication provided by network g,
which is independent of who initiated the existing links according to the assumptions
of the model. We say that there is a path of length k from i to j in g if there exist
k + 1 players j0; j1; ::; jk, s.t. i = j0, j = jk, and for all l = 1; ::; k, �gjl�1jl = 1, and
we say that such a path is i-oriented if for all l = 1; ::; k, gjl�1jl = 1 and gjljl�1 = 0.
A path (oriented or not) is K-feasible if all its links are K-feasible. The set of players
with whom i supports a link is denoted by Nd(i; g), and the set of players connected
with i by a path (union fig) by N(i; g), and their cardinalities by �di (g) := #Nd(i; g)
and �i(g) := #N(i; g). Note that if g is a K-network then Nd(i; g) � N(Ki) and
N(i; g) � N(Ci(K)). We say that a network g is an oriented diverging tree (converging
tree) if there is a node i0 such that for any other node j
there is a unique path connecting it with the node root i0 and such path is i0-oriented

(j-oriented).

8In graph theory terms, �g is the �underlying graph�of digraph g (see, e.g., Tutte, 1984).
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It is assumed that each node contains valuable information and a link allows that
information to �ow in both directions without decay independently of who initiates it,
so that each node receives the information from all nodes with which it is connected
by a path. Let vij > 0 be the payo¤ that player i derives from connecting directly
(by a link) or indirectly (by a path) with player j, and cij > 0 the cost for player i of
initiating a link with j. Thus the payo¤ of player i in g is

�i(g) =
X

j2N(i;g)

vij �
X

j2Nd(i;g)

cij:

If we assume costs and bene�ts to be homogeneous across players (i.e., vij = v and
cij = c; for all i; j) and v > c, connections with new nodes are always pro�table and9

�i(g) = v�i(g)� c�di (g): (1)

A K-network is e¢ cient if it maximizes the aggregate payo¤ under the constraint
of K-feasible payo¤s, that is, those that can be obtained by means of K-networks.
A component of a network g is a subnetwork g jC , where C � N , such that any two

players in C are connected by a path, and no player in N n C is connected by a path
with a player in C. We say that g is connected if g is the unique component of g. A
network is minimal if for all i; j s.t. gij = 1, the number of components of g is smaller
than the number of components of g � ij, where g � ij is the network that results by
replacing gij = 1 by gij = 0 in g (similarly, when gij = 0 we write g + ij to represent
the network that results by replacing gij = 0 by gij = 1 in g). A network is minimally
connected if it is connected and minimal.

Remark: Note the relationship between the notions of connected component of a so-
cietal cover K of N and connected component of a K-network: a connected component
of a K-network is always covered by a connected component of the societal cover K.
We denote by g�i the network where all links initiated by i in g are deleted, and

by (g�i; g0i) the strategy pro�le and network that results by replacing gi by g
0
i in g. In

particular, (g�i; gi) = g.
We next discuss some notions of stability of networks consistent with a given societal

cover K.

3 Stability and e¢ ciency

The following de�nitions are natural extensions of the notions of Nash stability and
strict Nash stability due to Bala and Goyal (2000a) for a network in a scenario where

9Although the results presented here can easily be extended with some slight modi�cations to the
case where payo¤s are, as in Bala and Goyal (2000a), given by a function �(�i(g); �

d
i (g)), where

�(x; y) is strictly increasing in x and strictly decreasing in y, we prefer this simpler assumption about
payo¤s so as to make the statements of the basic results simpler. The assumption v > c is dropped
in section 5 when we consider decay.
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payo¤s are given by (1) and: (i) a societal cover K allows only for links connecting
individuals belonging to the same society, and (ii) all players in the same component
C of K, i.e., in N(C), have common knowledge of the part of the current network con-
necting individuals of N(C). The common knowledge assumption restricted to players
in the same component of the cover can be justi�ed by assuming that information
about the current network propagates between overlapping societies. Note that this
scenario yields the unconstrained and common-knowledge environment of Bala and
Goyal (2000a) for the particular case of the simplest societal cover: K = fNg.

De�nition 4 A Nash K-network is a K-network g that is stable under K-admissible
strategies, that is, for all i 2 N :

�i(g) � �i(g�i; g0i) for all g0i 2 Gi(K): (2)

When (2) holds we say that gi is a best (admissible) response of i to g�i. Thus, in a
Nash K-network every player is playing a best K-admissible response to those played
by the others. Note that for K = fNg a Nash K-network is a Nash network in the
standard setting.
The stability notion can be re�ned in the strict sense by extending Bala and Goyal�s

strict Nash networks.

De�nition 5 A strict Nash K-network is a Nash K-network g such that for all i 2 N :

�i(g) > �i(g�i; g
0
i) for all g0i 2 Gi(K) (g0i 6= gi): (3)

Thus (3) means that in a strict Nash K-network every player is playing her unique
best (admissible) response to those played by the others. Also note that for K = fNg
a strict Nash K-network is a strict Nash network in the standard setting.
Given the constraints on information, strategies and feasible networks that a societal

cover imposes, the set of playersN(C) in each component C of the cover, where subcover
C prescribes what links are feasible, form an entirely �separate world�: no link with
NnN(C) is possible and no information about it reaches N(C). In particular we have
the following straightforward result.

Proposition 2 A K-network g is a Nash (strict Nash) K-network if and only if g jN(C)
is a Nash (strict Nash) C-network for each component C of K.

Remark: Note also that although societies consisting of a single individual are in-
cluded in the model, such trivial societies are of no interest in this setting. Moreover,
the only connected societal cover K that contains a society A s.t. #A = 1 is K = fAg.
Therefore, in view of Proposition 2 and the preceding remark, in what follows

we constrain our attention to connected societal covers and we always assume that
all societies have at least two individuals unless otherwise speci�ed. The following
proposition extends Bala and Goyal�s result to this setting.
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Proposition 3 Given a connected societal cover K of N , a K-network g is a Nash
K-network if and only if it is minimally connected.

Proof. Let K be a connected societal cover of N , and g a K-network. Assume g is
not connected. Then there exist two nodes i; j 2 N not connected by a path in g. As
cover K is connected, there exists a �nite sequence of nodes x1; ::; xm, such that x1 = i,
xm = j and for each k = 1; ::;m�1, there is some A 2 K s.t. xk; xk+1 2 A. Then for at
least two consecutive nodes among these m nodes, say xk and xk+1, there is no path in
g connecting them. But then it is feasible and pro�table for either of these two nodes
to initiate a link with the other. Thus g must be connected. If it were not minimal
there would be some super�uous link that could be eliminated and that would bene�t
the player that did so, and consequently g is not a Nash K-network.
Reciprocally, assume that g is minimally connected. Let i be any player and g0i

be any strategy g0i 2 Gi(K) (g0i 6= gi). We show that �i(g) � �i(g�i; g
0
i). A new

strategy g0i 6= gi means deleting some links and initiating new ones. If g is minimally
connected, then each deletion means disconnecting i with a set of nodes, and if there
is more than one deletion any two of these sets of nodes disconnected from i must
also be disconnected from each other (otherwise a deleted link would be redundant).
Thus the number of links initiated should be at least equal to the number deleted,
otherwise the payo¤ would decrease. But then i�s payo¤ for (g�i; g0i) cannot be greater
than for g. Therefore if g is minimally connected no player has an incentive to make
any K-admissible change.
In Bala and Goyal (2000a) the following result is established (in our terminology

and under the assumptions about costs and bene�ts made here10): a network is e¢ -
cient if and only if it is minimally connected, and Nash networks are those minimally
connected. In view of this, we have the following

Corollary 1 When the societal cover K is connected the following conditions are equiv-
alent for a network g:
(i) g is a Nash K-network.
(ii) g is a K-consistent Nash network.
(iii) g is an e¢ cient K-network.

Therefore, for any given set of nodes N and any societal cover K, the set of Nash
K-networks is a subset of the set of standard unrestricted Nash networks. In Figure 1
two minimally connected networks are represented11: (a) is a Nash K-network, while
(b) is not a Nash K-network because one link connects two nodes that do not belong
to the same society.

10In fact, given their weaker assumptions on the payo¤s (see footnote 8), the empty network may
also be Nash stable in their setting.
11As in all �gures, nodes are represented by dots (without labels unless conveninet for the purpose of

the illustration), links by segments between them, and a �lled circle indicates the node that supports
it.
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Figure 1: Nash networks and Nash K-networks.

We now focus on strict Nash K-networks. �Stars�of di¤erent types play an impor-
tant role in network stability in di¤erent contexts (see, Bala and Goyal (2000a, 2006),
Jackson and Wolinsky (1996), Bloch and Dutta (2009)), and, as we show below, they
are also important in connection with strict Nash K-networks. In this context the
following variant of the notion of center-sponsored star proves useful.

De�nition 6 A set of players M � N (#M � 2) is said to be connected by a center-
sponsored star s in a network g if g jM= s and there is a node i 2M s.t. Nd(i; g) =Mni
and gjk = 0 for all j 2Mni and all k 2Mnj.

Note that, according to this de�nition: (i) a center-sponsored star does not neces-
sarily connect all players in N ; (ii) its center i can be linked from other nodes di¤erent
from those in the star; and (iii) the nodes in the periphery, i.e., those j inM s.t. gij = 1
can be connected with other nodes that do not belong to the star.
Re-stated in terms of the current setting, notation and terminology, and adapted to

it, Bala and Goyal (2000a) establish the following result: the only strict Nash networks
are those consisting of a single center-sponsored star that connects all players12.
As we show below, the societal cover diversi�es the stable/e¢ cient networks as strict

Nash K-networks are not necessarily center-sponsored stars. A variety of constellations
of interconnected stars emerges as possible strict Nash K-networks depending on the
structure of the societal cover; moreover, in general, several architectures appear as
strict Nash for a given societal cover. Our next goal is to identify and characterize
these networks.
In the characterization of strict Nash K-networks the following binary relation on

N associated with a network g plays an important role. Let
g! be the transitive closure

of the binary relation Lg de�ned by

i Lg j , (i = j or gij = 1)

That is to say, i
g! j if i = j or there exists an i-oriented path from i to j. This

relation is obviously transitive, but in general, for an arbitrary network g, is not com-

12Given their weaker assumptions on the payo¤s (see footnotes 8 and 9), the empty network may
also be strict Nash in their setting.
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plete, antisymmetric or acyclic13. But if g is minimally connected, then
g! is certainly

antisymmetric and acyclic (otherwise at least one link would be redundant). Thus, in
view of Proposition 3, we have the following

Lemma 1 For any Nash K-network g, the binary relation g! is a partial order on N .

For any Nash K-network g, we use the following terminology. We say that i is a
predecessor of j (and that j is a successor of i) in g if i 6= j and i g! j. We say that a
node is terminal in g if it has no successors, and we say that a node is maximal in g if
it has no predecessors.
As we presently prove, strict NashK-networks have a strongly hierarchical structure

and the following terminology proves useful.

De�nition 7 A node j is �within hierarchical reach� of another i in a minimally
connected K-network g if j is within i�s reach and j is not a predecessor of i nor there
is a predecessor of i connected with j through a path not containing i.

That is, j is within hierarchical reach of i in g if (i) j 2 N(Ki)ni, (ii) j
g9 i, (iii)

there is no k 6= i s.t. k g! i and j 2 N(k; g jNni). Note that a necessary condition for
for j to be within hierarchical reach of i in g it is that gji = 0, but it is not required
that gij = 1. When this is required, so that every node supports links with every node
within it�s hierarchical reach, the network adopts a strongly hierarchical structure as
we presently see. This motivates the following

De�nition 8 A minimally connected K-network g is �hierarchical�if every node sup-
ports links with all those within it�s hierarchical reach in g.

Then we have the following characterization: strict Nash K-networks are just hier-
archical minimally connected K-networks.

Theorem 1 A network g is a strict Nash K-network if and only if g is a hierarchical
minimally connected K-network.

Proof. Necessity ()): Obviously, a K-network g that is a strict Nash K-network is
also a Nash K-network, and by Proposition 3, necessarily minimally connected, and by
Lemma 1,

g! is a partial order. Now let i be a node in g and assume gij = 0 for some
j within i�s hierarchical reach, i.e., some j 2 N(Ki)ni that is not a predecessor of i and
for which there is no k predecessor of i such that j 2 N(k; g jNni). As g is minimally
connected, there must be a path connecting i and j, that then does not contain any

13A binary relation R on a set X is antisymmetric if, for all x; y 2 X, xRy and yRx, implies x = y;
and R is said to be acyclic if there is no �nite chain x1; x2; ::; xn in X s.t. xkRk+1 for k = 1; 2; ::; n�1,
and xnRx1, unless xk = xk+1 for k = 1; 2; ::; n� 1. In general the second condition is weaker than the
�rst, but when the relation is transitive they are equivalent.
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predecessor of i. In particular, on that path the �rst link must be a link initiated by
i. But then i can delete that link and initiate a link with j without altering i�s payo¤,
and consequently g is not a strict Nash K-network.
Su¢ ciency ((): Assume that g is a minimally connected K-network. By Proposi-

tion 3, g is a Nash K-network. Let i be any node and any g0i 2 Gi(K) s.t. g0i 6= gi. We
show that �i(g) > �i(g�i; g0i) if g is hierarchical. Reasoning as in Proposition 3, as g
is minimally connected, g0i 6= gi involves deleting some links and initiating at least an
equal number of new links for (g�i; g0i) to be also minimally connected, otherwise i�s
payo¤s would be smaller in (g�i; g0i), but in fact the number of links deleted and that
of those newly initiated by i should be the same for the same reason. Let link ii0 be
one of the former (i.e., gii0 = 1 and g0ii0 = 0) and let ij be one of the latter (i.e., gij = 0
and g0ij = 1). If g is hierarchical, either j is a predecessor of i in g or there exists a k
predecessor of i in g such that j 2 N(k; g jNni). But this implies a cycle in (g�i; g0i).
The reason is this: evidently adding link g0ij = 1 to g means a cycle in (g� ii0)+ ij, but
it must be proved that this cycle is contained in (g�i; g0i). This is so because no link
in the path in g connecting i and j can have been initiated by i (this would imply a
cycle in g, which is assumed to be minimally connected). Therefore, no matter which
other links in gi are deleted in g0i, the cycle is entirely contained in (g�i; g

0
i). The same

can be said about all new links in g0i w.r.t. gi, all new links are redundant in (g�i; g
0
i).

Therefore necessarily �i(g) > �i(g�i; g0i):
This characterization allows in particular for a constructive proof of existence of

strict Nash K-networks for any societal cover K: start at any node i0 and initiate links
with all nodes in N(Ki0), then extend the network by initiating new links from those
nodes, always respecting hierarchical priority. In fact we have the following result:

Proposition 4 For any connected societal cover K and any node i0 2 N there exists
an oriented diverging tree g rooted at i0 that is a strict Nash K-network.

Proof. Iterate the following procedure:
- Step 0: Initially let i0 be any player in N , and g0 the K-network that results by

i0 initiating links with all players in N(Ki0).
- Step from k to k + 1: If gk is the current K-network resulting form step k, take a

terminal node, say ik+1, in gk, for which the set of nodes within hierarchical reach in
gk is not empty, and let ik+1 initiate links with all those players. If no such node exists,
stop; otherwise, let gk+1 be the K-network that results by adding to gk all these links
initiated by ik+1.
It is clear that if K is connected this iterated process must stop in a �nite number

of steps and the resulting network will be an oriented diverging tree rooted in i0 that is
obviously hierarchical, thus forming a strict Nash K-network connecting all players in
N . If K were not connected the same iterated procedure could be applied within each
component of the cover and by Proposition 2 a strict Nash K-network would result.
As a corollary of Theorem 1, the following propositions establish some prominent

features of the architecture of strict Nash K-networks that help to form a clearer idea
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about these networks, which we later illustrate with some examples. The �rst one
shows the role of stars in strict Nash K-networks.

Proposition 5 In a strict Nash K-network g:
(i) There is at least one node that is the center of a center-sponsored star that links
with all players within its reach (i.e., for some i 2 N , Nd(i; g) = N(Ki)=i; and no
player in N supports a link with i).
(ii) For each society A 2 K, either no link connects two nodes of that society or all
or some of the members of that society are connected by center-sponsored stars and
no other link exists connecting a pair of nodes in A (i.e., g jA consists of disjoint
center-sponsored stars and/or isolated nodes).

Proof. (i) By Lemma 1, given that g is minimally connected,
g! is a partial order

and necessarily exists at least one maximal element, i.e., with no predecessor. Let i0
be a maximal element. As i0 is maximal, by Theorem 1, necessarily Nd(i0; g)[ fi0g =
N(Ki0):
(ii) Let A be a society in the cover K. Assume that for some i; j 2 A, gij = 1. It

is enough to show that the only other link that may exist connecting any k 2 Anfi; jg
with i or j is a link initiated by i. Assume that gkj = 1. Then k can delete the link
with j and initiate one with i and have the same payo¤. Assume that gjk = 1. Then
i can delete the link with j and initiate one with k and have the same payo¤. Finally,
assume that gki = 1. Then k can delete the link with i and initiate one with j and
have the same payo¤. Thus the only remaining possibility of a link connecting any
k 2 Anfi; jg with i or j is a link gik = 1.
As an immediate corollary of part (i), we have the following conclusion that yields

Bala and Goyal�s result as a particular case.

Corollary 2 There exists a center-sponsored star that is a strict Nash K-network if
and only if the societal core is not empty and the center belongs to it.

Observe the similarity of the proof of part (ii) with Bala and Goyal�s proof of their
result, and its di¤erences: minimal connectedness and �strict Nash-ness�do not entail
that all nodes in a society A are connected by a single star. Now the possibility of other
center-sponsored stars within a society is left open, and even the possibility of some
nodes being left outside these stars (but linked through nodes belonging to societies
other than A). But the hierarchical arrangement of a strict Nash K-network entails a
maximum of two levels within each society: centers and spokes.
Thus we have in short that in a strict Nash K-network g within each society either

no pair of nodes is connected by a link or some center-sponsored stars connect some of
the nodes in that society. But there is at least one center-sponsored star whose center
connects all nodes of all societies to which the center belongs. The question now is:
how do these stars interconnect in g? Evidently through overlapping societies. The
following proposition answers this question more precisely by establishing the possible
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connections through overlapping societies: stars �hand in hand�, i.e., interconnected
through a free-rider player, are possible only if a single player belongs to both societies.
Otherwise, if more than one player belongs to both societies, a player interconnecting
them necessarily supports link(s) with players of one or both societies.

Proposition 6 Let A;B be two overlapping societies in a societal cover K with i 2
A\B, and g a strict Nash K-network. If for some j 2 An (A\B) and k 2 B n (A\B)
it is

_
gij =

_
gik = 1, then gji = gki = 1 is possible only if A \B = fig.

Proof. Assume that i 2 A\B and for some j 2 An (A\B) and some k 2 B n (A\B),
gji = gki = 1. If fig  A \ B take i0 2 A \ B, i 6= i0. If i and i0 were linked then j (or
k) could delete the link with i and initiate a link with i0 without loss. Thus we should
have �gii0 = 0. As g is minimally connected either there exists a path connecting i0 and
j and not containing k, or there exists a path connecting i0 and k and not containing
j. In the �rst case k can delete the link with i and initiate a link with i0, and in the
second j can delete the link with i and initiate a link with i0. In both cases this is
without loss for the player who changes strategy, therefore proving that g is not a strict
Nash K-network.
The examples in Figure 2 illustrate the characterization and its corollaries and

convey the logic of strict Nash K-networks. Of course, the characterizing condition of
respecting hierarchical priority holds in all cases, as the reader may check. Examples
(a) and (b) represent societal covers with a nonempty core where a center-sponsored
star is one of the possible architectures of strict Nash K-networks: (d) and (c) represent
other strict Nash K-networks for the same covers. In examples (a), (b) and (d) a single
center-sponsored star covers (partially) each society, while two center-sponsored stars
cover society A3 in (c) and society A5 in (e), and in both cases no other link exists
between pairs of individuals. In all cases a maximal node exists (represented by a
white circle ���), but there may exist more than one, as in examples (e), (f) and (g),
which illustrate Proposition 6: stars connecting �hand in hand�by means of a �free
rider� node are possible when a single player belongs to both societies. We have in
fact the following conclusion: when no pair of societies in the societal cover K share a
single player a strict Nash K-network is an oriented diverging tree, as is proved by the
following

Theorem 2 Let K be a connected societal cover of N such that for all A;B 2 K, A\B
is empty or contains at least two nodes, then a strict Nash K-network necessarily forms
an oriented diverging tree.

Proof. There is a unique path connecting any maximal node with each node. Assume
that there are two maximal nodes i0 and i1. Then there is a path connecting i0 and i1,
but then there must exist three nodes on that path i, j and k such that gij = gkj = 1.
Now if the intersection of any two societies in K is either empty or contains more than
a single player, by Proposition 6, this is impossible. Therefore there can be only one
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Figure 2: Strict Nash K-networks.
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maximal node connected with any other node by a unique path and consequently g is
an oriented diverging tree.
But note that, as examples (e), (f) and (g) in Figure 2 show, when there are two

or more societies to which a single player belongs several maximal nodes may exist.
In such cases an oriented diverging tree does not result. In this case two or more
�grafted�oriented diverging trees may emerge, so that any node is connected by an
oriented diverging tree with at least one but possibly more maximal nodes. In this case
several hierarchies overlap consistently.
Finally, in the spirit of the �community detection� problem (see, e.g., Jackson,

2009), we address an issue reciprocal to that considered so far. Given a network g,
can it be interpreted as a strict Nash K-network for any particular societal cover K?
Given the multiplicity of strict Nash K-networks for a societal cover K, it is easy to
see that this question admits many answers: in general, an oriented diverging tree
(or several grafted ones) can be seen as a strict Nash K-network for di¤erent societal
covers. Restricting attention to oriented diverging trees, the following associated covers
are worth noting. Let g be an oriented diverging tree rooted at i0. The generational
cover, consisting of a minimal number of societies, each consisting of all nodes at the
same distance from the root that are not terminal along with their �o¤spring�; the
family cover where each node forms a society with its o¤spring; and the trivial binary
cover where any two directly linked nodes form a society. For all the three societal
covers the oriented diverging tree g is a strict Nash K-network, and for the latter two
it is the only one with maximal node i0.

4 Dynamics

We now apply Bala and Goyal�s (2000a) dynamic model to this setting. Namely, start-
ing from any initial K-network g each player i with some positive probability responds
with a K-admissible best response14 to g�i or randomizes across them when there are
more than one, otherwise player i exhibits inertia, i.e., keeps her links unchanged. In
this way a Markov chain on the state space of all K-networks is de�ned. Bala and
Goyal�s prove that in their setting, i.e., for K = fNg, starting from any network the
dynamic process converges to a strict Nash network (i.e., the empty network or a
center-sponsored star) with probability 1. In other words, the only absorbing sets are
singletons consisting of strict Nash networks. The following example shows that this
is not the case for the same dynamic model in the context of K-networks.
Example 2 In Figure 3 (a) players inA1 have no best response but keep their strategies,
while player 1 is indi¤erent between initiating a link with 2 or 3 or 4, and consequently
the best response dynamic process would oscillate forever within this three-element
absorbing set. Similarly, in Figure 3 (b) all players in A1 and players in A3 keep

14Note that if g is a Nash K-network any K-admissible strategy g0i of player i such that �i(g) =
�i(g�i; g

0
i), is a best response to g�i.
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Figure 3: Dynamic deadlock towards a strict Nash K-network.

their strategies, while player 1 is indi¤erent between initiating a link with 2 or 3, and
consequently best response dynamics would oscillate forever among these two networks
forming a two-element absorbing set. Note that in both examples the set of K-networks
among which the best response dynamics oscillates are minimally connected and yield
the same payo¤s to all players.
The example shows an interesting di¤erence with respect to Bala and Goyal�s set-

ting. The same logic that in their setting leads to the absorbing strict Nash networks,
in ours may also lead to the formation of interconnected center-sponsored stars, whose
centers are �xed (i.e., immune to miscoordination), which are incompatible in any strict
Nash K-network. In this case the converging process is blocked. Thus in general the
dynamic process leads to an absorbing set, that is, a minimal set of K-networks closed
under best response dynamics. This raises the question about what these absorbing
sets consist of. We call quasi-strict Nash K-networks to those that belong to any of
these absorbing sets and explore their structure. For this purpose a clear understanding
of the possibility of miscoordination in a minimally connected K-network is needed.

De�nition 9 A minimally connected K-network is �miscoordination-proof� if it can-
not be disconnected by best response dynamics.

Observe that in Figure 3 both examples consist of miscoordination-proofK-networks.
In a minimally connected K-network miscoordination between two nodes can only oc-
cur if their reaches intersect and both support a link with the same node k. This occurs
when both have best responses that consist of breaking these links with k and replac-
ing them by initiating new ones with nodes connected by some path with the other
that separately would not disconnect the network, but when they are simultaneous this
would disconnect it. Moreover, even if two nodes do not support a link with the same
node k, it may be the case that one or both have best responses consisting of linking
the same node and we are back to the situation just discussed. The following lemma
speci�es in detail the conditions under which none of these situations may occur in a
minimally connected K-network, which is therefore miscoordination-proof.

Lemma 2 A minimally connected K-network g is miscoordination-proof if and only if
for every society A 2 K, g jA consists of center-sponsored stars and/or isolated nodes
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and for any two nodes i; j either (i) N(Ki)\N(Kj) = ?, or (ii) for all k, either (ii-1)
gik = gjk = 1 and

N(Ki) \N(j; g � jk) = ? or N(Kj) \N(i; g � ik) = ?; (4)

or (ii-2) gik = 1 and gjk = 0 and for all k0 s.t. gjk0 = 1 and it is a best response for j to
delete link jk0 and initiate jk, condition (4) holds for the resulting network, or (ii-3)
gik = gjk = 0 and for all k0 s.t. gik0 = 1 and it is a best response for i to delete ik0

and initiate ik and all k00 s.t. gjk00 = 1 and it is a best response for j to delete jk00 and
initiate jk, condition (4) holds for the network that results from both best responses.

Proof. Necessity ()): Let g be a minimally connected K-network. First note that
if for some society A 2 K, g jA does not consist of center-sponsored stars and/or
isolated nodes miscoordination between nodes of that society can surely disconnect the
network. Assume then that this condition holds. If for some pair of nodes i; j whose
reaches intersect any of the other three conditions fails to hold it is easy to check that
it is possible to disconnect the network by miscoordination in one best response step
in case (ii-1) and in two steps in cases (ii-2) or (ii-3).
Su¢ ciency ((): Let g be a minimally connected K-network for which all conditions

in the lemma hold. Then it is easy to check that no sequence of best response steps
can disconnect the network.
We have then the following result that proves that quasi-strict Nash K-networks

are just miscoordination-proof minimally connected K-networks.

Proposition 7 Under a societal cover K the absorbing sets under best response dy-
namics consist of miscoordination-proof minimally connected K-networks, and any
miscoordination-proof minimally connected K-network belongs to an absorbing set.

Proof. First note that starting from any miscoordination-proof minimally connected
K-network best response dynamics cannot disconnect the network and can only yield
another network satisfying the same conditions, i.e. another miscoordination-proof
minimally connected K-network. Therefore, any miscoordination-proof minimally con-
nected K-network along with all other that can be reached from it by best response
dynamics form an absorbing set. Remains to be shown that there are no other absorb-
ing sets. Starting from any K-network, best response dynamics lead with probability
1 to a minimally connected K-network g that for every society A 2 K, g jA consists of
center-sponsored stars and/or isolated nodes15. If some of the conditions of Lemma 2
does not hold, miscoordination is possible (in one or two steps) in a way that the net-
work is disconnected (i and j delete their links with k) and a cycle appears. In a new
best response step, one of the involved nodes, say i, links k again and the other breaks
the cycle. In this way a new minimally connected network results where the i-centered
star has a new spoke and one of the possibilities of miscoordination has disappeared.

15The proof is similar to that of Theorem 4.1 in Bala and Goyal (2000a), just respecting K-feasibilty.
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In this way a sequence of best response steps that leads to a miscoordination-proof
minimally connected K-network is proved to exist.
As a corollary, we have the following result that shows that when an absorbing set

is reached, in spite of the possibly perpetual oscillation, stability in terms of payo¤s is
reached given that all networks in the same absorbing set yield the same payo¤s to all
players.

Corollary 3 For any two quasi-strict Nash K-networks g; g0 that belong to the same
absorbing set and all i 2 N , �i(g) = �i(g0).

Proof. Let Q be a absorbing set and g 2 Q. As g is a miscoordination-proof minimally
connected K-network, the number of links supported by each node is invariant under
best response dynamics. Therefore the payo¤s must remain unchanged for all players
within Q.
In summary, quasi-strict Nash K-networks, i.e. the constituent of the absorbing sets

of best response dynamics, are not very di¤erent from strict Nash K-networks. They
are minimally connected K-networks consisting of interconnected stars, one or several
disjoint ones in each society, where nodes support links with all nodes within their
hierarchical reach with the only possible exception of some nodes that support links
with only one hinge-node among several between which best response dynamics can
oscillate. Thus the architecture of quasi-strict Nash K-networks is that of grafted trees,
something that was only possible for strict Nash networks when a unique individual
belonged to two di¤erent societies.

5 Decay

We consider now the case where the value that a player i receives from another player j
is sensitive to the geodesic distance between them, i.e., the length of the path with the
minimum number of links that connects them. Namely, if d(i; j; g) denotes this distance
in a network g, we assume, as in Bala and Goyal (2000a), that this value is discounted
by �d(i;j;g), where 0 < � � 1. Therefore, assuming homogeneity and, without loss of
generality, that v = 1, the payo¤ of player i in network g is

�i(g) = 1 +
X

j2N(i;g)ni

�d(i;j;g) � c�di (g): (5)

If � = 1 we have the linear case we have dealt with so far. In the sequel we assume
there is actual decay, that is, � < 1. Now we have to deal with two parameters: c and
�.

5.1 Stability and decay

When a societal cover K constrains link formation, a natural extension of Bala and
Goyal�s notion of �tw-complete�network is the following: a tw-complete K-network is
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a network g where �gij = 1 for all i; j s.t. Ki\Kj 6= ? (every node is at distance 1 from
every other K-reachable node) and gij = 1 ) gji = 0 (no link is twice paid). In Bala
and Goyal�s setting, in the presence of decay a variety of all-encompassing (�mixed�)
stars become stable. That is to say, stars that (i) connect all other nodes to a center,
and (ii) each link is either paid by the center or by the spoke agent, but never by both.
An all-encompassing star is periphery-sponsored if all the links are paid by the spoke
agents. In our setting such all-encompassing stars are feasible only when the societal
core is not empty. Then, given that under a societal cover the feasible responses of
any agent form a subset of her feasible responses without constraints, the following
extension of Bala and Goyal�s (2000a) Proposition 5.3 is straightforward:

Proposition 8 Let the payo¤s be given by (5) and K the societal cover that constrains
link formation, then:
(i) If 0 < c < ���2, then tw-complete K-networks are the only strict Nash K-networks.
(ii) If � � �2 < c < � and the societal cover K has a nonempty core, then all all-
encompassing stars centered at any point in the core are strict Nash K-networks.
(iii) If � < c < � + (n� 2)�2 and the societal cover K has a nonempty core, then any
periphery-sponsored star centered at any point in the core, but none of the other stars,
is a strict Nash K-network.
(iv) If � < c, then the empty network is strict Nash.

When a societal cover constrains link formation, the societal core may be empty
and (ii)-(iii) parts of Proposition 8 do not apply in that case, but, as we have seen,
even when it is not empty, non-star architectures may be strict Nash when there is no
decay. Bala and Goyal (2000a) focus on the stability of di¤erent types of �mixed�stars
under di¤erent ranges of cost and decay. Here the situation is more complicated, given
the variety of strict Nash architectures even for relatively simple societal covers. In our
setting a rather general analogous of the �mixed�stars whose stability Bala and Goyal
deal with are K-compatible �mixed�(i.e. not necessarily oriented) trees or grafted trees
that result from a strict Nash K-network without decay (i.e., an oriented diverging tree
or several grafted diverging trees satisfying the hierarchical characterizing condition of
Theorem 1) by just allowing each link to be paid by any one of the two agents it
connects (but never by both). We call such K-networks mixed hierarchical. We say
that a mixed hierarchical K-network is periphery-sponsored if every node that has only
one node at distance 1 supports the link that connects it. Thus the question arises
about the stability and e¢ ciency of such architectures in the presence of decay and the
comparison with all-encompassing stars when these are feasible. Some simple examples
allow us to illustrate what seem to be the basic patterns. We �rst consider the case
when the societal core is not empty. In order to make it easier the comparison with
Bala and Goyal (2000a) we discuss the e¤ect of decay for the same di¤erent intervals
of values relating c and �. In view of Proposition 8-(i), we can start with c and � in the
interval of case (ii). The following notation will de useful, for each A 2 K we denote _A
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the set of nodes in A that do not belong to any other society, i.e., _A := An[A02KnfAgA0,
we also denote nA = #A and n _A = #

_A.
1. Interval: �� �2 < c < �. In this case it is worth initiating a link whose marginal

contribution is that of connecting an isolated node (c < �) and it is not worth initiating
a link whose marginal contribution is that of shortening form 2 to 1 the distance to
just one node (� � �2 < c), but this may be worth if that node is su¢ ciently well
connected. As a simple term of reference let us consider a societal cover consisting of
two intersecting societies K = fA;Bg. In this case an oriented diverging tree rooted
at, say, i0 2 _A, similar to the one represented in Fig. 2(d), where i1 2 A \B supports
links with all nodes in _B; is strict Nash if there is no decay, but may fail to be stable if
� < 1. In fact, if c � �+(n _B� 1)�2�n _B�

3 this network is not strict Nash because any
individual in _A di¤erent from i0 would be better o¤ (or at least as well) by initiating
a link with i1. Note that this number is surely greater than �� �2, but it is within the
interval considered (i.e., �+ (n _B � 1)�2�n _B�

3 < �) only if � > (n _B � 1) =n _B. That is,
for n _B su¢ ciently large, unless there is almost no decay, this network is not strict Nash
for any value of c in the whole interval. If � > (n _B � 1) =n _B, this number divides the
interval considered into two subintervals: only for high costs (i.e., above this number)
this network is strict Nash. Now consider the mixed hierarchical variations of this
K-network. If n _B � nA� 3 and at least one node j in _A supports her link with i0, this
K-network is not strict Nash since j has a best response consisting of deleting the link
with i0 and replacing it by a link with i1, and this does not depend on the value of c.
If n _B < nA � 3 or there is no node in _A that supports her link with i0, the discussion
and conclusions are entirely similar as those for the diverging tree rooted at i0.
Similar conclusions are obtained for the oriented diverging tree (and all its mixed

hierarchical variations) where two or more nodes in the intersection A \ B instead of
only one support links with the reminder nodes in _B.
Now consider the case where A\B contains a unique node i0. As we have seen, in

this case two center-sponsored stars �hand-in-hand�, one centered at _A, the other at
_B, connecting all nodes in A and B respectively and i0 in particular, is a strict Nash
K-network. Assume nB � nA. The situation is again similar: this network is stable
only if c > � + (n _B � 2)�3 + (n _B � 1)�4. Note that this number is greater than � � �2,
but it is within the interval considered (i.e., � + (n _B � 2)�3 + (n _B � 1)�4 < �) only if
� > (n _B � 2)=(n _B � 1). Therefore again as n _B grows, unless there is almost no decay
this network is not strict Nash in the whole interval. If � > (n _B � 2)=(n _B � 1), this
number divides the interval considered into two subintervals: only for costs above this
number this network is strict Nash. Now consider the mixed hierarchical variations of
this K-network. If at least one node j in _A ( _B) supports her link with the center of the
star in A (B) and (n _A � 3)� (n _A+ n _B � 4)�+ (n _B � 1)�2 � 0 ((n _B � 3)� (n _A+ n _B �
4)� + (n _A � 1)�2 � 0), this K-network is not strict Nash since j has a best response
consisting of deleting her link with the center of the star in A (B) and replacing it by
a link with i0, and this does not depend on the value of c. Otherwise, the discussion
and conclusions are entirely similar as those for the case of two center-sponsored stars
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�hand-in-hand�.
Thus, roughly speaking, for a social con�guration like the one described, and c and �

within the interval considered, all-encompassing stars centered in the societal core are
e¢ cient and stable, while non e¢ cient architectures as mixed hierarchical variations
of strict Nash (without decay) K-networks can be stable only for certain combinations
involving a relatively small number of agents in either society outside the societal core,
a relatively low decay and a relatively high cost.
Let us consider now the case where c and � are in the interval of case (iii).
2. Interval: � < c < �+(n�2)�2. In this case it is not worth connecting an isolated

node (� < c), but it would surely be worth for an isolated agent to initiate a link with
the center of a star that connects all other nodes

�
c < � + (n� 2)�2

�
. In this case, given

that � < c, only periphery-sponsored mixed hierarchical K-networks can be stable. Let
us consider then a tree as the �rst one we have considered in the �rst interval, but
where the terminal agents support the links connecting them, while the link between
nodes i0 and i1 could be supported by either of them. Given that � < c, restrictions
on c are needed in order to ensure that no node �nds pro�table to delete the link she
is supporting in the tree. If the link between nodes i0 and i1 is supported by i1, it is
necessary c < minf�+(nA � 2) �2; �+n _B�

2+(nA � 2) �3g; and if the link between nodes
i0 and i1 is supported by i0, it is necessary c < minf� + n _B�

2; � + (nA � 2) �2 + n _B�
3g.

Furthermore in both cases, the same reason as for the interval � � �2 < c < � require
n _B < nA� 3 and c > �+(n _B � 1)�2�n _B�

3 for these networks to be stable, which may
still be actually a constraint as �+ (n _B � 1)�2� n _B�

3 is in the interval now considered
if � < (n _B � 1)=n _B. Again we see the same pattern: only for certain combinations
involving a relatively small number of nodes in either society outside the societal core,
a relatively low decay and a relatively high cost this architecture (as its periphery-
sponsored mixed hierarchical variants) remains stable, while a periphery-sponsored
star centered at any point of the societal core remains stable in this interval.
This range of cost-decay values has other implications. For instance, for the same

cover, a tree where all nodes in A, but two (or more) nodes in the intersection A \B,
support a link with i0 2 _A; while the other two (or more), also connected either way
with i0, are linked by the nodes in _B (as societies A4 and A5 in Fig. 2 (e), but with
spoke-agents in A5 paying their links) is not strict Nash whatever the cost in this
range be. A strict Nash may only result if all nodes in _B support links with only one
and same node in A \ B. Here we see another pattern: a tendency to concentrate
inter-societal connections in the presence of decay.
Now consider the case where A \ B contains a unique node i0. And consider two

mixed stars �hand-in-hand�, one centered at i1 2 _A, the other at i2 2 _B. Assume
nB � nA. Given that � < c, only periphery-sponsored mixed hierarchical K-networks
can be stable, therefore the terminal agents support the links connecting them, while
the link between nodes i1 and i0 could be supported by either of them, the same for the
link between nodes i2 and i0. Given that � < c, restrictions on c are needed in order to
ensure that no node �nds pro�table to delete the link she is supporting in the grafted
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tree. If i0 supports both links with i1 and i2, it is necessary c < � + (n _A � 1) �2; if i1
and i2 both support their links with i0, c < �+ �

2+ (n _A � 1) �3; if i0 supports the link
with i1 and i2 supports the link with i0, c < minf�+(n _A � 1) �2; �+ �2+(n _A � 1) �3g;
�nally if i0 supports the link with i2 and i1 supports the link with i0, c < minf� +
(nB � 1) �2; � + �2 + (nB � 1) �3g. Furthermore, in the four cases, the same reason as
for the interval �� �2 < c < � require (n _A � 3)� (n _A + nB � 4)�+ (nB � 1)�2 > 0 and
c > � + (nB � 2)�3 + (nB � 1)�4 for these networks to be stable.
It would be long and tedious to discuss it in detail, but the case of a connected

societal cover consisting of three societies with a nonempty societal core can be dis-
cussed case by case to obtain similar conclusions. In fact, whatever the number of
societies, when the societal core is not empty we have similar conclusions: (i) the
center-sponsored star is the most robust architecture among the strict NashK-networks
without decay as it remains stable in the �rst interval (� � �2 < c < �), while other
architectures remain stable only for a relatively low decay, a relatively high cost and a
relatively small number of agents in every society involved in the �graft�in the case of
grafted trees, or relatively small number of agents in at least one society outside the
societal core in the case of trees; (ii) in the second interval (� < c < � + (n � 2)�2),
as spoke agents must pay the links that connect them to the network, neither center-
sponsored stars nor any strict Nash network without decay is stable with decay, but
some mixed trees and grafted trees may remain stable subject to similar limitations.
In contrast, periphery-sponsored stars centered at any point of the societal core remain
stable in this interval.
In sum, it is not a heavy societal core (i.e., with many nodes) that compels the

society to organize itself as a star of one or other type when this is feasible, but a heavy
core-periphery. More precisely, we have the following conclusion from the preceding
discussion16:

Proposition 9 Let the payo¤s be given by (5) and K be a societal cover whose societal
core is not empty, then:
(i) If � � �2 < c < � and the number of nodes in _A is su¢ ciently large for all A 2 K,
then the only strict Nash K-networks without decay that remain strict Nash with decay
are the center-sponsored stars whose center is within the societal core; but every all-
encompassing star with center in the core is also a strict Nash network.
(ii) If � < c < � + (n � 2)�2 and the number of nodes in _A is su¢ ciently large for all
A 2 K, then the only mixed hierarchical K-networks that are strict Nash with decay are
the periphery-sponsored stars whose center is within the societal core.

These results and the preceding discussion may make the reader think of Feri�s
(2007) results about stochastic stable networks. In the next subsection we explicitly

16Consider the following example: let K be a two-society cover K = fA;Bg and A\B 6= ?, and let
g be the strict Nash K-network without decay where some i 2 _A supports links with all other nodes
in A, and a node in A \B supports links with all other nodes in _B. If _A is large but _B is small, say,
1, this network remains strict Nash in the whole interval � � �2 < c < �:
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deal with Feri�s dynamics and use these conclusions.
Let us consider now the case where the societal core is empty. The simplest case

of a connected cover with an empty core is a three-society cover K = fA;B;Cg with
A \ B \ C = ?. In this case, reasoning in similar terms to the case of a two-society
cover, it can be concluded that none of those K-networks which are strict Nash without
decay (nor any mixed hierarchical variant of them) remains stable in the presence of
decay if the number of agents that belong to each one, but only one, of the three
societies is big enough17. Nevertheless, mixed stars, interlinked in a variety of ways,
maybe redundant, sharing a number of spoke agents, appear as strict Nash for the
di¤erent ranges of the parameters. Consider the case where A \ B 6= ?, B \ C 6= ?
and A \ C = ?. Let m be the cardinality of the smallest set of _A and _C. Then if
�� �2 < c < �+ (m� 1)�2�m�3, the network where a agent i1 2 A\B is linked with
all agents in _A, a agent i2 2 B\C is linked with all agents in _C, all agents in Bnfi1; i2g
support links with both i1 and i2, and one of these two links the other18, is a strict Nash
network (note that as the upper bound of this interval can be in the second interval,
i.e. if � < � + (m� 1)�2 �m�3, in this case if c is in this second interval spoke agents
should pay their links). Now if �+(m�1)�2�m�3 < c < �+m�2� �3�m�4, then the
link between i1 and i2 should be eliminated, and doing so the remaining K-network is
a strict Nash where two stars share their spoke agents in B19..
In summary, in the presence of decay, when the core is not empty we have: (i)

in the �rst interval center-sponsored stars are the most robust strict Nash among the
those without decay, but also all mixed stars centered in the core become strict Nash;
(ii) in the second interval periphery-sponsored stars centered in the core are the only
stars which are strict Nash. These patterns corroborate, in a more complex context,
Goyal diagnosis: �Decay introduces incentives for players to reduce the lengths of paths
between themselves. This means that the star network is even more attractive than
before. However, the introduction of decay also means that cycles can be sustained in
equilibrium.� (Goyal, 2007, p. 172). Moreover, even when the core is empty, stars,
not any longer all-encompassing under institutional constraints, interlinked in possibly
redundant ways seem a persisting feature in strict Nash networks under decay, while
none of the strict Nash K-networks without decay is robust in the presence of it if for
all the societies the number of agents that belong to that society and only that one is
big enough.

17Otherwise, in some particular cases a non decay strict Nash K-network or a mixed tree variant
remains stable with decay. For instance, if #(A \B) = #(B \ C) = 1, and _B = ? then the oriented
K-tree rooted at the unique point in one intersection form a strict Nash K-network in the �rst interval
(in the second interval spoke nodes in _A [ _C should pay their links).
18Note this is a quasi linked star (qls) in Feri�s (2007) terms.
19This is a quasi linked star 2 (qls2) in Feri�s (2007) terms.
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5.2 Stochastic stability and decay

In Feri (2007) a di¤erent dynamic model consisting of unperturbed dynamic plus errors
or mutations is considered20. Namely, at every period one agent is randomly chosen to
revise her strategy by choosing a best response (or one of them at random when there
are more than one). This is the unperturbed dynamic, but at every period the chosen
agent with a probability " > 0 makes a mistake consisting of choosing her strategy
randomly. Thus an evolutionary process results which is an aperiodic and irreducible
Markov chain, which consequently has a unique invariant probability distribution �".
Then Feri studies the stochastically stable networks, i.e., those g for which �̂(g) >
0, where �̂ = lim"!0 �". This can be done applying the result according to which
the stochastically stable states of such an evolutionary process are characterized as
those that belong to an absorbing set of a recurrent set of the evolutionary process
(Proposition 7.7 in Samuelson (1997)). A recurrent set is a set R of absorbing sets
of the unperturbed dynamic s.t. (i) for any state within the recurrent set a mutation
followed by unperturbed dynamics cannot end up in an absorbing set not belonging
to R, and (ii) it is possible to reach any absorbing set in R from any other also in R
by means of a sequence of one-step mutations, i.e., steps consisting of one mutation
followed by unperturbed dynamics.
As is by now clear, when a societal cover K constrains link-formation things become

rather complicated. Nevertheless, part of Theorem 1 in Feri (2007) can be easily
extended. Denote by Ĝ(K) the set of stochastically stable K-networks under Feri�s
dynamic, by Gc(K) the set of all tw-complete K-networks, by Gs(K) (Gps(K)) the
set of all encompassing (periphery-sponsored) stars whose center belongs to core(K)
whenever it is not empty, and by Gh(K) the set of all hierarchical minimally connected
(i.e., in view of Theorem 1, all strict Nash K-networks without decay). Then we have

Theorem 3 Let the payo¤s be given by (5) and K a societal cover, and let 0 < � < 1:
(i) If c < � � �2, then Ĝ(K) = Gc(K).
(ii) If � � �2 < c < � and core(K) 6= ?, then Ĝ(K) � Gs(K); moreover, if

� � �3 < c < �; there exists n(c; �) such that if n _A > n(c; �) for all A 2 K, then
Ĝ(K) = Gs(K):
(iii) If � < c and core(K) 6= ?, there exists n0(c; �) such that if n _A > n

0(c; �) for all
A 2 K, then Ĝ(K) = Gps(K) [ fgeg:

Proof. (i) The proof is an easy adaptation of Feri�s proof of part (i) of his Theorem
1 that we omit.
(ii) The proof of the �rst part results from an easy adaptation of Feri�s Lemmas

1 and 2. That is to say, within this interval of cost, from any K-network an error
followed by unperturbed dynamic is enough to reach a center-sponsored star whose

20Other papers dealing with dynamic models in the presence of decay are Watts (2001), Jackson
and Watts (2002), Goyal and Vega-Redondo (2005), Hojman and Szeidl (2008) and Feri and Meléndez
(2009).
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center belongs to the core (Lemma 1 in Feri (2007)); and for any two all-encompassing
stars whose centers are in the core a sequence of one-step mutations leads from one to
the other (Lemma 2 in Feri (2007)). Then, using Proposition 7.7 in Samuelson (1997),
one concludes that there is only one recurrent set, which contains Gs(K). As to the
second part, an overwhelmingly cumbersome detailed discussion of which the extension
of Feri�s Lemma 3 consists that we omit here, yields the conclusion.
(iii) We omit the details that again consist of an adaptation of Lemmas 4,5 and 6

in Feri (2007), from which the result follows.
A more detailed extension of Feri�s Theorem 1 should be possible, but it does not

seem feasible a general extension, given the variety of societal covers. In fact, there
should be a precise extension for each particular cover. A di¢ culty now is that, even
for very simple societal covers, there are several possible architectures for a strict Nash
K-network (with and without decay), in contrast with the only possible one in Bala
and Goyal�s setting, moreover, also quasi strict Nash K-networks should be taken into
account when dealing with recurrent sets. Thus, the complexity of extending Feri�s
Lemma 3 becomes explosive. To make things a bit more complicated, as we have
seen in the preceding subsection, di¤erent architectures of strict or quasi strict Nash
K-networks are stable within di¤erent ranges of the parameters c and �, which makes
cumbersome a detailed formulation about which ones are stochastically stable within
each subinterval.
Nevertheless, in order to gain some insight on how things go in this complex setting,

we constrain our attention to a very simple example of a two-society connected cover
and show how this extension can be done and study the impact of the cover in stochastic
stability.

Example 3 Let N = f1; 2; 3; 4; 5; 6; 7g and K = fA;Bg, where A = f1; 2; 3; 4; 5; 6g
and B = f3; 4; 5; 6; 7g, so that core(K) = A \ B = f3; 4; 5; 6g. Up to isomorphism,
there are four architectures for a strict Nash (without decay):
(SN1) A center-sponsored star whose center is within core(K);
(SN2) An oriented tree rooted at AnB where a node in A\B supports a link with

node 7;
(SN3) An oriented tree rooted at 7 where a node in A \ B supports a link with

nodes 1 and 2;
(SN4) An oriented tree rooted at 7 where one node in A \B supports a link with

node 1 and another node in A \B supports a link with node 1 and 2.
There are also two quasi strict Nash architectures:
(QSN5) Node 7 supports links with all other nodes in B and a node in A support

links with the other in AnB and with one in A \ B (in best response dynamics the
latter would oscillate between the four nodes in A \B).
(QSN6) A node in AnB supports links with all other nodes in A and node 7

supports a link with a node in A \ B (in best response dynamics the latter would
oscillate between the four nodes in A \B).
Now let us consider the interval � � �2 < c < �. In view of the discussion in the
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preceding subsection, we can expect di¤erent subintervals within where these architec-
tures and/or their mixed variants keep strictly stable (i.e., strict or quasi strict Nash).
Let us denote by M1, M2 and M3 the architectures consisting of all mixed variants
of SN1, SN2 and SN3; and by M4 and M5 the variants of SN4 and QSN5 where
the links connecting 7 are supported by any one of the adjacent nodes, while the other
links are initiated as in SN4 and QSN5. Note that the mixed variants of QSN6 are
included in M2.
A similar discussion to that made in the preceding subsection leads to the following

nested intervals where each of these architectures remain stable:
M1 remains strict Nash in the whole interval � � �2 < c < �:
M2 remains strict Nash in the interval m2 := � � �3 < c < �:
M3 remains strict Nash in the interval m3 := � + �

2 � 2�3 < c < � (note that this
interval is not empty only for � > 1=2).
M4 remains strict Nash in the interval m4 := � + �

2 � �3 � �4 < c < � (not empty
only for � > 0:618 ).
M5 remains quasi strict Nash in the interval m5 := � + �

2 � �3 � 3�4 < c < � (not
empty only for � > 0:7676).
Thus we have that: (i) only for � su¢ ciently high (always greater than 1=2) the

architectures M3, M4, and M5, remain stable or quasi stable in a non empty subin-
terval; (ii) as � � �2 < m2 < m3 < m4 < m5, the pattern is clear: as the cost goes
down the set of stable architectures shrinks and below m2 = � � �3 only the stars in
M1 remain.
As to stochastic stability things become much more complicated. It can be seen21

that the following extensions of Feri�s lemmas 1 and 2 hold: (i) a transition from any K-
network to star inM1 can be induced by a mutation followed by unperturbed dynamic;
(ii) from any network in any of these �ve sets it is possible to reach any other in any
other of these sets by a sequence of one-step mutations. Much more cumbersome as
the reader may guess is the extension of Lemma 3 of Feri (2007). This needs to study
all possible mutations in all of these architectures followed by unperturbed dynamic.
A detailed discussion of cases leads to an upper bound for the cost in this interval in
order to ensure that in the worst case unperturbed dynamic does not get stuck on its
way towards some of these architectures. This upper bound is

c < b := � + 2�2 � 3�3:

Note that this number is betweenm4 andm5. In sum we have the following conclusions.
If Ĝ(K) denotes the set of networks within the recurrent set then
-in the interval � � �2 < c < � � �3: M1 � Ĝ(K):
-in the interval m2 < c < m3: Ĝ(K) =M1 [M2:
-if � > 1=2, in the interval m3 < c < m4: Ĝ(K) =M1 [M2 [M3:

21We omit the details of the proofs of these extensions, easy for Lemma 1 and more tedious for
Lemma 2.
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-if � > 0:618, in the interval m4 < c < b: Ĝ(K) =M1 [M2 [M3 [M4.
Note the shrinking set of stochastically stable architectures as the cost diminishes,

and the wider interval for the mixed hierarchical architecture rooted in the set A of
greater cardinality (i.e., M2) with respect to that rooted at the smaller set B (i.e.,
M3).

5.3 E¢ ciency and decay

As we have seen in section 3, e¢ ciency and stability in the sense of Nash equlibrium
are equivalent conditions: they are satis�ed by all K-networks minimally connected
and only by them. Nevertheless, in the presence of decay this is not any longer the
case. We have postponed any comment about e¢ ciency so far to avoid a certain
redundancy, given the parallel conclusions that we have about e¢ ciency and stability,
and about e¢ ciency and stochastic stability. A general conclusion arises from the
preceding discussion: in the presence of decay e¢ ciency and stability go hand in hand.
That is to say, the greater the stability the greater the e¢ ciency, i.e. the greater the
aggregated utility.

6 Concluding remarks

We have studied the impact of institutional constraints as modeled by a societal cover
on Bala and Goyal�s (2000a) benchmark two-way �ow model. The notion of societal
cover seems suitable for capturing in a formal and tractable way many factual con-
straints to which we refer generically as �institutional�that are to be observed in real
world situations. Such constraints emerge due to social (cultural, economic, sociolog-
ical, geographic, etc.) reasons and cannot be ignored in many contexts. Moreover,
any symmetric link-constraining system is proved to be interpretable as the result of a
societal cover.
In this paper we characterize and study in some detail the structure of stable and

e¢ cient networks under these constraints by extending Bala and Goyal�s approach and
results. In a nutshell, the conclusions when there is no decay can be synthesized by
the equation:

Institutional constraints + Strict stability = Hierarchical organization.

Namely, if there is no decay, center-sponsored star (when feasible) is no longer the only
stable (in the strict Nash sense) architecture, but center-sponsored stars continue to be
the basic building blocks of stable networks. Moreover, the architecture of such stable
networks embodies a formal hierarchical principle that yields oriented diverging trees,
the paradigm of hierarchical organization22 or �grafted�trees adapted to the constraints
imposed by the cover. It is also proved that simple best response dynamics �work�

22See, for instance, López et al. (2002).
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basically well in this more complicated setting. They may fail to reach a strict Nash
network if incompatible �incomplete�and almost stable hierarchical networks form, but
a stable con�guration of payo¤s associated with an absorbing set of miscoordination
proof networks is sure to be reached. Finally, it is studied the impact of decay on
the stable architectures and stochastic stability. Although friction blurs the equation
above, it is shown that when the societal core is not empty the star is the most robust
architecture, although other stable and stochastically stable architectures emerge.
The results obtained with this approach suggest several lines of further research. In

fact, this paper is a �rst step of a research project to explore the e¤ects of institutional
constraints. It may be interesting to further study: (i) an extension of the one-way
�ow model of Bala and Goyal (2000a) similar to the one achieved here for the two-way
�ow model; (ii) the impact of asymmetric link-constraining systems, which make sense
for the one-way and two-way models; (iii) alternative assumptions about knowledge:
here we have assumed that players within each component of the societal cover have
common knowledge of the part of the network within that component, but it may be
interesting to study the e¤ects of further restricting information, which suggests an
interesting scenario for interaction between network and knowledge; (iv) the e¤ects of
heterogeneity combined with institutional constraints. Finally, it could be interesting
to see the impact of institutional constraints as modeled here on Jackson andWolinsky�s
(1996) model and variants of it based on pairwise stability, given that in the context
of bilateral link formation the societal cover notion provides the most general link-
constraining system.
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