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Abstract

In this paper we present a simple evolutionary model of mobile
agents where different 2x2 games exist at different locations. The
role of information, mobility, and the payoff structure is examined for
achieving global efficiency. We examine a setting where individuals
are mobile and may relocate, but information about the existence and
prospects of moving arrive stochastically.

1 The Model

For t ∈ T (T countable), let Ψt = ({1, ...,M} ;Et) be a finite directed net-
work with vertex set {1, ...,M}, (M < ∞) and (directed) edge set Et =
{i→ j | i, j ∈ {1, ...,M}}. Suppose that at each vertex l ∈ {1, ...,M} there
is a 2× 2 coordination game Gl with the following payoff structure

Gl =
A B

A al, al 0, bl
B bl, 0 bl, bl

Figure 1: A Game at Location l
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where al > bl > 0, for any l ∈ {1, ...,M}. The set G = {G1, ..., GM}
is hence a collection of M symmetric coordination games with 2 pure

strategy equilibria each, a Pareto efficient equilibrium (A,A) and a risk-
dominant equilibrium (B,B). This collection of games in general enough
to capture various tradeoffs between efficiency and risk.1 We call G the
institutional landscape – it is the set of games possible for play by agents.

To simply the analysis, assume there are no payoff ties: al 6= aj; bi 6= bm
and; al 6= bi for all l, j, i,m ∈ {1, ...,M}, l 6= j, i 6= m.

Any directed network whose vertex set is an institutional landscape, can
be described as a location structure .

Definition 1 A location structure Ψ = (V,E)is a directed graph with
vertex set V = G and edge set E ⊆ G × G, for an institutional landscape G

Since the vertex set of Ψ is a set of coordination games, we refer to
vertices and games interchangeably. A location structure “connects” coordi-
nation games at different locations together : edges of Ψ may be thought of
informational flows (so that agents at adjacent vertices may be knowledge-
able of the existence, payoffs, and past behavior of agents at that vertex); or
in geographic terms, so that agents at one vertex (game) are able to move to
adjacent vertices (games).

We assume that in each period t, a new directed graph Ψt is realized.
Specifically, letting P(G) be the set of all directed graphs on G we assume
that Ψt is drawn according to some distribution F with full support so that
F (Ψ) > 0 for all Ψ ∈ P .2 The stochastic generation of directed graphs in this
setting may be interpreted as either (i) in each period, a graph is drawn from
some probability distribution F , or (ii), in each period t, there is positive
probability of an edge connecting location l and j, for any l 6= j.

Putting the above together, we have the following definition.

Definition 2 A stochastic institutional process is a pair (F,G), where
G is a set of M symmetric 2x2 games and F is a distribution over P(G).

In words, a stochastic institutional process is a way of realizing a location
structure at any point in time. Call a generic network Ψ ∈ P(G).

1In section XX we show that our main results hold for a more general class of games,
namely 2x2 symmetric games with two pure-strategy equilibria.

2In Section XX we relax this assumption.
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We assume that there are N ≥ 2 agents located at vertices l ∈ {1, . . . ,M}
and playing respective games. In period t, all agents at vertex l play the
coordination game Gl. Furthermore, agents are mobile and can move from
one game to another according to the directed network, Ψt = (Vt, Et). If at
period t an agent is at vertex l she can move to the neighborhood of vertex l
in the next period. The neighborhood of vertex l, given graph Ψt, is vertex
l and all “nearby” vertices. A vertex j is “nearby” if there exits a directed
edge {l→ j} ∈ Et from vertex l to vertex j,

CΨt
l = {l} ∪ {j | {l→ j} ∈ Et} .

Denote the neighborhood of location l in graph Ψ by CΨ
l .

In period t agents located at vertex l are randomly matched with other
agents at vertex l to play coordination game Gl. If only one agent is located
at some vertex, she receives a reservation utility ur, which is less than the
payoff in any pure strategy Nash equilibrium, 0 ≤ ur < min {b1, ..., bM}.
This is a standard assumption, see for example Ely (2002), which ensures
that agents strictly prefer to ‘play with others’ than ‘leave the society’.

We assume agents are locally informed in the aggregate. Agents at vertex
l at time t observes the distribution of actions taken at all games in her
neighborhood: that she observes the distribution of actions of eachGj, ∈ CΨt

l .
Based on this information she revises her current location and/or action by
myopically best replying: first choosing a game in her neighborhood to play,
j ∈ CΨt

l , and an action to play in that game. If an agent is indifferent, we
assume she is equally likely to to take any action that maximizes expected
payoff. This defines an agent’s revision response.

This process results in a state space describing the number of agents
locating at each vertex, and the distribution of action choices at each vertex.
Since for a given institutional landscape, Ψ, there are M distinct 2x2 games,
the state space may be written as

H =

(
n1, n2, . . . , nM
nA1 , n

A
2 , . . . , n

A
M

)
,

where ni ≥ 0 is the total number of agents locating at vertex i and ni ≥
nAi ≥ 0 is the number of agents locating at vertex i, playing the efficient
action A (the number of agents playing action B is nBi = ni − nAi ), and
n1 + n2 + . . .+ nM = N . Call a generic state h.

3



The process transitions from one state to another according to agent’s
best-reply. Given a state s and a realized location structure, Ψ, agents located
at location l best respond by

1. Calculating the optimal action given the current distribution of actions
for each game Gm in one’s neighborhood m ∈ CΨ

l .

2. For each game in an agent’s neighborhood, the corresponding expected
payoff is calculated. This yields a set of expected payoffs, one for each
game in one’s neighborhood.

3. If this set has a unique maximum, an agent’s best-reply is determined.
If there are payoff ties, an agent randomly selects one location yielding
maximal expected payoff, re-locates there and best-responds in that
game.

Formally, a best reply is a location, l, and an action, k (in game Gl).
Hence, the best-reply of agents at location l0 given state s and location
structure Ψ may be written

BRl0(s; Ψ,G) = argmax
(l,k)

π(l, k) subject to l ∈ CΨ
l0

where

π(l, k) =
1

nl0

(
nAl ul(k,A) + (nl − nAl )ul(k,B)

)
is the expected payoff of playing action k ∈ {A,B} at location l.
The timing is as follows:
In period t, network structure Ψt is realized according to some distribution

F with full support.
Agents observe the state s according to Ψt. For agents at location l, they

observe sΨ
l = s|CΨ

l , where s|V is the restriction of s to only vertices in V .
Agents at location l best respond to sΨ

l . (relocate, adjust strategy, both,
neither)

A new network, Ψt+1 is realized and repeat. This describes how the
system transitions from one state to another. The state space and probability
of transitions from one state to another is hence specified by G, F,N . We
write this process as P G,F,N

We assume that the process starts at an arbitrary initial state, h0: agents
are randomly assigned to vertices and actions, and the system transitions
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according to P G,F,N . Call the state of the process at time t by ht. We are
interested in both short and long-run outcomes of this process.

An example of our model, may be seen FIgure ??.
There are two features of this modeling approach worthy of mention.

First, the network structure Ψt describes for every period t the amount of
information available to the agents: agents only have information about the
(aggregate) action of agents at their respective neighborhoods. Hence, the
network structure describes the flow of information and establishes the sym-
metry or asymmetry of agents’ information. At the same time, the net-
work structure has a geographic interpretation: it constrains agents’ mobility.
During a revision opportunity, agents can only ‘relocate’ to the neighboring
locations. Hence, the network describes and limits both the information
available to the agents as well as agents’ mobility.3

2 Short Run

In this section we analyze behavior in the short run. In the short-run, agents
myopically best-respond to the current state without error. We start by
examining the properties of the unperturbed Markov process P G,F,N . In
what follows, we will make use of the following definitions. An absorbing set
, H, is a set of states such that there is zero probability of transitioning from
any state in the set to any state outside, and there is a positive probability
of moving from any state in the set to any other state in the set. We take
absorbing sets to be minimal w.r.t set inclusion. A state h is absorbing if it
is a singleton absorbing set. Absorbing sets are short-run predictions: given
initial conditions and the myopic-best-reply dynamic, they are states that,
once arrived at, the system never leaves. A particular type of state deserves
our special attention.

Definition 3 A convention is a state such that
(1) There is some l with nl = N and ni = 0 for i 6= l and (2) nAl ∈ {0, N}

A convention is a state where all agents are at the same location, taking
the same action. This definition is the natural way to think of conventions
in our model.

3Of course, we could model the flow of information with one network structure, and
the mobility of agents with another network. Such separation of information and mobility
could be an interesting future extension.
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Our first result characterizes all short-run predictions and establishes that
conventions and only conventions are short-run outcomes.

Theorem 1 (1) All absorbing sets of P G,F,N are singleton. (2) A state is a
convention if and only if it is a absorbing state.

Proof. (1): Suppose not. There there are two states, s and s′ with positive
probability of transitioning from s to s′ and vice versa. There are two cases
to consider:

(a) All agents are located at the same vertex in states s and s′ or;
(b) there are positive number of agents at at least two separate vertices.
In case (a), if all agents are at one vertex, then for s and s′ to be distinct

states, agents must be playing different actions in the two states. However,
all agents at the same location – call it l – have the same best-reply, namely
to play A if nAl > τ l; B if nAl < τ l and; {A,B} if nAl = τ l, where τ l =
(blnl)/al. Hence, generically, if all agents are at a single location, the best-
reply dynamic leads to all agents playing the same action.

Case (b) implies that generically there are locations l, j and a time t such
that nl > 1 and nj > 1.4 Without loss of generality, let

max
k
π(l, k) < max

k
π(j, k)

so that payoff superior play is a best-response in game Gj. With positive
probability, Et+1 = l → j, so that the location structure in time t + 1 is a
single edge from l to j, in which case the best-reply dynamic implies that
nl = 0 in time t+ 1. If there are more than two states in the absorbing set,
repeat this argument until all agents are at a single location, in which the
arguments in case (a) apply ( if 0 < nAj < N in some period t′ > t, then
again the best-reply dynamic implies that nAj (N − nAj ) = 0 in period t′ + 1).

(2): (only if) Obvious, as al > bl > ur for all l by assumption.

(if) Let s be an absorbing state. By the argument in (1a), nl = N for
some location l. Again by (1a), the best-reply dynamic then implies that
nAl (nl − nAl ) = 0.

Since all conventions are absorbing states, and these are the only absorb-
ing states, we have the following corollary.

4Where we ignore ‘lone agents’ – single agents at a location.
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Corollary 1 There are 2M absorbing states.

Despite the potentially vast institutional structure, only a small number
of states are short-run predictions.

3 Long Run

perturbed process and mistakes
The process described above is deterministic in nature: given an initial

state of the world, we may know with certainty how the system will proceed.
However, we may wish to incorporate mistakes and experimentation into the
behavior of the agents, and ask what types of outcomes will stable. As such,
in this section we allow agents to make mistakes and focus on predictions
as the probabilty of mistakes goes to zero. We describe these predictions as
long-run predictions. Long run forces may act on the behavior of the agents
and “push” certain outcomes to be more likely than others, in the presence
of such evolutionary forces. Accordingly, we now turn our attention to the
perturbed version of the best-reply dynamic in which with probability (1−ε)
agents best-reply to the current state and location structure and with prob-
ability ε agents “experiement” by choosing a location in one’s neighborhood
and action in that game at random. In particular, we are interested in the
limiting distribution of this process as the experimentation probability tends
to zero. By arguments similar to those in Young (1993), the perturbed pro-
cess P G,F,N,ε is a regular perturbation of P G,F,N , and hence it has a unique
stationary distribution µε satisfying the equation µεP Γ,F,N,ε = µε. Moreover,
by Theorem 4 in Young (1993), limε→0 µ

ε = µ0 exists, and µ0 is a stationary
distribution of P Γ,F,N .

example of mistakes
The following concepts are due to Freidlin and Wentzell (1984), Foster and

Young (1990), and Young (1993). A state h is stochastically stable relative
to the process P Γ,F,N,ε if limε→0 µ

ε(h) > 0. Hence, long-run predictions
are precisely the stochastically stable states of P Γ,F,N,ε. We identify long
predictions of our model with stochastically stable states because over the
long run, agents might respond imperfectly (ie with mistakes) but, as usual
in evolutionary models, we imagine that sub-optimal behavior is selected
against, and over enough time disappears from the population.
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The following theorem describes the long-run behavior of the perturbed
process as the experimentation probability tends to zero.

Surprisingly, there is a unique stochastically stable state that is efficient,
except in a knife-edge situation. To formalize this it will be helpful to identify
the location at which the overall highest payoff is in equilibrium. To that end,
order all equilibrium payoffs in descending order, π(1), π(2), π(3), . . . , π(2M), so
that π(1) is the highest equilibrium payoff: π(1) = al1 : al1 > al for l 6= l1. Let
l1 be the location with the overall highest payoff. Likewise, let π(2) be the
second-highest equilibrium payoff in G: π(2) = c such that

c < π(1)

c ≥ max(
⋃

(al ∪ bl) \ π(1)).

And call the location at which payoff π(2) is in equilibrium, l2. Note that if
π(2) = bl1 , then l2 = l1.

Theorem 2
For sufficiently large N , 1. PΨ,F,N,ε has a unique stochastically stable state.

2a. If bl1 = π(2) and (bl1 , bl1) is the risk-dominant eq. payoff in game Gl1

then all agents locating at l1 playing B is the stochastically stable state.
2b. If either bl1 6= π(2) or (bl1 , bl1) is not the risk-dominant eq. payoff in

game Gl1 then agents locating at l1 and playing A is the stochastically stable
state.
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