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Abstract

In this paper we introduce and study the daycare assignment problem. We take the mech-

anism design approach to the problem of assigning children of di¤erent ages to daycares, moti-

vated by the mechanism currently in place in Denmark. The dynamic features of the daycare

assignment problem distinguishes it from the school choice problem. For example, the children�s

preference relations must include the possibility of waiting and also the di¤erent combinations

of daycares in di¤erent points in time. Moreover, schools�priorities are history-dependent: a

school gives priority to children currently enrolled to it, as is the case with the Danish system.

First, we study the concept of stability, and to account for the dynamic nature of the problem,

we propose a novel solution concept, which we call strong stability. With a suitable restriction

on the priority orderings of schools, we show that strong stability and the weaker concept of

static stability will coincide. We then extend the well known Gale-Shapley deferred acceptance

algorithm for dynamic problems and we prove that it yields a matching that satis�es strong

stability. We show that it is not Pareto dominated by any other matching, and that, if there

is an e¢ cient stable matching, it must be the Gale-Shapley one. However, contrary to static

problems, the Gale-Shapley algorithm does not necessarily Pareto dominate all other strongly

stable mechanisms. Most importantly, the Gale-Shapley algorithm is not strategy-proof. In

fact, one of our main results is a much stronger impossibility result: For the class of dynamic

matching problems that we study, there are no algorithms that satisfy strategy-proofness and

strong stability.

Second, we show that, due to the overlapping generations structure of the problem, the also

well known Top Trading Cycles algorithm is neither Pareto e¢ cient nor strategy-proof.

We conclude by showing that a variation of the serial dictatorship is strategy-proof and

e¢ cient.
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1 Introduction

In this paper we study the problem of assigning children to daycares using the mechanism design

approach. This problem is motivated by the current Danish system of allocating children to daycare

slots. The system currently in place in Denmark has many shortcomings, such as instability, Pareto

ine¢ ciency and lack of a clear optimal strategy for parents in how to report their preferences.

The de�ning feature of the daycare assignment problem is that it is dynamic: children of

di¤erent ages may be allocated to the same daycare, and each child may be allocated to di¤erent

daycares at di¤erent periods. Parents must balance the objectives of getting back to work while

at the same time getting their children into a quality daycare facility. Moreover, schools�priorities

may be history dependent: in Denmark, a school gives priority to children previously allocated to

that same school and to children not allocated to any school in the previous period. Thus, a parent

can in�uence the priorities of the daycares simply by waiting. This is illustrated by the following

piece of advice from the Roskilde municipality website.1

Roskilde Municipality has a child-care guarantee. It means that your child could be

looked after when it is 26 weeks, if the Roskilde Municipality has received your applica-

tion for a place within 8 weeks after the baby is born. In other situations, the application

must be sent within 3 months before the needed placement date. The guarantee is for

the care of the entire territory of the municipality, so if you want a special institution

for your child, you have to wait longer.

The mechanism design approach has been intensively studied in the context of the school choice

problem, which consists in assigning children of a speci�c age to schools.2 One of the main objectives

in this literature has been to study mechanisms that satisfy one or more well de�ned positive

properties, such as Pareto e¢ ciency, strategy-proofness, or stability (which has been referred to as

�justi�ed envy�in the context of the school choice problem).

The daycare assignment problem di¤ers signi�cantly from the school choice problem due to its

dynamic nature. Children of di¤erent ages are allocated to the same daycare, and parents may

prefer to wait rather than place their children in certain daycares. This time dimension of the

daycare assignment problem makes it computationally and conceptually more complicated than

the school choice problem. First, the concept of stability, or justi�ed envy, must be strengthened

when used in a dynamic environment to be meaningful. The main intuition here is that justi�ed
1See http://www.musicon.dk/webtop/site.aspx?p=14906.
2See [5] for an important paper in the area, and also [13] for a recent survey.
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envy is harder to de�ne: the priorities of each school in a future year will depend on the allocation

in the current year. For example, if a lower-priority child stays in a daycare in period t , then in

t + 1 she might have a higher priority in that same daycare (in particular, this is true under the

current assignment mechanism in place in Denmark). Thus, in the discussion of the concept of

justi�ed envy for period t + 1 , it is not clear whether the allocation to which it should be analyzed

is the one in t or the one in t + 1 .

Second, strategy-proofness may be more di¢ cult to achieve in a dynamic environment. There

are two reasons for why a player may misreport its own true preferences: �rst, it may be afraid of

losing a spot at a higher ranked school�this motive is also present in static problems; second, and

most importantly, each child may misreport its own preferences so as to a¤ect the priority rankings

of schools in the following period. We will show in this paper that this second motive is indeed

very strong and is the driving force of some of our results: specially that neither the Gale-Shapley

deferred acceptance algorithm nor the Top Trading Cycles will be strategy-proof. In addition, note

that if an assignment algorithm in place is not strategy-proof, then computing the optimal strategy

for the parents is substantially more complicated in a dynamic problem than it is in a static one.

The problem introduced in this paper contributes to the theory of matching, by introducing the

dynamic version of the school choice problem. Moreover, we believe that it is also a very important

problem for policy discussions, for two main reasons. First, because a central tenet of the Danish

welfare state is a very high tax rate combined with subsidy schemes for high-quality welfare services

(including child care). This high tax relies heavily on two incomes per family. A central part of

the welfare infrastructure is, thus, the functioning of child care for pre-school children subsidized

and governed by Danish municipalities. The daycare assignment mechanism currently in place in

Denmark has many shortcomings, and we will present some of them.

Most importantly, the study of better ways to allocate children to daycares is particularly rel-

evant since this is a crucial age for a child�s development. There is an emerging literature that

reveals the high return to investments in early childhood development. This research contends

that high-quality programs focused on birth to age 5 produces a higher per-dollar return than K-

12 schooling and later job training in the United States (Cunha, Heckman and Schennach (2010)

and Cunha, Heckman, Lochner, and Masterov (2006)). The many bene�ts of quality early child-

hood education are to reduce the need for special education and remediation, and to cut juvenile

delinquency, teenage pregnancy and dropout rates.

In this paper, we will most often consider the case in which the priorities of schools are only
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history dependent in a rather weak sense: the priority ranking of each school will only change for

children that were previously allocated to it. For all other children, the priorities will remain the

same. We denote this condition by independence of previous assignment. Moreover, we will often

consider a restriction on preferences, which we call independence. This restriction implies that

preferences over schools are somehow stable �there are no complementarities, for example. Even

with only this weak link between periods, the problem becomes substantially di¤erent to the static

case, leading to the negative results mentioned in the previous paragraph.

Whenever possible, we extend the concepts of the static problem of school assignment to the

dynamic and new problem of the daycare assignment. Most importantly, we develop the concept

of stability in the dynamic context, which we call strong stability. We show that there does not

exist an algorithm that satis�es strong stability for all priority orderings and all preference pro�les.

However, if we impose the above mentioned restriction on the priority orderings of schools, namely

that priority is independent of the assignment of previous periods in other schools, then we show

that the well known Gale-Shapley deferred acceptance algorithm satis�es strong stability. It is

not Pareto dominated by any other mechanism that satisfy strong stability, and, if there exists an

e¢ cient and strongly stable matching, it must be the Gale-Shapley one.

However, contrary to the results in static two-sided matching problems, we show that the Gale-

Shapley deferred acceptance algorithm is not strategy-proof for the class of problems that we look

at. We then prove our �rst impossibility result for this class of problems: there does not exists a

mechanism that is both strategy-proof and strongly stable.

Given this impossibility result, we then look for mechanisms that are strategy-proof and e¢ cient.

We �nd that the top trading cycles, also commonly used in the school choice problem, is neither

e¢ cient nor strategy-proof. A variation of this algorithm, which we call top trading cycles by cohort

is also not strategy-proof. We then conclude by showing a version of the serial dictator assignment

rule. This mechanism is e¢ cient and strategy-proof.

Since the work of Abdulkadiroglu and Sonmez [5], mechanism design has been used by many

researchers to design new algorithms for the assignment of children to schools. This literature

has shown that some of the systems currently in place have many shortcomings, and new systems

that overcome some of these problems have been proposed. These new mechanisms have been

adopted recently in Boston and New York school systems and the early evidence suggests that

these mechanisms are an improvement over the previous systems. This form of market design

and intervention, by proposing algorithms that improve on the current system by overcoming
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shortcomings of the algorithms currently in place, has been quite successful in terms of outcomes

of reassigned children. See Abdulkadiroglu, Pathak, and Roth [1] and Abdulkadiroglu, Pathak,

Roth, and Sönmez [2] for a discussion of the practical considerations in the student assignment

mechanisms in New York City and Boston.

The structure of this paper is as follows. In section 2, we present a short description of the

daycare system currently in place in Denmark. In section 3 we describe the model in detail. We

study stability and show the existence of stable algorithms in section 4, with a discussion of the

Gale-Shapley algorithm and its properties in subsection 4.2.1. In section 5 we prove an impossibility

result regarding the concepts of strategy-proofness and strong stability. We then show in section 7

that e¢ ciency and strategy-proofness are not incompatible. We conclude in section 8. Some proofs

are in the appendix.

2 The Danish Daycare System

Denmark is divided into 5 regions and 98 municipalities. The municipalities are responsible for the

cost and operation of daycare institutions: they select their assignment mechanism and then oversee

the execution of the mechanism. Parents pay a user fee per child which accounts for 20-30% of the

total cost. Municipalities can decide on the level of the parents�share, but the maximum parental

share is set by law to be around 33%. Day-care institutions are directed at preschool children from

the ages of 6 months to 6 years. The day-care institutions consists of �Vuggestuer� day nursery

(child-minding with children ages 6 months to 3 years), �Børnehaver�(pre-schools with children 3

years to 6 years) and �Integrerede�institutioner�age-integrated institutions (daycare for children

ages 6 months to 6 years combined in one institution). The daycares are generally of high quality

and most parents use these services. In 2004, 94% of all 3 to 6-year-old children were enrolled in a

centre-based early childhood care or education centre. Vuggestues are also used by the majority of

parents.

The local governments use slightly di¤erent mechanisms. In the appendix we include an English

translation of the assignment algorithm currently in place in the Aarhus Municipality. An example

demonstrates various weaknesses of the Aarhus allocation mechanism, but given that it requires

some notations introduced in the following section, we include the example in the appendix.

Below we highlight the main features of the Aarhus mechanism, which are common across most

municipalities, including Copenhagen.

1. Children of varying ages from 6 months to 3 years can go to same daycare;
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2. The assignment algorithm runs once a month;

3. Even if a child has a spot in some daycare she can participate in the assignment algorithm;

4. Children currently allocated to a daycare, will not be displaced from the daycare involuntarily;

5. Each daycare gives higher priority to children who do not have a spot at any daycare over the

children who have one in any daycare except the original one � this is called a �guaranteed

spot�.

In the next section, we construct a model that captures the above mentioned features of the

Danish system.

3 Model

Time is discrete and t = �1; 0; � � � ;1. There are a �nite number of in�nitely lived daycares/schools.

Let S = fs1; � � � ; smg be the set of schools. Each school s 2 S has a maximal capacity rs which is

assumed to be constant always, i.e., the capacity does not depend on time. There is an age limit

for children to attend school. We assume that children can start schooling at age 1 and move to

the next level of schooling at age 3. Consequently, children can attend school when they are 1 and

2 years old. School attendance is not mandatory. Let h stand for the option of staying home. Let

�S = S [ fhg. For technical convenience, we treat h as a school with unbounded capacity. Each

period t, there is a new set of children It = f1; � � � ; ntg who are 1 year old. Consequently, at any

period t the set of school age children is It�1 [ It. As time passes the set of school age children

evolves in the �overlapping generations�fashion. The set of all children is I = [tIt.

First, we extend the de�nition of matching to a dynamic context. For the static problem,

matching maps the set of children to the set of schools. Here, matching is a collection of functions

that map the school age children to the set of schools.

De�nition 1 (Matching). A matching � is a collection of functions � = (��1; � � � ; �t�1; �t; �t+1; � � � )

where �t : It [ It�1 � �S ! f0; 1g such that

1. For all i 2 It�1 [ It,
P
s2 �S �

t(i; s) = 1;

2. For all s 2 S,
P
i2It�1[It �

t(i; s) � rs:

We refer to �t as the period t matching.
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If child i is assigned a seat at school s in period t, then �t(i; s) = 1. Requirement (1) above

says that each child is assigned a spot at one school at most, while requirement (2) says that each

school cannot house more children than its capacity. We assume that at time t = �1 the matching

is exogenoulsy given (for example, it may be that all of these initial children stay at home in their

�rst year). In other words, for each matching we consider the matching at period -1 is constant.

With slight abuse of notation, �t(i) denotes the school which is matched with child i under the

period t matching �t, i.e., �t(i) = s whenever �t(i; s) = 1, for each i 2 It�1 [ It: Similarly, �t(s) is

used to denote the set of children who are assigned a seat at school s under period t matching �t,

i.e., �t(s) = fi 2 It�1 [ It : �t(i; s) = 1g.

Each child is characterized by a strict preference ordering �i over �S2. The notation (s; s0)

corresponds to the allocation in which a child attends school s at age 1 and school s0 at age 2.

Throughout the paper, we maintain the following assumptions on preferences:

Assumption 1 (Preferences).

1. (No complementarities) If (s; s) �i (s0; s0) for some s; s0 2 �S and i 2 I, then (s; s) �i (s; s0)

and (s; s) �i (s0; s).

2. (Weak Independence) If (s; s) �i (s0; s0) for some s; s0 2 �S and i 2 I, then (s; s00) �i (s0; s00)

and (s00; s) �i (s00; s0) for any s00 6= s0. On the other hand, (s; s00) �i (s0; s00) or (s00; s) �i (s00; s0)

for some s 6= s00 2 �S and s0 2 �S implies that (s; s) �i (s0; s0).

There are two direct implications of the assumptions above. From the �rst condition and strict

preferences we obtain that for any s; s0 2 �S and i 2 I, at least one of the following conditions is

satis�ed

(i) (s; s) �i (s; s0) and (s; s) �i (s0; s); or

(ii) (s0; s0) �i (s; s0) and (s0; s0) �i (s0; s):

Moreover, the two conditions above may be satis�ed at the same time. This would be the case,

for example, in which a child incurs a large enough cost (not necessarily monetary) from changing

schools.

A second implication is the following. Suppose that for some s and s1 6= s0 6= s2, (s; s) �i
(s1; s1), (s0; s0) �i (s2; s2). Then we must have that (s; s0) �i (s1; s2). To see this, note that from

assumption 1, we have that (s; s0) �i (s1; s0) and (s1; s0) �i (s1; s2) as s1 6= s0 6= s2. Consequently,

(s; s0) �i (s1; s0) �i (s1; s2).
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In this paper, we often consider a stronger version of the weak independence assumption which

we call independence. Recall that if child�s preferences satisfy weak independence, then whenever

attending school s in both periods is preferred to attending school s0 in both periods, attending s

and a third school s00 must be better than attending s0 and s00. However, weak independence does

not rule out the possibility that the child prefers attending school s0 in both periods to attending

s in one period and s0 in the other. Independence, however, rules out this possibility.

De�nition 2 (Independence). We say that a child i�s preferences satisfy Independence if, for any

s 6= s0 2 �S

(s; s) �i (s0; s0)() (s; s00) �i (s0; s00) and (s00; s) �i (s00; s0) for all s00 2 �S:

When de�ning the preferences, we are following a more general axiomatic approach. Before we

proceed further let us give a speci�c example that illustrates a more parametric approach.

Example 1. Suppose that by attending school s for one period, child i bene�ts bi(s) which does not

depend on the child�s age. Each child has a time discount of �. Moreover, child i incurs a cost of

ci only from the school to school change at age 2, i.e., the cost of any home to school change is 0.

Finally, the utility of child i attending schools s and s0 at her respective ages of 1 and 2 is

Ui(s; s
0) =

(
bi(s) + �bi(s

0)� ci if s 6= s0 and s 6= h
bi(s) + �bi(s

0) otherwise

Clearly, the underlying preferences for this children satisfy assumption 1 and furthermore, they

satisfy property Independence if the cost ci of school to school change is 0 or su¢ ciently small. �

At any time t � 0, each school ranks all the school age children by priority. Priorities do not

represent school preferences but rather, they are imposed by local municipality. For example, in

the existing assignment mechanism in Denmark, all schools give priority to their currently enrolled

children. Similarly, the children with special needs are given higher priority by the schools tailored

to meet those needs. In practice, age usually factors into where a child stands in the priority

ranking of a school. Speci�cally, older children are given priority.

Henceforth, we assume that each institution gives the highest priority to its currently enrolled

children, which is a feature of the assignment mechanism currently in place in Denmark. A rationale

behind this priority is that no school forces its current enrollee out in order to free a spot for some

other child. Because of this assumption, the priority ranking of each school is dependent on its

attendees of the previous period.
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The priority of the schools over the children must be carefully de�ned. Note that, contrary to

the school choice problem, this priority ordering is a function of the previous period�s matching. In

particular, as we noted previously, children currently enrolled at a school have priority over outsiders

at that same school. We will denote the strict, binary relation which generates the priority ranking

of school s at period t by Bts(�t�1): That is, if at period t children i has a higher priority than
children j at school s given that in period t�1 the matching was �t�1, then we denote iBts

�
�t�1

�
j.

We impose the following assumptions on the priority rankings of the schools, which implies that

they are Markovian with previous period�s matching as the state variable.

Assumption 2 (Priority Orderings of Schools). Each school�s priority ranking satis�es the follow-

ing conditions:

1. (Priority for currently enrolled children) If i 2 It�1 and i 2 �t�1(s) for some s 2 S, then

iBts (�t�1)j for all j =2 �t�1(s):

2. (Weak consistency of di¤erent period rankings) If i Bt�1s (�t�2)j for some i; j 2 It�1, s 2 S

and �, then iBts
�
�t�1

�
j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(i) = s; h and �t�1(j) = h

� �t�1(j) 6= s; h

3. (Weak irrelevance of previous assignment) If i Bts (�t�1)j for some i; j 2 It�1, s 2 S, and
� with �t�1(i) 6= s; h and �t�1(j) 6= s; h, then i Bts

�
��t�1

�
j for any �� satisfying one of the

following conditions.

� ��t�1(i) = ��t�1(j) = s

� ��t�1(i) = s; h and ��t�1(j) = h

� ��t�1(j) 6= s; h

4. (Weak irrelevance of di¤erence in age) If iBts (�t�1)j for some i 2 It�1, j 2 It, s 2 S, and �
with �t�1(i) 6= s; h, then iBts

�
��t�1

�
j for all ��. In addition, if jBts (�t�1)i for some i 2 It�1,

j 2 It, s 2 S, and � with �t�1(i) 6= s; h, then j Bts
�
��t�1

�
i for all �� with ��t�1(i) 6= s; h.

Loosely speaking, the last three assumptions mean that the priority ranking of any school does

not depend on the attendees of other schools (excluding staying home). Speci�cally, the second one
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says that if child i has higher priority than child j at school s in period t� 1, then child i keeps her

advantage over child j in the following period unless child j attends school s (h) while child i does

not attend s (s or h). The third one says that at any period, school s�s relative ranking of any two

children is not a¤ected by the fact that one child has attended school s0 6= s and the other s00 6= s.

The fourth assumption says that at any period school s�s relative ranking of any two children is

not a¤ected by the fact that one child has attended school s0 6= s at period t � 1 while the other

is one year old at period t. Here we remark that assumption 2 does not rule out the possibility

that a school s gives priorities to the children who have not attended any school over the ones who

have attended some school other than s in the previous period. This possibility is ruled out if the

priority rankings of the schools satisfy the Independence of Past Attendance (IPA) property. We

sometimes will concentrate exclusively on the cases in which IPA is satis�ed. Now let us present

the formal de�nition below.

De�nition 3 (Independence of Past Attendance). The priority ranking of a school satis�es the

Independence of Past Attendance (IPA) property if

1. (Consistency of di¤erent period rankings) If iBt�1s (�t�2)j for some i; j 2 It�1, s 2 S and �,

then iBts
�
�t�1

�
j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(j) 6= s

2. (Irrelevance of previous assignment) If i Bts (�t�1)j for some i; j 2 It�1, s 2 S, and � with
�t�1(i) 6= s and �t�1(j) 6= s, then i Bts

�
��t�1

�
j for any �� satisfying one of the following

conditions.

� ��t�1(i) = ��t�1(j) = s

� ��t�1(j) 6= s

3. (Irrelevance of di¤erence in age) If iBts (�t�1)j for some i 2 It�1, j 2 It, s 2 S, and � with
�t�1(i) 6= s, then iBts

�
��t�1

�
j for all ��. In addition, if j Bts (�t�1)i for some i 2 It�1, j 2 It,

s 2 S, and � with �t�1(i) 6= s; h, then j Bts
�
��t�1

�
i for all �� with ��t�1(i) 6= s.

In practice, IPA is often not satis�ed: many schools give priority to two year old children who

have not attended any school in the previous period over one year old children and the two year
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old children who have attended school in the previous period. In particular, given a concept called

�guaranteed spots�, IPA is also not satis�ed in the current Danish daycare assignment mechanism.

Remark 1. The school choice problem is a very special case of the daycare assignment problem.

To see this, suppose that the set of children consists of only children who are one year old at period

�1 and let every child stay home when they are one. The schools� priorities are well de�ned at

period 0. In addition, the children rank the schools at period 0 �xing that their period �1 matches

are h. Now one can see that this special case of our daycare assignment problem is a school choice

problem.

Remark 2. The daycare assignment problem di¤ers from the school choice problem in many as-

pects. However, the most crucial aspect of the daycare assignment problem that distinguishes it

from the school choice problem is that the history dependence of the schools� priorities and chil-

dren�s preferences. To see this, suppose that the children�s preferences satisfy independence and

somehow the schools� priorities at any period are independent of the previous period�s matching.

Now because independence is satis�ed, at any period any child�s rankings of the schools do not

depend on the future or past matchings. Hence, the children�s rankings in each period is uniquely

de�ned without depending on history. Now as the schools�priorities are not history dependent by

supposition, one can treat the daycare assignment problem as separate, independent school choice

problems in di¤erent periods. Consequently, all the results from the school choice problem would

be valid in our setting. However, in the daycare assignment problem, we �rmly believe that history

dependence must be considered very seriously.

Given remark 2, we often restrict our attention to the cases in which both independence and

IPA are satis�ed. Observe that in these cases, history dependence is as minimal as possible but

we obtain many results di¤erent from the ones found in the school choice problem. Hence, only

a minimal history dependence is needed to distinguish the daycare assignment problem from the

school choice problem.

3.1 Properties of a Matching

The matching literature has identi�ed Pareto e¢ ciency and stability as the two main desirable

properties. The main goal of this subsection is to adapt these concepts to our daycare assignment

problem.

Extending the concept of Pareto e¢ ciency to our setting is straightforward. The main reason

is the following: In the de�nition of Pareto e¢ ciency, one considers only the well-beings of one side
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of the market, namely the children. In addition, children�s preferences are exogenously de�ned and

not history dependent. Hence, the de�nition of Pareto e¢ ciency in our setting coincides with the

one in the school assignment problem: a matching � is Pareto e¢ cient if no other matching strictly

improves at least one child without hurting the others. We give the formal de�nition below.

De�nition 4 (Pareto E¢ ciency). A matching � is Pareto e¢ cient if there is no other �� 6= �, such

that for some t � 0 and some i 2 I,
�
��t (i) ; ��t+1 (i)

�
�i
�
�t (i) ; �t+1 (i)

�
and for 8j 2 I, either�

��t (j) ; ��t+1 (j)
�
=
�
�t (j) ; �t+1 (j)

�
or
�
��t (j) ; ��t+1 (j)

�
�j
�
�t (j) ; �t+1 (j)

�
:

Adopting the de�nition of stable matching in our setting is not straightforward. As [5] points

out, already in static settings, one has to be careful in interpreting stable matchings for the school

choice problem. To be speci�c, in the context of college admissions, under a stable matching no

college-student pair should be able to improve themselves. However, in the context of school choice,

the schools have priorities but not preferences, thus, it is unclear how a school can improve itself.

Thus, [5] suggests to interpret stable matchings as the ones free of justi�ed envy. That is, under a

stable matching, if a child likes a school better than her current match, then this school should not

assign a seat to any child who has a lower priority than the child. In this case, no child can justify

her desire to change her current match with some other school.

The stability concepts we construct in this paper are based upon the idea of justi�ed envy

freeness. The dynamic nature of our setting presents some challenges that are absent in the school

choice problem. However, before spelling them out, let us �rst de�ne the weak stability concept

that we perceive as the analog of the stability concept in the school choice problem.

Whether a matching is weakly stable depends on whether some child can justify her envy of

another at some period while keeping her past/future match the same. In other words, at some

period t, child i justi�es her envy of child j if child j attends a school s in which she has a lower

priority than child i and at the same time child i would improve if she changed only her period

t match with s. If a matching is free of this type of justi�ed envy, then this matching is weakly

stable. In a way, for weak stability, we are analyzing the problem at some time t, assuming that the

matching of every other period t0 6= t is �xed. In this sense, the weak stability concept is analogous

to the stability concept in the school choice problem.

De�nition 5 (Weak Stability). A matching � is weakly stable if at any period t, there does not

exist a school-child pair (s; i) such that (1) and (2) below hold at the same time

1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)); or
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(b) (�t�1(i); s) �i (�t�1(i); �t(i));

2.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

Condition (1) above refers to the fact that child i would be strictly better o¤ by switching to

some school s rather than the school speci�ed by the matching �. On top of that, condition (2)

implies that either there are spots left at the preferred school s of child i, or the school is in full

capacity but some child j allocated to this school under the matching � has lower priority than

child i at that school.

In the de�nition of weak stability, one considers only the one period deviations which has two

shortcomings: (1) because the children can attend school for two periods, a child can imagine

situations in which she changes her match in both periods and (2) the schools�priorities, which

have to be considered for stability, evolve depending on the past matchings. These shortcomings

are magni�ed if independence or IPA is not satis�ed. To illustrate this point, we consider the

following two examples.

Example 2 (Justi�ed Envy under Failure of Independence). Consider a matching that assigns

child i a seat at school s0 when she is both 1 and 2 years old. However, there is another school

s such that child i improves only if she switches to school s when she is both 1 and 2 years old.

Observe that child i�s preferences do not satisfy independence. Moreover, suppose that when child i

is 1 year old, she is placed in school s�s priority ranking higher than another child i0 who is assigned

a seat at school s at that time. With this information, we cannot rule out the possibility that the

matching is weakly stable. The reason is that child i prefers attending s0 for 2 periods to attending

school s when she is 1 and s0 when she is 2.

However, one can reasonably argue that child i�s envy of child i0 is justi�ed because she has a

right to attend school s ahead of child i0 at age 1. Then, in the following period, she will be in the

highest priority group at school s. This gives her a right to attend school s when she is 2. �

Example 3 (Justi�ed Envy under Failure of IPA). Suppose there are 2 schools: s and s0. School

s has a capacity of only 1 child while school s0 has a capacity of 2 children. Child i and child i0 are

born at the same period. Both children�s preferences satisfy the following property: (s; s) � (s0; s) �

(h; s) � (s0; s0). Suppose that school s gives higher priority to child i than i0 at period t when the

children are 1 year old. However, i0 is given higher priority over child i by school s at period t+ 1

if at period t, i0 does not attend any school while i attends s0. Clearly, school s�s priority ranking

does not satisfy IPA.

13



Consider a matching which assigns both children a seat in school s0 at period t but assigns child

i a spot at school s and child i0 a spot at school s0 at period t+1. Implicitly, period t spot of school

s is assigned to some other child who has higher priority at school s over both children. With this

information only, we cannot prove that the matching is not weakly stable.

However, one can argue that child i0 envies child i in a justi�ed manner: if she is stays home

at period t and attends school s at period t+1, then she would de�nitely improve. In addition, she

would have been ranked ahead of child i in the priority ranking of school s at period t+ 1. �

To account for the issues raised by the examples above, we will de�ne a stronger concept of

stability. First, we need the following notation: for any i; j 2 It, s 2 �S and � such that �(i) 6= �(j)

and �(j) 2 S, let

�M t(i; j; �) =
�
��t : ��t(i) = �t(j)& ��t(j) 6= �t(j); & ��t(i0) = �t(i0)8 i0 6= i; j 2 It�1 [ It

	
:

That is, the set �M t(i; j; �) is a set of matchings at period t such that i replaces j over the

allocation speci�ed by the matching �t; j is placed at a di¤erent school and all other children�s

assignments are left unchanged. One may think of this as the set of all hypothetical matchings at

time t such that i replaces j who then �nds a school somewhere else � perhaps home, or some

other school � and all other children remain in the same school. Implicit in the solution concept

of strong stability and the construction of the set �M t(i; j; �) is the assumption that children are

not �farsighted.�Under this view, an allocation of a particular period is considered �unfair� (or

subject to justi�ed envy) if the child takes the matching of all other children at all other periods

as given. In particular, when the child �feels� that she has justi�ed envy over some child in a

particular school, for the following period, she imagines that this child over whom she had priority

will either stay at home, or be placed in some other school that will not a¤ect the next period�s

matching and all other children remain matched as originally. When evaluating that the matching

� is subject to justi�ed envy, the child does not evaluate the entire general equilibrium e¤ect of a

new allocation that would take into consideration her justi�ed envy and possibly everyone else�s.

De�nition 6 (Strong Stability). Matching � is strongly stable if it is weakly stable and the following

conditions are satis�ed. At any period t, there does not exist a triplet (s; s0; i) such that (s; s0) �i
(�t(i); �t+1(i)) and one of the following conditions hold:

1.
���t(s)�� < rs and ���t+1(s0)�� < rs0 ;
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2.
���t(s)�� < rs, ���t+1(s0)�� = rs0, and, for some j0 2 �t+1(s0), iBt+1s0 (��t)j0 where ��t is the period

t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2 It�1 [ It;

3.
���t(s)�� = rs, ���t+1(s0)�� < rs0, and, for some j 2 �t(s), iBts (�t�1)j;

4.
���t(s)�� = rs,

���t+1(s0)�� � rs0, for some j 2 �t(s), j0 2 �t+1(s0) and for any ��t 2 �M(i; j; �),

iBts (�t�1)j and iBt+1s0 (��t)j0:3

We interpret justi�ed envy in the dynamic context as the existence of a pro�le of schools for

which a child prefers to its current match and such that in some �reasonable� way it would be

�fair�for her to go to the preferred schools. Speci�cally, a reasonable way may mean one the four

cases: (1) both of these schools have unassigned spots; (2) in the �rst period a preferred school has

an unassigned spot and in the second, the child has a higher priority over another child allocated

at a preferred school; (3) a preferred school in the second period is operating with less than full

capacity and in the �rst period the child is placed on a higher priority than some other child already

allocated there, and �nally (4) in the �rst year the child has a higher priority than some other child

in a particular school and in the second year, the child has a higher priority than some other child

even if there had been a reallocation in the �rst period, in which she replaced some child in year 1,

as long as in this new allocation, all other children remained in the same school.

Remark 3. Strong stability is a re�nement of weak stability and we believe that it is a natural

concept that captures the meaning of justi�ed envy in our setting. Yet we must remark that the

de�nition of strong stability is stronger than what examples 2 and 3 call for. In other words, one

can slightly weaken de�nition 6 so that a matching is strongly stable if it is weakly stable and free of

justi�ed envy discussed in examples 2 and 3. However, doing so does not change any of the results

in the next section. Given this, weakening the de�nition of strong stability is not bene�cial from

the technical perspective.

3.2 Properties of Mechanism

Let Pi denote the reported preference ordering of child i 2 I and P be the product space of the

reported preference ordering of every child i. A mechanism ' is an algorithm that constructs,

sequentially, a matching for the daycare assignment problem, given the reported preferences and

the priority orderings. That is, mechanism ' maps the reported preferences P and the function

Bt (�) to a matching �. Recall that ��1 is �xed and exogenously given. Let 'i
�
P;Bt (�)

�
denote

3Observe that �(j) 6= h as h has an unlimited capacity. Hence, M t(i; j; �) is well de�ned.
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the assignment pair of child i when she is 1 and 2. Strategy-proofness is de�ned as an incentive

for reporting the true preferences. Formally, reporting the true preferences is a weakly dominant

strategy for the children.

De�nition 7 (Strategy-Proofness). A mechanism ' is strategy-proof if for all i 2 I, all Bt (�), all
Pi, all t � 0; all P̂i, and all P̂�i;

'i

�
Pi; P̂�i;Bt (�)

�
�i 'i

�
P̂i; P̂�i;Bt (�)

�
OR'i

�
Pi; P̂�i;Bt (�)

�
= 'i

�
P̂i; P̂�i;Bt (�)

�
;

where Pi is i�s true preferences while P̂i and P̂�i are the reported preferences of i and the others.

De�nition 8 (Stability and E¢ ciency). 1. A mechanism ' is e¢ cient, if for all P and Bt (�),
it yields an e¢ cient matching.

2. A mechanism ' is strongly (weakly) stable, if for all P and all Bt (�), it yields a strongly
(weakly) stable matching.

4 Stable Matchings and Their Properties

In this section, we explore di¤erent questions regarding weakly and strongly stable matchings under

the assumption that the planner knows the children�s preferences as well as the schools�priorities.

Even in this case, given that our problem di¤ers from the school assignment problem signi�cantly,

we need to explore the fundamental questions such as the relation between the stability concepts

and the existence of stable matchings.

4.1 The Relation between Strong and Weak Stability

Now we will explore under what conditions, the concepts of weakly and strongly stable matchings

will coincide. From examples 2 and 3, one can conjecture that weakly and strongly stable match-

ings may be equivalent if the children�s preferences satisfy Independence and the schools�priority

rankings satisfy IPA. Indeed this is the case, as we will show in the next two lemmas.

Lemma 1. Suppose that all schools�preference rankings satisfy IPA. If � is weakly but not strongly

stable, then for some period t and some school-child pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));
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3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

The proof is in the appendix.

Next we show that the solution concept for the daycare assignment problem, the strong stability,

is in fact equivalent to the static concept of weak stability for a large class of problems. Precisely,

if the children�s preferences satisfy Independence and the school�s priority rankings satisfy IPA, the

two concepts are equivalent.

Theorem 1 (Equivalence of Weak and Strong Stability). Suppose every child�s preferences satisfy

Independence and every school�s priority ranking satis�es IPA. Then matching � is strongly stable

if and only if it is weakly stable.

Proof. By de�nition, any strongly stable matching is weakly stable. Hence, we need to show that

any weakly stable matching is strongly stable. Suppose otherwise, i.e., there exists a weakly stable

matching � which is not strongly stable. By lemma 1, if � is weakly but not strongly stable, then

for some period t and some school-child pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));

3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s):

Clearly, (s; s) �i (�t(i); �t(i)). In addition, each child�s preferences satisfy Independence, hence,

(s; �t(i)) �i (�t(i); �t(i)). By combining this with the 3rd condition above, one obtains that � is

not weakly stable.

4.2 The Existence of Stable Matchings

Now we turn our attention to the question of whether strongly stable matchings exist. The answer

to this question is negative if the schools�priority rankings do not satisfy IPA.

Theorem 2. If the priority listings of the schools do not satisfy IPA, then the existence of strongly

stable matchings is not guaranteed.

Proof. We construct an example with no strongly stable matching in which IPA is violated.

Suppose there are 2 schools, fs; s0g. Schools s and s0 have capacities of 1 and 3, respectively. In each

period, there are two one-year old children and they are identical in all aspects. Their preferences
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satisfy the following property: (s; s) � (h; s) � (s0; s0) � (h; h). Moreover, the children�s preferences

satisfy independence.

At any period, the schools use the following priority ranking: (1) the previous period�s attendees

(2) two year old children who have not attended any school in the previous period. (Note that

condition (2) violates IPA).

1. Consider any matching with �t(i) = h for some i and t. There must be a unassigned spot at

one of the schools at period t. By assigning this spot to child i at t, one can improve her.

Thus, no such matching would satisfy strong stability.

2. Consider any matching with (�t(i); �t+1(i)) = (s; s0) for some i and t. Clearly, child i has the

highest priority at schools s in period t+ 1 and in addition, (s; s) � (s; s0) by independence.

Hence, child i can be improved in a justi�ed manner.

3. Consider any matching such that for i 2 It, �t+1(i) = s. Then one of the following happens:

(1) one of the one-year old children at t+1 attends school s at t+2 or (2) none of the one-year

old children at t + 1 attends school s at time t + 2. In the former case, either we are back

to case 1 or one of the one-year old children in t+ 1 matches with (s0; s0). This child prefers

(h; s) to (s0; s0). In addition, at t + 2 she has priority over any one-year old or any two year

old who attended s0 at t+ 1 (recall that the other one year old at t+ 1 matches with (s0; s)).

Hence, this child can be improved in a justi�ed manner. In case (2), either we are back to

case 1 or both children attend s0 at periods t+ 1 and t+ 2. Then each child prefers (h; s) to

(s0; s0). In addition, at t+2, each child has priority over any one year old at school s or school

s has an unassigned seat. Hence, either children can be improved in a justi�ed manner.

In the counter example used for the proof of theorem 2, the children�s preferences satisfy in-

dependence. However, independence does not play any role for theorem 2, i.e., one construct an

example needed for theorem 2 in which the children�s preferences satisfy independence. Hence, we

conclude that the existence of strongly stable matchings is not guaranteed without IPA regardless

of independence is satis�ed or not. But with IPA, is the existence guaranteed? The answer to this

question is positive but before we present the formal result, let us introduce the algorithm used for

the existence result.
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4.2.1 Gale-Shapley Deferred Acceptance Algorithm and Its Properties

The Gale and Shapley deferred acceptance algorithm was originally designed to deal with static two-

sided matching problems. To run this algorithm at certain period t, one needs to know the schools�

priority rankings over all school age children as well as the children�s preferences over schools. In

the class of problems studied in this paper, the schools�priority rankings are well de�ned given

the previous period�s matching. However, the children�s preferences are de�ned over the pairs of

schools, since each child can attend di¤erent schools for two consecutive periods. Hence, to run

the original Gale-Shapley mechanism, one needs to derive one period preferences for each child at

a given period, based on the past matchings and the original preferences of the children over the

pairs of schools; we do not want to derive one period preferences based on the future matchings as

the current matchings a¤ect next period�s priority rankings of the schools.

For now, let us assume that at period t, we have derived the one period preference relation

Pi(�t�1) for each i 2 It�1 [ It depending on �t�1 matchings. Let P(�t�1) =
�
Pi(�t�1)

	
i2It�1[It .

Thus, sPi(�t�1)s0 means that at time t, player i prefers school s to s0 given the period t�1 matching

�t�1. Note that this de�nition relies critically on the previous period�s matching (for example, there

could be high switching costs for the children). With this concept of one-period preferences, we

will de�ne stability in a static context that will be used in some of our proofs.

De�nition 9 (Static Stability). Period t matching �t is statically stable under P(�t�1) and �t�1,

if there exists no school-child pair (s; i) such that

1. sPi(�t�1)�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

Now we will de�ne the one-period preferences that we will use for the Gale and Shapley deferred

acceptance algorithm.

De�nition 10 (Isolated Preference Relation). For given �t�1,

1. the isolated preference relation for i 2 It is the preference relation �1i such that s0 �1i s00 if

and only if (s0; s0) �i (s00; s00) for any s0 6= s00 2 �S;

2. the isolated preference relation for i 2 It�1 is the preference relation �2i (�t�1) depending

on previous period�s matching and such that s0 �2i (�t�1)s00 if and only if (�t�1(i); s0) �i
(�t�1(i); s00) for any s0 6= s00 2 �S:
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The Gale and Shapley deferred acceptance algorithm:

The algorithm is the same in each period, and it only uses the matching results of the previous

period. In period t, assume that the previous period�s matching is obtained by using the Gale and

Shapley algorithm. At period t, the schools assign their spot to the all school age children in �nite

rounds as follows:

Round 1: Each child proposes to her �rst choice according to her isolated preferences. Each

school tentatively assigns its spots to the proposers according to its priority ranking. If the number

of proposers to school s is greater than the number of available spots rs, then the remaining

proposers are rejected.

In general, at:

Round k: Each child who was rejected in the previous round proposes to her next choice

according to her isolated preferences. Each school considers the pool of children who it had been

holding plus the current proposers. Then it tentatively assigns its spots to this pool of children

according to its priority ranking. The remaining proposers are rejected.

The algorithm terminates when no child proposal is rejected and each child is assigned her �nal

tentative assignment.

Given that the children�s preferences as well as schools�priority rankings are strict, it is easy to

see that the Gale and Shapley deferred acceptance algorithm yields a unique matching. We refer

to this matching as the Gale and Shapley matching and use the notation �GS for it.

With the next result we show that when assuming IPA, strong stability is equivalent to static

stability under isolated preferences.

Lemma 2. Matching � is weakly stable if and only if for all t, �t is statically stable under isolated

preferences and �t�1. Furthermore, if each school�s preference rankings satisfy IPA � is strongly

stable if for all t, �t is statically stable under isolated preferences and �t�1.

The proof for this lemma is in the Appendix.

Corollary 1. The Gale and Shapley matching is weakly stable. Furthermore, if the priority ranking

of each school satis�es IPA, then the Gale and Shapley matching is strongly stable.
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Proof. It is well known that �tGS is statically stable under isolated preferences and �
t�1
GS . Then

lemma 2 yields the result.

As we already mentioned, examples 2 and 3 illustrate the need of strengthening the weak stabil-

ity concept into the strong stability one if independence or IPA is not satis�ed. However, corollary

1 demonstrates that IPA is a su¢ cient condition for the existence of strongly stable matchings even

if independence is not satis�ed. In addition, theorem 2 shows that with or without independence,

the existence of strongly stable matchings is not guaranteed without IPA. In this sense, IPA is a

more critical condition than independence for the existence of strongly stable matchings. Perhaps,

this is a good news from the policy maker�s perspective in the sense that the policy maker can

change the schools�priorities but not the children�s preferences.

In static settings, one of the most signi�cant results is that the Gale and Shapley matching

Pareto dominates all other stable matchings.4 This result is no longer valid in our daycare as-

signment problem. In fact, there could be multiple weakly/strongly stable matchings that do not

Pareto dominate one another. The following example illustrates this point.

Example 4. There are 3 schools fs; s1; s2g. All schools have a capacity of one child. There is no

school age child until period t � 1. At period t � 1, only one child i is 1 year old. At period t,

there are 2 one-year old children fi1; i2g. At period t+ 1, child i0 is 1 year old. Each school gives

the highest priority to the child who has attended the school if the child is still of the school age.

If children �{ 6= �{0 2 fi; i1; i2; i0g have not attended school �s = s; s1; s2 in the previous period, then

school �s ranks child �{ and child �{0 according to the following rankings.

i Bs i1 Bs i2 Bs i0

i Bs1 i0 Bs1 i2 Bs1 i1

i Bs2 i1 Bs2 i2 Bs2 i0

Each child�s preferences satisfy independence. Child i�s top choice is (s; s). The preferences of

children i1, i2 and i0 satisfy the following conditions:

(s1; s1) �i1 (s2; s2) �i1 (s; s);

(s; s) �i2 (s2; s2) �i2 (s1; s1);

(s1; s1) �i0 (s2; s2) �i0 (s; s):

The Gale and Shapley matching � is as follows: �t�1(i) = �t(i) = s, �t(i1) = �t+1(i1) = s1,

�t(i2) = s2, �t+1(i2) = s, �t+1(i0) = s2 and �t+2(i0) = s1. Because the schools�priority rankings

4See [12].
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satisfy IPA, thanks to corollary 1, we obtain that � is strongly stable.

Now let us consider the following matching ��: ��t�1(i) = ��t(i) = s, ��t(i1) = ��t+1(i1) = s2 ,

��t(i2) = s1, ��t+1(i2) = s, ��t+1(i0) = s1 and ��t+2(i0) = s1. It easy to check �� is strongly stable.

Now observe that matching � does not Pareto dominate matching �� because child i0 prefers �� to

�. In fact, �� is not Pareto dominated by any strongly stable matching. To see this, observe that the

only matching that Pareto dominates �� is the one in which children 1 and 2 switch their matches

in period t. But this is not strongly stable because child i1 has a justi�ed envy of child i0 at t+1. �

First observe that in the above example both IPA and independence are satis�ed. Hence, the

weakly and strongly stable matchings coincide. Hence the example above shows that there may

exist other mechanisms that produce matchings that are weakly/strongly stable and are not Pareto

dominated by the Gale-Shapley matching. This is the �rst main distinction between the matching

produced by the Gale-Shapley algorithm in the static school choice problem versus the dynamic

problem of the daycare assignment.

Given the importance of this result when compared to the static case, we state the result below.

Theorem 3 (Gale-Shapley matching does not necessarily Pareto dominate all stable matchings).

The Gale and Shapley matching does not necessarily Pareto dominate all weakly/strongly stable

matchings.

In the light of example 4, one must explore whether any strongly stable matching Pareto dom-

inates the matching from the Gale and Shapley deferred acceptance algorithm. This, indeed, is

impossible which we show in the following proposition.

Proposition 1 (Gale-Shapley matching is not Pareto dominated by any other strongly stable

mechanism). Suppose each school�s priority rankings satisfy IPA. Then the Gale-Shapley matching

is not Pareto dominated by any other strongly stable matchings.

Sketch of the Proof. Here, we will only sketch the proof. The formal proof is in the appendix.

The proof is by contradiction: suppose that there exists a strongly stable matching � that

Pareto dominates the matching resulting from the Gale-Shapley, �GS . We proceed in 3 steps.

First, we show that in the initial period it must be true that for all 2-year old children the

allocation in the two matchings must coincide. The main intuition is that the matching produced

by the Gale-Shapley algorithm must be statically stable and must Pareto dominate any matching �0

that is statically stable, following a well known property of the Gale-Shapley mechanism. Therefore,
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there does not exist a statically stable mechanism that Pareto dominates �GS and improves the

allocation of a 2-year old child in the �rst period.

For step 2, which is less straightforward, we show that the 1-year old children also cannot be

improved in their allocation. First, note that if the new Pareto dominant matching is di¤erent

than the Gale-Shapley matching in period 0 for children i 2 I0, then these children must be

�worse o¤� in period zero, only to be improved next period. Formally, �0GS(i) �1i �0(i), but

(�1(i); �1(i)) �i (�1GS(i); �1GS(i)). The intuition is that child i must always be at least as good in

period 1 than she is at period 0, due to strong stability and the assumption that currently allocated

children have priorities on the second period. By lemma 2, we know that �1 is statically stable

under isolated preferences and �0. Now suppose we ran the Gale and Shapley algorithm at period 1

under isolated preferences and �0. Let us denote the resulting matching ��1. If ��1 is statically stable

under isolated preferences and �0GS ; then from lemma 2, we know that �1GS is a stable matching

under isolated preferences and �0GS . In addition, it must Pareto dominate ��
1 in terms of the isolated

preferences, since ��1 is statically stable and �1GS must Pareto dominate all stable matchings (see

[12]). From [12], we know that if ��1(i) 6= �1(i), then ��1(i) �2i (�0)�1(i). Iterating assumption 1, we

show in the formal proof that: (��1(i); ��1(i)) �i (�1(i); �1(i)) and (�0GS(i); �1GS(i)) �i (�0(i); �1(i)).

However, recall that � Pareto dominates �GS . This is a contradiction. Thus, after showing that ��
1

is statically stable under isolated preferences and �0GS , which we show in the appendix, this step of

the proof is complete.

The �nal step of the proof is by induction: in period 1, use the same argument for children

i 2 I1, that we have used for children i 2 I0 in period 0, and similarly for any time period t.

Corollary 1 shows that if the planner wants to eliminate the justi�ed envy, then she should use

the Gale and Shapley algorithm. In addition, as shown in proposition 1, the Gale and Shapley

matching is not Pareto dominated by any other strongly stable matchings. Hence, the Gale and

Shapley deferred acceptance algorithm is indeed one of the most important algorithms in the

daycare assignment problem.

Now we study if any strongly stable matching is e¢ cient. The next proposition yields that unless

one follows the Gale and Shapley algorithm, then any strongly stable matching is not e¢ cient.

Proposition 2. Suppose that the priority rankings of all schools satisfy IPA. Then any strongly

stable matching di¤erent from the Gale and Shapley matching is not e¢ cient.

Proof. Consider any strongly stable matching � with some period t matching that is di¤erent from

the one that the Gale and Shapley deferred acceptance algorithm under isolated preferences and
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�t�1 yields. Consider any i 2 It. Then �t(i) = �t+1(i) or (�t+1(i); �t+1(i)) �i (�t(i); �t(i));

otherwise, � is not strongly stable because, in this case, child i would have the higher priority at

school �t(i) and (�t(i); �t(i)) �i (�t(i); �t+1(i)) by assumption 1.

For each child i 2 It�1 [ It, de�ne her preference relation to be Pti such that sPti s0 if and only if

(�t�1(i); s) �i (�t�1(i); s0) whenever i 2 It�1

(s; �t+1(i)) �i (s0; �t+1(i)) whenever i 2 It

Because � is strongly stable, there cannot exist any school-child pair (s; i) such that

1. (�t�1(i); s) �i (�t�1(i); �t(i)) or (s; �t+1(i)) �i (�t(i); �t+1(i));

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In terms of P, these conditions mean that there is no school-child pair (s; i) such that

1. sPti�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In other words, �t is a statically stable matching under P and �t�1.

Consider matching �� such that ��� = �� for all � 6= t but ��t is the resulting matching from the

Gale and Shapley deferred acceptance algorithm under P and �t�1.

From [12], we know that ��t must Pareto dominate every other stable matching under P and �t�1.

This and that �t is a statically stable matching under P and �t�1 imply that ��t(i)Pi�t(i) for all

i 2 It�1[It if ��t(i) 6= �t(i). Consequently, if ��t(i) 6= �t(i) for some i 2 It�1, then (�t�1(i); ��t(i)) �i
(�t�1(i); �t(i)). Similarly, if ��t(i) 6= �t(i) for some i 2 It then (��t(i); �t+1(i)) �i (�t(i); �t+1(i)).

Now consider �� and �. Clearly, �� Pareto dominates � if ��t(i) 6= �t(i) for some i 2 It�1 [ It. Hence,

it must be that ��t(i) = �t(i) for all i 2 It�1 [ It.

Consider �̂ such that �̂� = �� for all � 6= t but �̂t is the resulting matching from the Gale and

Shapley deferred acceptance algorithm under isolated preferences and �̂t�1. Clearly, ��t�1 = �̂t�1,

hence, the priority rankings of the schools are the same under both �� and �̂. In addition, for each

i 2 It�1, the induced preference relation �2i (�t�1) is equivalent to P. Now consider any child

i 2 It. Then under P, the relative ranking of �t+1(i) weakly improves from the one under �1i . In

all other aspects, Pi and �2i (�t�1) are the same. Now recall that ��t(i) = �t(i) for all i 2 It�1 [ It.

In addition, recall that �t(i) = �t+1(i) or (�t+1(i); �t+1(i)) �i (�t(i); �t(i)). Therefore, under both

Pi and �2i (�t�1), the set of schools that are strictly preferred to �t(i) is the same. Consequently,
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we obtain that under P and isolated preferences, for each i 2 It�1 [ It, the set of schools that are

strictly preferred to �t(i) is the same. In addition, because the Gale and Shapley algorithm is used

for both cases and ��t(i) = �t(i) for all i 2 It�1 [ It, it must be ��t = �̂t thanks to theorem 9 in

[11]. Consequently, �t = �̂t, which contradicts that �t di¤ers from the matching that the Gale and

Shapley algorithm yields.

Proposition 2 means that if any strongly stable matching is e¢ cient, then it must be the one

from the Gale and Shapley deferred acceptance algorithm. However, from [15], it is well known

that the Gale and Shapley deferred acceptance algorithm (in static settings) does not necessarily

yield a Pareto e¢ cient matching. This is still the case in our setting because the school choice

problem is a special case of our problem as we already pointed out in Remark 1.

5 Strategy Proofness and Stability: Impossibility Results

It is well known that in static settings, when the Gale and Shapley deferred acceptance algorithm is

used, reporting one�s true preference ordering is a weakly dominant strategy. Hence, the algorithm

is strategy proof. In this section, we explore if any mechanism is strategy-proof and yields a strongly

stable matching.

Even when independence and IPA are satis�ed, strategy-proofness is more di¢ cult to achieve

in the daycare assignment problem. In static problems, a child misreports her preferences if she

can obtain a better placement. This motive is present in the daycare assignment problem. That is,

a child could obtain a spot at a higher ranked school without hurting her placement in the other

period. But we know from the school choice literature that there are important strategy-proof

mechanisms � e.g., the Gale and Shapley algorithm or Top Trading Cycles algorithm. However, in

the daycare assignment problem, there is another motive which is not present in the school choice

problem: a child misrepresents her preferences to a¤ect the priority rankings of schools when she

is two. This way she obtains a better placement when she is two, but she sacri�ces her placement

when she is one. The second motive is indeed very strong that derives the following impossibility

result.

Theorem 4 (Impossibility Result). The existence of a strategy-proof and weakly stable mechanism

is not guaranteed.

Proof. Consider the following example: there are 4 schools fs; s1; s2; �sg. All schools have a capacity

of one child. There is no school age child until period t � 1. Suppose It�1 = fi;�{g, It = fi1; i2g

25



and It+1 = fi0g. Then starting period t+3, there are no school age children. Each school gives the

highest priority to the child who has attended the school if the child is still of the school age. If

children j 6= j0 2 fi;�{; i1; i2; i0g have not attended school s0 = s; s1; s2 in the previous period, then

school s0 ranks child j and child j0 according to the following rankings.

i Bs i0 Bs i1 Bs i2

i Bs1 i1 Bs1 i2 Bs1 i0

i Bs2 i1 Bs2 i0 Bs2 i2

�{ B�s i1 B�s i0 B�s i2

We consider 2 preference pro�les which di¤ers only in child i1�s preferences. Each child�s pref-

erences satisfy independence. Child i�s top choice is (s; s) while child �{�s is (�s; �s). The preferences

of children i2 and i0 satisfy the following conditions:

(s2; s2) �i2 (s1; s1) �i2 (s; s) �i2 (�s; �s)

(s2; s2) �i0 (s; s) �i0 (s1; s1) �i2 (�s; �s)

Child i1 has 2 types of preferences, �1i1 and �
2
i1
which are:

(s; s) �1i1 (s1; s1) �1i1 (s2; s2) �1i1 (�s; �s)

(s; s) �2i1 (�s; �s) �1i2 (s2; s2) �2i1 (s1; s1)

In addition, suppose (s2; s) �1i1 (s1; s1).

For this example, we prove that there is no mechanism that is strategy proof and yields strongly

stable matchings in 3 steps.

Step 1. Under pro�le 1, the only weakly stable matching is as follows: �t�1(i) = �t(i) = s,

�t�1(�{) = �t(�{) = �s, �t(i1) = �t+1(i1) = s1, �t(i2) = �t+1(i2) = s2, �t+1(i0) = s and �t+2(i0) = s2.

Proof of Step 1. It is easy to see that the Gale and Shapley deferred acceptance algorithm yields

the matching given in step 1, hence is weakly stable. Now only thing left to show is that there is

no other weakly stable matching under pro�le 1.

Let �̂ be weakly stable. It is clear that �̂t�1(i) = �̂t(i) = s, �̂t�1(�{) = �̂t(�{) = �s and �̂t+2(i0) = s2.

Consequently, we obtain that �̂t(i1) = s1 because child i1 has higher priority in school s1 at period

t than anyone but i. However, i must match with s at period t. Hence, �̂t(i1) = s1. This implies

that �̂t(i2) = s2. Then i2 has the highest priority at school s2 at period t+ 1. Since s2 is the top

choice for i2, �̂t+1(i2) = s2. Consequently, �̂2(i
0) = s which means �̂t+1(i1) = s1. This means that

�̂ = �. This proves the step 1.

Step 2. Under pro�le 2, the only weakly stable matching is �̂� as follows: ��t�1(i) = ��t(i) = s,
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��t�1(�{) = ��t(�{) = �s, ��t(i1) = s2, ��t(i2) = s1, ��t+1(i1) = s, ��t+1(i2) = s1, ��t+1(i0) = s2 and

��t+2(i0) = s2.

Proof of Step 2. It is easy to see that the Gale and Shapley deferred acceptance algorithm yields

the matching given in claim 2, hence is weakly stable. Now only thing left to show is that there is

no other weakly stable matching under pro�le 2.

Let �̂ be a weakly stable matching. It is clear that �̂t�1(i) = �̂t(i) = s, �̂t�1(�{) = �̂t(�{) = �s

and �̂t+2(i0) = s2. Consequently, we obtain that �̂t(i1) = s2 because child i1 has higher priority in

school s2 at period t than i2. This means that �̂t(i2) = s1.

Now let us argue that �̂t+1(i0) = s2. If not, �̂t+1(i1) = s2; otherwise, child i0 has higher priority

than child i2 at school s2 and s2 is the top choice of child i0. Hence, this contradicts with �̂ being

weakly stable. Thus, �̂t+1(i1) = s2. But because (s2; �s) �2i1 (s2; s2) and child i1 has higher priority

at school �s than anyone but �{, �̂ is weakly stable. This is a contradiction. Hence, �̂t+1(i0) = s2.

Because �̂t+1(i0) = s2, �̂t+1(i1) = s because i1 has higher priority at school s than i2. Then

�̂t+1(i2) = s1.

Step 3. For this example, there exists no strategy proof mechanism that yields weakly stable

matchings.

Proof of Step 3. On contrary, suppose that, for this example, there exists strategy proof mechanism

that yields weakly stable matchings. Suppose that the children�s preferences are under pro�le 1.

By truthfully reporting her type, child i1 attends school s1 when she is both 1 and 2 years old.

However, by misreporting her preferences as if under pro�le 2, she attends s2 in period t but s

in period t + 1. By assumption, (s2; s) �1i1 (s1; s1). Hence, child i1 misrepresents her preferences

under pro�le 1, hence, the mechanism is not strategy proof.

In the example used for the proof of theorem 4, type 1 child i1 likes school s better than any

other school. Clearly, there is no chance that she can attend s in period t. In addition, she cannot

attend s at t+1 because child i0 attends s. But observe that child i0 wants to attend school s2 but

cannot do so because child i2 attends s2. The most important aspect is that child i2 has higher

priority over child i0 at school s2 in period t + 1 only because she attends school s2 in period t.

Child i1 can eliminate child i2�s advantage over i0 if she attends school s2 in period t. By doing

this, i1 enables i0 to attend s2 at t+ 1. Ultimately, she frees a spot at school s for herself at t+ 1.

This is the reason why type 1 child i1 has an incentive to misreport her preferences.

Remark 4. Observe that in the example used for the proof of theorem 4, both IPA and independence

are satis�ed. Hence, a very minimal history dependence leads to a very negative result. This result
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a major di¤erence between the school choice problem and the daycare assignment problem.

Theorem 4 has two important corollaries which we present next.

Corollary 2. The existence of a mechanism that is strategy proof and yields a strongly stable

matching is not guaranteed.

Proof. Recall that each strongly stable matching is weakly stable. This and theorem 4 prove this

corollary.

Corollary 3. The Gale and Shapley deferred acceptance algorithm is not necessarily strategy-proof.

6 Top Trading Cycles

We have shown that the well known Gale-Shapley deferred acceptance algorithm, which is widely

used in the school choice problem, is not a particularly appealing algorithm for the dynamic prob-

lem, since it is not strategy-proof.

Most importantly, we showed that stability and strategy-proofness are incompatible for dynamic

problems. This may suggest that eliminating justi�ed envy in a dynamic problem may not be the

most appropriate objective when designing an assignment mechanism, at least not if strategy-

proofness is to be preserved. In the remaining sections of this paper, we investigate whether

strategy-proofness is compatible with e¢ ciency. First, we consider another well known mechanism,

the top trading cycles, in our setting.

Consider an algorithm that uses the top trading cycles mechanism each period, according to the

isolated preferences of children. We refer to the mechanism described by [5], which was inspired by

[14] and [18]. It can be described as follows:

Step 1 : Each child points to her preferred school. Each school points to its highest ranked child.

The process goes on, until it reaches a cycle, which it eventually will. A cycle can be written as

fi1; s1; i2; s2; :::; ik; skg, where here, sj is child i0js preferred school, whereas child il is the highest

ranked child in school sl�1, for l = 2; :::; k; and child i1 is the highest ranked child at school sk. All

children in the cycle are allocated to their preferred school.

In general, at:

Step k : All children allocated in steps 1,...,k � 1 do not participate in step k. Each remaining

child points to its preferred school, among the set of schools with remaining spots. Each pointed
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school points to the highest priority child among the remaining children. The process goes on until

it reaches a cycle, which it eventually will. All children in the cycle are allocated to the schools

that they have pointed to.

The process continues until all children are allocated.

The top trading cycle mechanism is shown to be both e¢ cient and strategy-proof for static

problems. Here, we investigate its properties in our daycare assignment problem. In our next

proposition, we study whether the top trading cycles mechanism yield an e¢ cient matching. The

answer is negative.

Proposition 3 (Top Trading Cycles is not necessarily Pareto E¢ cient). If the top trading cycles

mechanism is applied at every period using the isolated preferences of the children, then the resulting

matching, denoted by �TTC , is not necessarily Pareto e¢ cient.

Proof. For the proof of this proposition, it su¢ ces to construct an counter example. Suppose in

period 0, two children i1 and i2 are two years old and two children j1 and j2 are one year old. There

are 4 schools s1; s2; s3 and s4 and each school has a capacity of 1 child. The schools�priorities satisfy

IPA and the children�s preferences satisfy independence. The schools�priorities are given as follows

under the assumption that the children have not attended any school in the previous period:

i1 Bs1 i2 Bs1 j1 Bs1 j2

i2 Bs2 i1 Bs2 j2 Bs2 j1

i1 Bs3 i2 Bs3 j1 Bs3 j2

i1 Bs3 i2 Bs3 j2 Bs3 j1

Child i1�s top choice is s1 while child i2�s is s2. The other two children�s preferences satisfy the

following conditions:

(s2; s2) �j1 (s1; s1) �j1 (s4; s2) �j1 (s3; s1) �j1 (s3; s3) �j1 (s4; s4)

(s2; s2) �j2 (s1; s1) �j2 (s3; s1) �j2 (s4; s2) �j2 (s3; s3) �j2 (s4; s4)

The top trading cycle algorithm using isolated preferences yields the following matching �TTC :

�0TTC(i1) = s1, �
0
TTC(i2) = s2, �

0
TTC(j1) = s3, �

0
TTC(j2) = s4, �

1
TTC(j1) = s1, �

1
TTC(j2) = s2. It

is not hard to see that �TTC is Pareto dominated by the matching �: �
0(i1) = s1, �0(i2) = s2,

�0(j1) = s4, �0(j2) = s3, �1(j1) = s2, �1(j2) = s1.
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Note that the example used in the proof of proposition 3 that, not only the top trading cycles is

not necessarily e¢ cient, but also a variation of it, done by cohorts. Precisely, consider the following

mechanism. At any period t, The children born in period t� 1 are allocated according to the top

trading cycles mechanism (see [5]). Once every children i 2 It�1 is allocated, most schools will

have less, if any, spots available. Consider only the schools with open spots and use the top trading

cycles for the generation born in period t, where from the initial number of spots for each school,

we have subtracted the number of 2-year-old children already allocated. For this round, consider

only the priority of schools over the children of generation t: i.e., a young child cannot replace an

already allocated 2-year-old child. This variation of the top trading cycles is also is not Pareto

e¢ cient.

In the example below, we show that the top trading cycles (using isolated preferences) may not

be a strategy proof mechanism.

Example 5 (Top Trading Cycles may not be Strategy-Proof). Assume that there are 4 schools

fs00; s0; s; �sg; and 4 children: f�{; i; i0; i00g, with �{ 2 I�1 and fi; i0; i00g 2 I0. Assume also that there

are no children born in period 1, I1 = ?. The schools� priorities satisfy IPA and the children�s

preferences satisfy independence. The priorities of the schools satisfy the following conditions:

s00 : i Bs00 i00 Bs00 j; 8j 6= i; i0

s0 : i0 Bs0 j; 8j 6= i0

s : i Bs j; 8j 6= i
�s : �{ B�s i0 B�s i

The children�s preferences are:

i : �s �i s �i s0 �i s00

i0 : s00 �i0 �s �i0 s0 �i0 s

i00 : s00 �i00 s �i00 s0 �i00 �s

�{ : �s ��{ s ��{ s0 ��{ s00

In addition, child i prefers (s0; �s) to (s; s). The matching resulting from the top trading cycles

is:

(�{; �s) ; (i; s) ;
�
i00; s00

�
; (i

0
; s0);

in period t = 0 and �
i00; s00

�
;
�
i0; �s

�
; (i; s) ;

in period t = 1.
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Suppose that i misreports its preferences to be: i : �s �i s0 �i s �i s00 , while all others

report truthfully. The resulting matching for t = 0 is:

(�{; �s) ;
�
i; s0

�
;
�
i0; s00

�
; (i�; s) ;

while for t = 1 it is: �
i0; s00

�
; (i; �s) ;

�
i00; s

�
:

Note that under truth-telling, i�s allocation was: (s; s), while after misreporting it is (s0; �s).

Thus, i has improved herself overall by taking s0 in the �rst period and altering the priority of s00

for the following period. �

Note that the example above shows that a variation of the top trading cycles which is done by

cohorts is not strategy-proof.

7 Strategy-Proofness and E¢ ciency

In this section, we show that strategy-proofness and e¢ ciency are not necessarily incompatible.

Consider a serial dictator algorithm adapted to our setting. We will argue that this algorithm is

strategy-proof. Moreover, it is e¢ cient. Before constructing the algorithm, recall that at period t,

nt number of children are one and they are indexed 1 through nt. The algorithm runs as follows:

At period 0:

All 2-year old children choose the school that they want to attend in an increasing order accord-

ing to their indices. All children obtain their top spot as long as the chosen school has available

seats. When a school has ful�lled its slots, the child moves on to her next best choice.

When all 2-year old children have been allocated, then all 1-year old children choose their

preferred school with open slots following an increasing order according to their indices.

At period 1:

In the following period, the children who are now 2-year old choose their schools according to

their indices. Then the one year old children choose their schools in an increasing order according

to their indices. The process repeats itself. Given that at any given period there is a �nite number

of school age children, this is a well-de�ned mechanism. Moreover, it is easy to verify that the

proposed algorithm is both strategy-proof and e¢ cient.5

5One can use the random serial dictatorship algorithm which is a slight variation of the serial dictatorship algo-
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8 Conclusion

In this paper we have introduced the daycare assignment problem. This problem di¤ers from

the school choice problem due to its dynamic nature. We have proved some negative results

concerning well-known mechanisms, even when preferences are assumed to satisfy some consistency

across periods, and schools�priorities are linked only in a very weak sense (priorities are history

dependent only through currently allocated children, and are otherwise the same). In particular,

we have shown that the Gale-Shapley deferred acceptance algorithm and the Top Trading Cycles,

both commonly used in the school choice problem, are not strategy-proof in the daycare assignment

problem. We have extended these insights to show that there are no strongly stable mechanisms

that are strategy-proof.

We conclude by presenting a version of the serial dictator, adapted to our setting, and arguing

that it is strategy-proof and e¢ cient.

9 Appendix

9.1 Aarhus Assignment Mechanism6

PLACE ASSIGNMENT RULES

In brief, places are assigned in this order:

1. Children with special needs, e.g., children with disabilities

2. Children with siblings in the same institution

3. Bilingual children who, after expert evaluation, are deemed in need of special assistance in

day care

4. The oldest child in an assignment district (anvisningsdistrikt) who is written up for a guar-

anteed place. That is, a place corresponding to the rules of the place guarantee. An assignment

district is the area the child lives in. It consists of 1 to 3 school districts

5. The oldest child in an assignment district who is written up for a guaranteed place. Aarhus

municipality is divided into 8 major guarantee districts (garantidistrikter) along the approach roads.

A guarantee district consists of one or several assignment districts

6. The oldest child in an assignment district who is written up for a guaranteed place

rithm. The random serial dictatorship algorithm is strategy-proof and ex-post e¢ cient but not necessarily ex-ante
e¢ cient�see [8].

6For the original document see: https://www.borger.dk/selvbetjening/sider/fakta.aspx?sbid=8632
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7. The oldest child on the waiting list for a particular institution, even if the child has another

place already

Guaranteed place and desired place

You can choose a guaranteed place, but at the same time request one or more speci�c institu-

tions. These wishes will be taken into account when we �nd a place for you. However, we cannot

guarantee that you get one of these desired places. If none of the institutions you are interested in

have openings, you will be o¤ered a guaranteed place.

A guaranteed place is a place within the district you live in, or at a distance from your home

which involves no more than half an hour of extra transport each way to and from work. The

municipal placement guarantee is satis�ed when you have been o¤ered a place. To be assigned a

guaranteed seat at a desired time, the application must be received by the placement guarantee

o¢ ce (Pladsanvisningen) no later than 3 months before the place is desired.

Moves outside Aarhus Municipality

If you move from Aarhus municipality and want to keep your place after the move, you must

immediately inform the placement guarantee o¢ ce that you are moving. Aarhus municipality will

ask your new municipality to submit a subsidy certi�cate (tilskudsbevis). Monthly payments will

then depend on the size of the subsidy from the new municipality. Any di¤erence will be charged

/ adjusted per. move date.

Domiciled outside Aarhus Municipality

If you live in another municipality and want a place at an institution in Aarhus municipality, you

must register on the waiting list. This can also be done at https://digitalpladsanvisning.borgerservice.dk.

When you get o¤ered a place in Aarhus Municipality and accept it, we will ask your municipality

to provide a subsidy certi�cate stating the starting date. We will also make an agreement about

which of the two municipalities are required to collect parental fees from you. The monthly fee will

depend on the size of the subsidy from your municipality.

Privacy Act (persondataloven) - the rights of citizens

�Act concerning the processing of personal data�gives you as a citizen various rights when the

municipality processes information about you. The purpose of the act is to enhance transparency

and thereby strengthen your legal position.

The municipality is, for example, obliged to inform the citizen of the municipality�s treatment

of the collected information �The so-called information obligation (oplysningspligt).

Duty to assist inquiry
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Lack of response may have implications for the claimed bene�t or harm the proceedings. Proce-

dural law states that you have an obligation to assist inquiry. You are also obliged to immediately

give the municipality notice of any change in your personal and �nancial circumstances that may

cause change in bene�ts. Missing or incorrect information may result in claims for reimbursement.

The municipality�s control of information

For control purposes, the municipality may obtain information. These may be in electronic

form. They may regard economic conditions, etc. from, for example, employers, unemployment

insurance, tax authorities and other public authorities, including municipalities.

Disclosure of information

Aarhus Municipality routinely transfers data to other municipalities, government institutions,

counties and others with legal right to the information.

Discovery, and correction

According to the Privacy Act you are entitled to access information stored about you. You can

gain access by querying �Borgercervice�, City Hall, 8100 Aarhus C. If the municipality has entered

incorrect information about you, you can demand this corrected.

Example 6 (Aarhus Mechanism). Suppose there are 2 schools, fs1; s2g and each school has a

capacity of one child. In each period 1 child is born, but children are identical in all other aspects.

Their preferences are satisfy the following property: (s1; s1) � (s2; s1) � (h; s1) � (s2; s2). Both

schools are in a close enough distance to all children that by o¤ering a spot in either school, the

municipality meets its obligation to �nd a guaranteed spot to any applicant. However, school s1 is

closer to all children than s2 is. Consequently, any opening in s1 is o¤ered to the oldest applicant

before any opening in s2 is o¤ered.

Consider the following strategy pro�le: at age 1, each child applies for a spot if and only if

then the two year old child has attended s2 in the previous period or has applied and yet does not

have a spot in any school. At age 2, each child who have not applied for a spot in the previous

period applies for a spot. In case of applying for a spot, one always requests a guaranteed spot. The

result is that at age 1, no child attends a school while at age 2 all children attend school 1. At this

equilibrium school 2 never �lls its spot.

Now let us show the above proposed strategy pro�le is an equilibrium. Clearly, if the two year

old child has attended s2 in the previous period or has applied and yet does not have a spot in any

school, then one year old attends school s1 by requesting a guaranteed spot. Given that attending

school s1 at both age 1 and 2 is the most preferred option, one has no incentive to deviate. When
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then two year old child requests a guaranteed spot, by applying for a spot, one year old child only

can attend school s2. Then this child also attends school s2 at age 2 as the spot in school s1 is

assigned to then 1 year old child. However, (h; s1) � (s2; s2). Therefore, one year old certainly

worsens. This completes the proof that the proposed strategy pro�le is an equilibrium.

Now the resulting matching from the above described equilibrium is that (h; s1) for each child.

Clearly, each child matching with (s2; s1) Pareto dominates (h; s1). Hence, the Aarhus allocation

mechanism is not e¢ cient. Furthermore, in each period, then the one 1 year old child can attend

school s2 as school s2 has an un�lled spot. Consequently, the Aarhus allocation mechanism is not

weakly stable.

�

Proof of Lemma 1. Since � is not strongly but weakly stable, by de�nition 6, there must exist s; s0

such that (s; s0) �i (�t(i); �t+1(i)) and one of the following conditions are satis�ed:

1.
���t(s)�� < rs and ���t+1(s0)�� < rs0 ,

2.
���t(s)�� < rs, ���t+1(s0)�� = rs0 , and, for some j0 2 �t+1(s0), iBt+1s0 (��t)j0 where ��t is the period

t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2 It�1 [ It,

3.
���t(s)�� = rs, ���t+1(s0)�� < rs0 , and, for some j 2 �t(s), iBts (�t�1)j,

4.
���t(s)�� = rs,

���t+1(s0)�� = rs0 , for some j 2 �t(s), j0 2 �t+1(s0) and for any ��t 2 M(i; j; �),

iBts (�t�1)j and iBt+1s0 (��t)j0:

First, note that s 6= �t(i) and s0 6= �t+1(i); otherwise, � is not weakly stable, which can be

veri�ed using the fact that IPA is satis�ed.

Case 1. s = s0. Consequently, (s; s) �i (�t(i); �t+1(i)). In addition,
���t(s)�� < rs or/and

i Bts (�t�1)j for some j 2 �t(s). Combining this with � being weakly stable, one obtains that

(�t(i); �t+1(i)) �i (s; �t+1(i)). Given independence, this, in turn, implies that if �t(i) 6= �t+1(i)

then (�t(i); �t(i)) �i (s; s). Then, by transitivity of preferences, (�t(i); �t(i)) �i (�t(i); �t+1(i)).

This implies that � is not weakly stable because child i has the highest priority at school s at

period t+1, hence, at t+1, she has a right to attend school s ahead of any other child. Therefore,

�t(i) = �t+1(i). This is the condition we seek.

Case 2. s 6= s0 and �t(i) = �t+1(i). Consequently, (s; s0) �i (�t(i); �t(i)). In addition,
���t(s)�� < rs

or/and i Bts (�t�1)j for some j 2 �t(s). Combining this with � being weakly stable, one obtains
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(�t(i); �t(i)) �i (s; �t(i)). Recall that (s; s0) �i (�t(i); �t(i)). Hence, by transitivity, (s; s0) �i
(s; �t(i)). Then, by assumption 1 (2), (s0; s0) �i (�t(i); �t(i)). Suppose (s; s) �i (s0; s0). Then

(s; s) �i (�t(i); �t(i)) and, by assumption,
���t(s)�� < rs or/and i Bts (�t�1)j for some j 2 �t(s).

Hence, we have identi�ed a pair (s; i) asked in the lemma.

Now suppose (s0; s0) �i (s; s). Since � is weakly stable, either the allocation given by � is

preferred to this alternative allocation, or s0 does not lead to justi�ed envy. Formally, at least one

of the two conditions must hold: (a) (�t(i); �t(i)) �i (�t(i); s0) or/and (b) j�t+1(s0)j = rs0 and there

exists no j0 2 �t+1(s0) such that iBt+1s0 (�t)j0.

Suppose (a) occurs. Recall (s; s0) �i (�t(i); �t(i)), hence, (s; s0) �i (�t(i); s0). Then assumption

1 (2) implies that (s; s) �i (�t(i); �t(i)) because s 6= s0. Observe that the pair (s; i) is the pair asked

in the lemma as we already pointed out that (s; s) �i (�t(i); �t(i)),
���t(s)�� < rs or/and iBts (�t�1)j

for some j 2 �t(s).

Suppose now (b) occurs but not (a). Recall that one of the 4 conditions listed in the beginning

of the proof must be satis�ed. Since j�t+1(s0)j = rs0 , 1 and 3 are ruled out. If condition 2 is satis�ed,

then i Bt+1s0 (��t)j0 for some j0 2 �t+1(s0). Furthermore, ��t di¤ers from �t only in that ��t(i) = s.

Then, by IPA, iBt+1s0 (�t)j0. This a contradiction with b occurring. If condition 4 is satis�ed, then

there must exist j; j0 such that, for any ��t 2M(i; j; �), iBts (�t�1)j and iBt+1s0 (��t)j0. In particular,

it must be true for ��t such that ��t(j) = h. Observe that ��t di¤ers from �t only in that ��t(i) = s

and ��t(j) = h. By IPA, iBt+1s0 (�t)j0. This a contradiction with b occurring.

Case 3. s 6= s0 and �t(i) 6= �t+1(i). Consequently, (s; s0) �i (�t(i); �t+1(i)). Since � is weakly stable,

one of the two conditions must hold: (a) (�t(i); �t+1(i)) �i (�t(i); s0) or/and (b) j�t+1(s0)j = rs0

and no j0 2 �t+1(s0) with iBt+1s0 (�t)j0 exists.

Suppose (a) occurs. Recall that by assumption, in this case 3, (s; s0) �i (�t(i); �t+1(i)), hence,

(s; s0) �i (�t(i); s0). Using 1 (2), this implies that (s; s) �i (�t(i); �t(i)). Then, (s; �t+1(i)) �i
(�t(i); �t+1(i)). Consider the pair (s; i). As pointed out earlier,

���t(s)�� < rs (conditions 1 or 2)

or/and iBts (�t�1)j (conditions 3 or 4) for some j 2 �t(s). This means that � is not weakly stable
which is a contradiction.

Suppose now (b) occurs but not (a), therefore
�
�t (i) ; s0

�
�i (�t(i); �t+1(i)). Recall that

(s; s0) �i (�t(i); �t+1(i)); since � is not strongly stable. In addition, one of the 4 conditions listed

in the beginning of the proof must be satis�ed. Since j�t+1(s0)j = rs0 , 1 and 3 are ruled out. If

condition 2 is satis�ed, then i Bt+1s0 (��t)j0 for some j0 2 �t+1(s0). Furthermore, ��t di¤ers from

�t only in that ��t(i) = s. By IPA, i Bt+1s0 (�t)j0. This is a contradiction with (b) occurring. If
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condition 4 is satis�ed, then there must exist j; j0 such that, for any ��t 2 M(i; j; �), i Bts (�t�1)j
and iBt+1s0 (��t)j0. Fix ��t such that ��t(j) = h. Observe that ��t di¤ers from �t only in that ��t(i) = s

and ��t(j) = h. By IPA, iBt+1s0 (�t)j0. This is a contradiction with (b) occurring.

Proof of Lemma 2. Necessity. Assume � is weakly stable. We need to show that for all t, �t is

statically stable under isolated preferences and �t�1. Suppose otherwise. Then there must exist, t,

and a school-child pair (s; i) such that

1. if i 2 It, then s �1i �t(i) and at least one of the following is satis�ed: j�t(s)j < rs or iBts(�t�1)j
for some j 2 �t(s),

2. if i 2 It�1, then s �2i
�
�t�1

�
�t(i) and at least one of the following is satis�ed: j�t(s)j < rs or

iBts (�t�1)j for some j 2 �t(s).

Suppose i 2 It. Then we are in case 1. Since � is is weakly stable, the following 2 conditions

cannot be satis�ed at the same time: (a) (s; �t+1(i)) �i (�t(i); �t+1(i)) and (b) j�t(s)j < rs and/or

i Bts (�t�1)j for some j 2 �t(s). If (b) is not true, then this is a contradiction because (s; i) must
satisfy the conditions given in case 1. Hence, assume that (b) is satis�ed but (a) is not, i.e.,

(�t(i); �t+1(i)) �i (s; �t+1(i)). If �t(i) 6= �t+1(i), assumption 1 implies that (�t(i); �t(i)) �i (s; s).

By the de�nition of �1, �t(i) �1i s which contradicts with the assumption that s �1i �t(i). Suppose

�t(i) = �t+1(i). Recall that s �1i �t(i), hence, (s; s) �i (�t(i); �t+1(i)). Recall that (b) is satis�ed.

Thus, by moving to school s in period t, child i would have the highest priority at school s at time

t+ 1. Hence, � is not strongly stable. Hence, i =2 It.

Suppose i 2 It�1. Then we are in case 2. Because � is weakly stable, the following 2 conditions

cannot be satis�ed at the same time: (a) (�t�1(i); s) �i (�t�1(i); �t(i)) and (b) j�t(s)j < rs and/or

i Bts (�t�1)j for some j 2 �t(s). If (b) is not true, then this is a contradiction because (s; i)

must satisfy the conditions given in case 2. Hence, (b) must be satis�ed but (a) is not, i.e.,

(�t�1(i); �t(i)) �i (�t�1(i); s). By the de�nition of �2i (�t�1), we have that �t(i) �2i (�t�1)s which

contradicts with the assumption that s �2i
�
�t�1

�
�t(i). Hence, i =2 It�1. Therefore, for all t, �t is

statically stable under isolated preferences and �t�1.

Su¢ ciency. For any t, �t is statically stable under isolated preferences and �t�1. First let us show

that � is weakly stable. Suppose otherwise. Then, at some period t, there must exist a pair (s; i)

such that one of the two conditions below is satis�ed:

37



1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

or

(a) (�t�1(i); s) �i (�t�1(i); �t(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

Suppose case 1 occurs. If s 6= �t+1(i), then by assumption 1, and recall (s; �t+1(i)) �i
(�t(i); �t+1(i)); we would have that:

(s; s) �i (�t(i); �t(i)):

By de�nition of �1i , we have that s �1i �t(i). This and 1b mean that �t is not statically stable

under isolated preferences and �t�1. This is a contradiction. Suppose, on the other hand, that

s = �t+1(i). If (�t+1(i); �t+1(i)) �i (�t(i); �t(i)), then the de�nition of �1i yields �t+1(i) �1i �t(i).

This and 1b mean that �t is not statically stable under isolated preferences and �t�1.

Suppose (�t(i); �t(i)) �i (�t+1(i); �t+1(i)). This and assumption 1 yield (�t(i); �t(i)) �i (�t(i); �t+1(i)).

Now consider period t + 1. Then by the de�nition of �2i (�t), �t(i) �2i (�t)�t+1(i). In addition,

observe that child i has the highest priority at school �t(i). The last 2 conditions contradict with

�t+1 being statically stable under isolated preferences and �t.

Suppose case 2 occurs. By the de�nition of �2i (�t�1), we have that s �2i (�t�1)�t(i) since

(�t�1(i); s) �i (�t�1(i); �t(i)). But this and 2b directly imply that �t is not statically stable under

isolated preferences and �t�1. This is a contradiction.

We have shown that � is weakly stable. Now we are left to show that � is strongly stable if IPA

is satis�ed.7 Suppose otherwise. Then by lemma 1, for some period t and some school-child pair

(s; i),

1. �t(i) = �t+1(i)

2. (s; s) �i (�t(i); �t+1(i))

3.
���t(s)�� < rs or/and iBts (�t�1)j for some j 2 �t(s)

The �rst 2 conditions and the de�nition of �1i yield s �1i �t(i). This and the third condition

imply that �t is not statically stable under isolated preferences and �t�1.
7Note that if the children�s preferences satisfy independence, then theorem 1 implies the result directly
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Proof of Proposition 1. Recall that time �1 matching ��1 is �xed for all matchings we consider.

On contrary to the proposition, suppose that some strongly stable matching � Pareto dominates

matching �GS .

Step 1. If i 2 I�1, then �0GS(i) = �0(i).

Proof of Step 1. For any 2 year old child, her isolated preference is �2i (��1). From lemma 2, we

have that �0GS and �
0 are stable period 0 matchings under isolated preferences and ��1. Gale and

Shapley [12] show that �0GS Pareto dominates every other statically stable period 0 matchings under

isolated preferences and ��1 in terms of isolated preferences. This means �0GS(i) �2i (��1)�0(i) if

�0GS(i) 6= �0(i). By de�nition of �2i (��1), (��1(i); �0GS(i)) �i (��1(i); �0(i)) if �0GS(i) 6= �0(i).

Hence, if � Pareto dominates �GS , then it must be �
0
GS(i) = �

0(i).

Step 2. If i 2 I0, then �0GS(i) = �0(i).

Proof of Step 2. Suppose �0GS(i) 6= �0(i) for some i 2 I0. Then, as in the proof of step 1,

we obtain that �0GS(i) �1i �0(i). By the de�nition of the isolated preferences �1i , we have that

(�0GS(i); �
0
GS(i)) �i (�0(i); �0(i)). In addition, strong stability implies that if �0GS(i) 6= �1GS(i) then

(�0GS(i); �
1
GS(i)) �i (�0GS(i); �0GS(i)); otherwise, �GS is not strongly stable. If �0(i) = �1(i), then

combining the previous 2 relations, one obtains (�0GS(i); �
1
GS(i)) �i (�0(i); �0(i)). This contra-

dicts with � Pareto dominating �GS . Hence, �
0(i) 6= �1(i). This and strong stability of � imply

that (�0(i); �1(i)) �i (�0(i); �0(i)). Since � Pareto Dominates �GS , it must be that (�0(i); �1(i)) �i
(�0GS(i); �

1
GS(i)). Recall that (�

0
GS(i); �

0
GS(i)) �i (�0(i); �0(i)) and (�0GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)).

These relations and assumption 1, indeed (??) imply that (�1(i); �1(i)) �i (�1GS(i); �1GS(i)).

By lemma 2, we know that �1 is statically stable under isolated preferences and �0. Now suppose

we ran the Gale and Shapley algorithm at period 1 under isolated preferences and �0. Let us denote

the resulting matching ��1. From [12], we know that if ��1(i) 6= �1(i), then ��1(i) �2i (�0)�1(i). By

the de�nition of �2i (�0), (�0(i); ��1(i)) �i (�0(i); �1(i)). Recall that (�0(i); �1(i)) �i (�0(i); �0(i))

and �0(i) 6= �1(i). These imply that ��1(i) 6= �0(i). Then by assumption 1, (�0(i); ��1(i)) �i
(�0(i); �1(i)) implies (��1(i); ��1(i)) �i (�1(i); �1(i)).

Before proceeding any further let us sum up the preference relations for any i 2 I0 if � Pareto

dominates �:

(��1(i); ��1(i)) �i (�1(i); �1(i)) �i (�1GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)) �i (�0(i)); �0(i)) (1)

Next we will proceed to show that ��1 is statically stable under isolated preferences and �0GS . Let

us postpone the proof momentarily to discuss its implications. From lemma 2, we know that �1GS is
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a stable matching under isolated preferences and �0GS . In addition, it must Pareto dominate ��
1 in

terms of the isolated preferences, since ��1 is statically stable and the �1GS must Pareto dominate all

stable matchings (see [12]). Hence, if �1GS(i) 6= ��1(i), then �1GS(i) �2i (�0GS)��1(i). By the de�nition

of �2i (�0), (�0GS(i); �1GS(i)) �i (�0GS(i); ��1(i)). Recalling that (�0GS(i); �0GS(i)) �i (�0(i); �0(i)), we

�nd that (�0GS(i); ��
1(i)) �i (�0(i); ��1(i)). Assumption 1 and (��1(i); ��1(i)) �i (�1(i); �1(i)) yield

(�0(i); ��1(i)) �i (�0(i); �1(i)). Accordingly, (�0GS(i); �1GS(i)) �i (�0(i); �1(i)). However, recall that

� Pareto dominates �GS . This is the contradiction we are looking for. Thus, after showing that ��
1

is statically stable under isolated preferences and �0GS the proof is complete.

We now proceed to show that ��1 is indeed a stable matching under isolated preferences and �0GS .

We already know from Assumption 1 and (1) that, for all i 2 I0, ��1(i) �2i (�0)�1(i) if ��1(i) 6= �1(i).

Also, from [12], we know that, for all i 2 I1, ��1(i) �1i �1(i) if ��1(i) 6= �1(i). Recall that ��1 is

statically stable matching under isolated preferences and �0. Now consider the isolated preferences

in period 1 from �0GS and suppose, under these isolated preferences, ��
1 is not stable. Therefore,

there must exist a school-child pair (s; i) such that both conditions are satis�ed:

I. � if i 2 I0, then s �2i (�0GS)��1(i); or

� if i 2 I1, then s �1i ��1(i);

II. j��1(s)j < jrsj or/and iB1s (�0GS)j for some j 2 ��1(s).

Because ��1 statically stable under the isolated preferences and �0, the conditions 1 and 2 below

cannot be satis�ed at the same time.

1. (a) if i 2 I0, then s �2i (�0)��1(i); or

(b) if i 2 I1, then s �1i ��1(i):

2. j��1(s)j < rs or/and iB1s (�0)j for some j 2 ��1(s):

Suppose i 2 I0. Then s �2i (�0GS)��1(i). We show that in this case condition 1 (a) is satis�ed.

By the de�nition of �2i (�0GS), (�0GS(i); s) �i (�0GS(i); ��1(i)). If �0(i) = �0GS , then (�
0(i); s) �i

(�0(i); ��1(i)). This means that condition 1a is satis�ed. Let �0(i) 6= �0GS . Then preference relations

given in (1), assumption 1, (�0GS(i); s) �i (�0GS(i); ��1(i)) and the fact that (s; s) �i
�
��1 (i) ; ��1 (i)

�
imply that (�0(i); s) �i (�0(i); ��1(i)). Hence, condition 1 (a) is satis�ed.

Suppose i 2 I1. Then s �1i ��1(i). Since �1 does not depend on the last period�s matching,

condition 1 (b) is satis�ed. Therefore, we �nd that either 1 (a) or 1 (b) is satis�ed. This means that
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2 cannot be satis�ed. Clearly, it must be that j��1(s)j = rs. This implies that school s�s priority

ranking must satisfy i B1s (�0GS)j and j B1s (�0)i, for at least some j 2 ��1 (s). There are 2 cases
consider:

1. i =2 �0GS(s); or

2. i 2 �0GS(s) and i 2 I0:

If case (1.) happens, this implies that j =2 �0GS(s); otherwise, j would have the highest priority

at school s, hence, we reach a contradiction with iB1s (�0GS)j. Therefore, j =2 �0GS(s). Since school
s�s priority ranking satis�es IPA, given that i B1s (�0GS)j it must be that j 2 �0(s) and j 2 I0 to
have the required reversal of school s�s priority ranking. Then �0GS(j) 6= �0(j). This, as argued

earlier in step 1, implies that (�0GS(j); �
0
GS(j)) �j (�0(j); �0(j)) = (s; s); where the last equality

comes from the fact above, that if j =2 �0GS(s), it must be that j 2 �0(s). Now recall that j 2 ��1(s).

1. Therefore, (�0GS(j); �
0
GS(j)) �j (�0(j); ��1(j)) which is a contradiction (see preference relation

1).

Suppose (2.) happens, i 2 �0GS(s), i.e., s = �0GS(i). We know s �2i (�0GS)��1(i). These conditions

yield (�0GS(i); �
0
GS(i)) �i (�0GS(i); ��1(i)). This is a contradiction which we are looking for.

This completes the proof of step 2.

Step 3. The Gale and Shapley algorithm yields a strongly stable matching that is not Pareto

dominated by any other strongly stable matchings.

Proof of Step 3. Proving step 3 is just a matter of reiterating the arguments of steps 1 and

2 assuming previous periods�matchings are identical with the ones resulted from the Gale and

Shapley deferred acceptance algorithm.
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