
Treasure game∗

Alexander Matros†

Moore School of Business

University of South Carolina

Vladimir Smirnov‡

School of Economics

University of Sydney

April 6, 2011

Abstract

We study a R&D race where the prize value is common knowledge, but
the search costs are unknown ex ante. The race is modeled as a multistage
game with observed previous actions. We provide a complete characterization
of the efficient symmetric Markov perfect equilibrium in both single-player and
multiple-player settings. There are two types of inefficiency in search for mul-
tiple players in comparison with a single player: a tragedy of the commons (for
small races) and a free riding (for big races). We demonstrate that there is
no monotonicity for 3 or more players: players can be better off if the race is
longer even though such a race is more costly.
Keywords: R&D, search, uncertainty.
JEL classifications: O32.

1 Introduction

The R&D literature has grown up substantially in the recent years. It has three main
directions.

(i) The classical papers, Loury (1979), Dasgupta and Stiglitz (1980a, b), Lee and
Wilde (1980), assume that each firm in R&D competition makes once-and-for-all
expenditure which determines the winner.

(ii) Reinganum (1981, 1982) considers a dynamic R&D race where each firm
chooses a time path of expenditures. However, since the author uses the exponential
success function the knowledge acquired in the past does not change the probability of
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the current success in the race. As a result, the equilibrium strategies are independent
of time.1

(iii) Harris and Vickers (1985) analyze a race model where the winner is the
first player to reach the finish line. Fershtman and Rubinstein (1997) consider an
interactive model in which two players search for a single hidden treasure in one of a
given set of labeled boxes. In both models the players know the upper bound of the
costs: the distance in the first model and the number of boxes in the second model.

In this paper, we extend directions (ii) and (iii). In particular, we analyze a dy-
namic model where n players search for a treasure hidden somewhere on an island.
The value of the treasure is common knowledge and searching is costly. Once the
treasure is found the game ends. All players observe the current island size and make
their search decisions simultaneously. If the treasure is not found in the current pe-
riod, the unsearched island shrinks - its next-period size will be equal to the current
island size minus the island part that has been searched by all players in the current
period. The game we consider has Schelling’s “conflict of partnership and compe-
tition” property: players are naturally competing against each other each period,
but each player benefits from the other players’ previous periods unsuccessful search,
because it increases his chance to find the treasure in the current period.2

We assume that players are searching different parts of the island and only one
player can obtain the treasure. If several players find the treasure simultaneously
(search the same part of the island), each of them incurs costs but the treasure will
be destroyed (players do not get any treasure). This assumption is standard in the
R&D literature (see Chatterjee and Evans, 2004). It can be justified on the grounds
that if several players discover the treasure simultaneously, they will be involved
in a fierce competition afterwards and run out of any surplus. A good example of
such a situation for just two players is 1960’s Lockheed and Douglas jet development
competition.3 Many examples of simultaneous discoveries in science can be found in
Merton (1973).

The game we analyze is stochastic where each state is described by its current
island size. We restrict our attention to Markov strategies: individual search decisions
depend only on the current island size. First, we describe a procedure how to construct
a symmetric Markov perfect equilibrium (SMPE) for any n ≥ 1. We present a Bellman
equation for the problem and use the value iteration method to solve it. We find that
each SMPE (for a fixed discount factor δ and a fixed number of players n) is a spline
of degree one.4 Our approach also describes the maximal number of search periods
which is required to find the treasure. This number is equal to the number of spline
pieces.

Since the monopolist n = 1 has the efficient search strategy, we can compare this
strategy with the SMPE strategy for n ≥ 2. Multi-player search is typically inefficient

1See Reinganum (1989) for more detail discussion about (i) and (ii).
2See Schelling (1971).
3For more detail see The Economist, 1985; and Chatterjee and Evans, 2004.
4A spline is a special function defined piecewise by polynomials, see for example Ahlberg, Nielson,

and Walsh (1967).
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except for very small islands when players behave as a cartel and search in just one
period. In general there are three types of possible inefficiency. First, in the case of
small islands, multiple players search too fast: the probability of finding a treasure is
high which means players have incentives to overinvest in the current period. This is
a standard tragedy of the commons effect. Second, in the case of large islands players
search too slow: the probability of finding a treasure is low, so immediate payoff
from investment is negative. Players want others to invest and incur current losses
and hope that others will not find the treasure in the current period. Players have
incentives to postpone their search for the future when it will be more profitable to
search. This is a standard free riding effect. Finally, because search with multiple
players is inefficient there are island sizes for which the monopolist finds searching
profitable even though multiple players prefer not to search. It is interesting to note
that when the size of unsearched island is exactly equal to the treasure value, the two
mentioned above effects are absent and search with n ≥ 2 players is efficient (Puzzle
2). This happens when the discount factor is low δ ≤ 1/2, which guarantees that
players search the island in at most two periods. For this unique island size in the
first period of search players get zero expected payoff and as a result leave the efficient
island size for the second period of search.

Since in the SMPE all players make the same decisions simultaneously, they have
equal probabilities to find the treasure in any period. Therefore, it looks natural to
conjecture that a smaller island (smaller costs) is better than a bigger island for all
players. It turns out that this conjecture is not correct. As we illustrate in the Exam-
ple, players might be worse off with a smaller island size. This surprising observation,
which we refer to as Puzzle 1, means that an increase in expected costs might make
all the players better off. This puzzling behavior has the following intuitive explana-
tion. If the island is small, the tragedy of the commons effect is strong and players
oversearch the island. If the island size is increased, the tragedy of the commons
effect decreases and players search the island more efficiently. It turns out that the
improvement in efficiency when island size is increased could be higher than losses
due to higher expected costs.

Our paper is related to the individual search literature; see Ross (1983) and Gittins
(1989). However, in our model players are assumed to search strategically. Chatter-
jee and Evans (2004) analyze R&D model where two competing firms observe the
other’s past choices and search strategically. Their firms have to choose between two
research projects. We have only one research project in their notation. Their model
is complementary to our model. While agents in their model decide which area to
search in (the size is predetermined), agents in our model decide how much area to
search (the location has no importance).

Our model has the following main assumptions. First, n ≥ 1 players (firms) are
searching for the treasure. Second, the treasure (patent/vaccine/prize) has common
value. Finally, the total search cost is unknown ex ante. There are many examples
of this situation: detectives (police units) are looking for a criminal; journalists are
looking for a movie star in the city hotels; researchers are looking for solutions of the
six Millennium Prize Problems in mathematics. Another possible example is malaria.

3



Malaria is one of the most common infectious diseases and enormous public health
problem which causes about 400 - 900 million cases of fever and approximately one to
three million deaths annually - this represents at least one death every 30 seconds, see
Breman (2001) and Greenwood, B., Bojang, K., Whitty., C., and G. Targett (2005).
There is currently no vaccine that will prevent malaria (the search costs are unknown
ex ante). Economic adviser Jeffrey Sachs estimates that malaria can be controlled
for US3 billion in aid per year.5 Therefore, the expected value of a malaria vaccine is
at least US3 − 12 billion per year. Our results show that more firms (more research
units) should (in expectations) find a vaccine faster. However, a search with more
firms is less efficient (less profitable for the participants) and therefore firms might
try to lobby for less “more efficient/productive” units.

The paper is organized as follows. The model is presented in Section 2. An
illustrative example is described in details in Section 3. A general procedure of finding
the SMPE is derived in Section 4. Properties of the SMPE are discussed in Section 5.
Section 6 concludes.

2 The Model

There is an island of size x (0) > 0. There are n ≥ 1 players who want to find a
treasure which is hidden somewhere on the island. The value of the treasure is R > 0
for all players. The treasure has equal chances to be at any part of the island.6

In period t = 0 all players simultaneously choose how much to invest in search
for the treasure. The search is costly. If player i searches I i (0) in period t = 0, his
search cost is −I i (0). All players together search

I (0) = I1 (0) + ... + In (0)

in period t = 0. It is assumed similar to the Nash Demand game that if players search
together more than the current island (x (0) < I (0)), the treasure is destroyed, all
players incur their search costs (the payoff of player i is −I i (0)), and the game ends.7

If x (0) = I (0), player i has Ii(0)
x(0)

probability to find the treasure and the game
ends after t = 0. Player i obtains the following expected payoff

I i (0)

x (0)
R− I i (0) .

5It has been argued that, in order to meet the Millennium Development Goals, money should be
redirected from HIV/AIDS treatment to malaria prevention, which for the same amount of money
would provide greater benefit to African economies.

6We focus our attention on uniform distribution because this is the most realistic situation when
there is no information about the island.

7For simplicity it is also assumed that multiple players never invest at the same place. That
could be rationalized by a similar assumption that investing at the same place is costly, but even if
successful is not rewarded.
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If x (0) > I (0), player i has a Ii(0)
x(0)

probability to find the treasure and the game

ends with probability I(0)
x(0)

. If the treasure is not found in period t = 0 (this happens

with probability 1− I(0)
x(0)

), the island size shrinks to x (1) = x (0)− I (0) and the game
moves to the next period t = 1. The size of the island in the next period is equal to
the size of the island in the previous period minus the searched part of the island.

In period t = 1, all players simultaneously choose how much to search for the
treasure when the island is of size x (1) and so on.

In general in period t > 0, each player knows the history h(t) = (x(0); I(0), ..., I(t−
1)) and all players simultaneously choose how much to search for the treasure on the
island of size x (t).

If I1(t)+ ...+In(t) = I(t) > x(t), the treasure is destroyed and player i gets payoff

−(I i(0) + δI i(1) + ...+ δtI i(t)),

where δ is the common discount factor, and the game ends.8

If I(t) = x(t), player i has Ii(t)
x(t)

probability to find the treasure. The expected
payoff of player i is

δt
I i(t)

x(t)
R− (I i(0) + δI i(1) + ...+ δtI i(t)),

and the game ends.

If I(t) < x(t), player i has a Ii(t)
x(t)

probability to find the treasure and the game

ends with probability I(t)
x(t)

. If the treasure is not found in period t (this happens with

probability 1− I(t)
x(t)

), the island size shrinks to

x(t + 1) = x(t)− I(t).

The new size of the island is equal to the previous island size minus the searched part.
We assume that each player can observe how much the other players have searched

previously before making his searching plans for the next period. Note that all search
costs are sunk, but only one player (if any) can find the treasure. Moreover, the value
of the prize is known from the very beginning, but the search costs for each player
will be determined only at the end of the game.

Player i’s strategy is an infinite sequence of functions specifying how much to
search in each period contingent upon any possible sequence of previous searches.
Thus, the game we consider is stochastic and any history can be “summarized” by
the “state” - the current island size. We will restrict our attention only to Markov
strategies in which the past influences the current play only through its effect on
the current island size. A pure Markov strategy for player i is a time-invariant map
I i : X → X, where X ∈ [0, x(0)]. Therefore, the solution concept is a symmetric

8One possible motivation for a discount factor is that there is a 1 − δ chance that the game
terminates at the end of each period.
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Markov perfect equilibrium (SMPE). Moreover, we will be looking for the SMPE
with the highest total expected payoff. In SMPE, player i has to solve the following
Bellman equation:

V (x) = max
0≤Ii≤x−I−i

−I i +
I i

x
R + δ

(
1− I1 + ... + In

x

)
V (x− (I1 + ...+ In), (1)

where I−i = I1+ ...+I i−1+I i+1+ ...+In, V (x) is a value function for each player (we
use the symmetry assumption here). The first term in equation (1) describes player’s
searching cost in the current period. The second term is the player’s expected value
from finding the treasure in the current period. The last term is the player’s expected
value from the future periods. Denote the total value of this n-player game as

Wn(x) = nV (x).

In the next section we illustrate the derivation of the SMPE in the case of a specific
example.

3 Example

Suppose that the value of the treasure is R = 1, the discount factor is δ = 0.25, the
number of players is n = 3 and the initial island size is x(0) = 1.05. In this section
we answer the following questions: What is the SMPE? What is the maximal number
of periods (the worst case scenario) when the players find the treasure for sure in the
SMPE?

We use the value-iteration method to derive the SMPE. To make the exposition
simple, as a start, let us assume that the players can search only once. Denote the
value function of each player in this case by V1(x). How much should each player
search in the SMPE? Note that player 1’s expected value from the search if he is
allowed to search only once is

V1(x) = max
0≤I1≤x−I−1

−I1 +R
I1

x
= max

0≤I1≤x−I−1

(
R

x
− 1

)
I1,

where I−1 = I2+I3. It is evident that each player wants to search as much as possible
if R ≥ x and does not want to search at all if R < x.9 Since in the example R = 1
each player i in the SMPE searches

I i =

{
x/3, if x ≤ 1,
0, if x > 1.

9When x = R, the players are indifferent between searching and not searching. For simplicity we
assume that whenever players are indifferent they choose to search.
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Therefore,

V1(x) =

{
1−x
3
, if x ≤ 1,

0, if x > 1.
(2)

Note that 3V1(x) = W3(x) and V1(x) = 0 for x > 1.
Now suppose that players can search for at most two periods. Denote the value

function of each player in this case by V2(x). How much is it optimal for each player to
search in the first period and in the second period in the SMPE? Player 1’s expected
value from the search if he is allowed to search for at most two periods is

V2(x) = max
0≤I1≤x−I−1

(
I1

x
− I1

)
+ δ

(
1− I1 + I−1

x

)
V1(x− I1 − I−1),

where the first bracket is the expected value of finding the treasure in the first period
and the second term is the expected value of finding the treasure in the second
period. Note that if the treasure is not found in the first period, the island shrinks
to (x− I1 − I−1) and player 1 obtains the expected value V1(x− I1 − I−1) which is
described in (2). Consequently if x− I1 − I−1 ≤ 1,

V2(x) = max
0≤I1≤x−I−1

(
I1

x
− I1

)
+ δ

(
1− I1 + I−1

x

)
1− (x− I1 − I−1)

3
. (3)

The optimal search in the first period I1 satisfies the first order condition(
1

x
− 1

)
+ δ

(
−1

x

)
1− x+ I1 + I−1

3
+ δ

(
1− I1 + I−1

x

)
1

3
= 0,

or
3 (1− x)− δ

(
1− x+ I1 + I−1

)
+ δ

(
x− I1 − I−1

)
= 0.

In the symmetric equilibrium I−1 = 2I1 and 3I1 ≤ x. Therefore,

I1 =

(
3− 2δ

6δ

)
(1− x) +

1

6
=

5

3
(1− x) +

1

6
, (4)

I1 + I−1 = 5 (1− x) +
1

2

and
0 ≤ (

x− I1 − I−1
) ≤ 1,

or
11

12
≤ x ≤ 13

12
.

In addition to the above constraints there is a constraint on the value function to
be positive, players always have an option of not searching. Let us substitute (4) into
(3) to derive V2(x) =

(−4 (1− x)2 + 1
2
(1− x) + 1

16

)
1
3x
. The largest root of quadratic

equation V2(x) = 0 is equal to x = 15+
√
5

16
< 13

12
. Since 15+

√
5

16
≈ 1.08 < 1.05, player i
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Figure 1: W3(x) = 3V2(x).

searches

I i =

{
x/3, if x ≤ 11

12
,

5
3
(1− x) + 1

6
, if 11

12
< x ≤ 1.05.

(5)

The value function is

V2(x) =

{
V1(x) = (1− x) /3, if x ≤ 11

12
,(−4 (1− x)2 + 1

2
(1− x) + 1

16

)
1
3x
, if 11

12
< x ≤ 1.05.

(6)

Point x = 11
12

is a knot of the value function. The value function is described by two
different functions on the left and on the right of the knot, but both these functions
have the same value at the knot. Note that if x = 1, then 3I1 = 1/2 and 3V2(1) =
W3(x) =

1
16
. Figure 1 illustrates the total value in this case.

Now suppose that the players can search for at most three periods. Denote the
value function of each player in this case by V3(x). How much is optimal for each
player to search in the first, second, and third periods in the SMPE?

Player 1’s expected value from the search if he is allowed to search for at most
three periods is

V3(x) = max
0≤I1≤x−I−1

(
I1

x
− I1

)
+ δ

(
1− I1 + I−1

x

)
V2(x− I1 − I−1),

where the first bracket is the expected value of finding the treasure in the first period
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and the second term is the expected value of finding the treasure after the first period.
Note that if the treasure is not found in the first period, the unsearched island shrinks
to (x− I1− I−1) and the player obtains the expected value of V2(x− I1− I−1) which
is described in (6).

Suppose that in the equilibrium, 11
12

< x− I1 − I−1 ≤ 1.05. Then using (6) we get

V3(x) = max
0≤I1≤x−I−1

I1

x
−I1+

δ

48x

(
−64

(
1− (x− I1 − I−1)

)2
+ 8

(
1− (x− I1 − I−1)

)
+ 1

)
.

(7)
The optimal search in the first period I1 satisfies the first order condition(

1

x
− 1

)
+

δ

6x

(−16
(
1− (x− I1 − I−1)

)
+ 1

)
= 0.

In the symmetric equilibrium I−1 = 2I1 and 3I1 ≤ x. Therefore,

24 (1− x)− 16
(
1− (x− 3I1)

)
+ 1 = 0,

or

I1 =
1

6
(1− x) +

1

48
. (8)

The three-period search takes place only if

V3(x) > V2(x).

Substituting optimal I1 from (8) into the value function (7) gives

V3(x) = − 1

768x

(
448x2 − 880x+ 427

)
.

Remember that

V2(x) = − 1

48x

(
64x2 − 120x+ 55

)
.

One can show that V2(x)−V3(x) > 0 for 11
12

< x ≤ 1.05, which means 3-period search
is not optimal. Consequently,

I i =

{
x/3, if x ≤ 11

12
,

5
3
(1− x) + 1

6
, if 11

12
< x ≤ 1.05;

(9)

and the value function is

V (x) =

{
V1(x) = (1− x) /3, if x ≤ 11

12
,

V2(x) =
(−4 (1− x)2 + 1

2
(1− x) + 1

16

)
1
3x
, if 11

12
< x ≤ 1.05.

(10)

It is always optimal to search for at most (in the worst case scenario) two periods in
this example even if players’ search is not restricted. The two-period search procedure
that has been described is the SMPE.
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This example illustrates the approach which will be applied in the general model.
Using this example we present two puzzles which will be discussed in more details in
Section 5.

Puzzle 1. Non-monotonicity If n = 3 a larger island could make all players
better off.

It seems natural to expect that a larger island should make all players worse off.
Consider two island sizes

x̃ = 0.9167 < 0.9168 = x̂.

Using (10) we get

V (0.9167) ≈ 0.027779 < 0.027782 ≈ V (0.9168). (11)

It means the original intuition was incorrect and a larger island can make all players
better off. This puzzling result could be explained by players’ less efficient behavior
when the island size is x̃. Players search the island x̃ too fast, in other words the
tragedy of the commons effect is strong when x = x̃. If the size of the island is
increased, players search the island slower (more efficiently) - tragedy of the com-
mons effect is not as strong as before. This example shows that the improvement
in efficiency when island size is increased could be higher than losses due to higher
expected costs.

Puzzle 2. Special island size If x = R = 1, then nV (1) = Wn(1) = W1(1) =
1
16

for any n.

It seems obvious that the monopolist searches efficiently. Therefore, if the island
is small (enough), players search efficiently in just one period. Yet, if the island
size increased, the tragedy of the commons effect leads to multiple players searching
too fast. It turns out that there is a unique island size x = R when players search
efficiently, because when x = R there is no tragedy of the common effect and there is
no free riding effect. Note that from expression (10) we get

V (1) =
1

48
for n = 3.

If one derives the value function when n = 1, one can show that V (1) = 1
48

for n = 1
as well.

4 Analysis of the Model: SPME

Define the part of the island which player i does not search in the current period by

y := x− Ii
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and the part of the island neither player searches in the current period (the remaining
part of the island) by

z := x− (I1 + ...+ In) = x− (Ii + I−i).

Equation (1) can be rewritten in the following way

V (x) = max
I−i≤y≤x

{−(x− y) +R(x− y)/x+ δzV (z)/x}. (12)

Note, x, y, z, R and V (x) are of the same unit measure. For convenience, we make
the following substitution

x := x/R, y := y/R, z := z/R, V := V/R (13)

to work with unit free variables. Equation (12) transforms into

V (x) = max
I−i≤y≤x

{−(x− y) + (x− y)/x+ δzV (z)/x}. (14)

Let us derive player’s value of the game V (x). To simplify the exposition it is conve-
nient to introduce the following function

Ψ(x) := xV (x). (15)

From definition (15) it follows that

Ψ(x) ≥ 0 for any x. (16)

Note also that in the symmetric equilibrium, I1 = ... = In = I and I−i = (n − 1)I.
Equation (14) in terms of Ψ(x) can be rewritten as

Ψ(x) = max
(n−1)I≤y≤x

{(1− x)(x− y) + δΨ(z)} =: BΨ(z). (17)

The following Lemma follows from the contraction mapping theorem, see for example
Stokey, Lucas and Prescott (1989).

Lemma 1. If δ < 1, the operator on the right hand side of equation (17) is a contrac-
tion operator. Therefore, equation (17) has a unique solution Ψ, that can be obtained
as the limit of the following sequence {Ψk}, where

Ψ0 ≡ 0, Ψk := BΨk−1 k = 1, 2, ... (18)

4.1 Construction of sequences {Ψk} and {Vk}
Note that with the help of Lemma 1 one can construct sequence {Ψk}. This proce-
dure is called the value-iteration procedure. It is equivalent to using the backward
induction argument and was already demonstrated in the Example.
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4.1.1 Construction of Ψ1 and V1

Let us start from the end of the search process. What will be the value of the game,
if players could only search at most one period? Equation (17) transforms into

Ψ1(x) = max
(n−1)I≤y≤x

{(1− x)(x− y)}. (19)

It is evident that the optimal y can be described in the following way10

y =

{
x, if x > 1,
(n− 1)I, if x ≤ 1.

(20)

If x < 1, then in the SMPE players search the whole island, I1 + ... + In = nI = x.
Consequently,

y =
(n− 1)x

n
and z = 0 if x < 1. (21)

Therefore, (19) can be rewritten in the following way

Ψ1(x) =

{
P1(x), if x ≤ u1 = 1,
0, if x > u1 = 1,

(22)

where u1 > 0 is the largest positive root of polynomial P1(x) = x(1 − x)/n. It is
evident that u1 = 1. For future references note that

P1(x) =
a1
n
(1− x)2 +

b1
n
(1− x) +

c1
n
, (23)

where
a1 = −1, b1 = 1, c1 = 0.

If the players can search the island in at most one period, then the SMPE is (I(x), ..., I(x)),
where

I(x) =

{
x
n
, if x ≤ u1,

0, if x > u1.
(24)

Note that the optimal first-period search is independent from the discount factor
because there is no delay.

Define the value of the game for each player (if the players can search the island
in at most k periods) as Vk(x) := Ψk(x)/x, for any x ≥ 0. The value of the game
V can be obtained as the limit of the sequence {Vk}. From the above definition it
follows

V1(x) =

{
(1− x)/n, if x ≤ u1,
0, if x > u1.

(25)

10Note that if x = 1, then any y ∈ [(n− 1)I, x] is optimal. We assume that players choose
y = (n− 1)I in this case.
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4.1.2 Construction of Ψ2 and V2

What will be the value of the game, if players can search the whole island in at
most two periods? In general there could be three possibilities depending on the
island size. The first possibility is that the players search the whole island in just one
period. Intuitively this happens for small values of x because it is too costly to wait
for another period when the island is very small. The second possibility is that the
players finish the island in two periods. This happens for middle values of x. Finally,
players can find searching to be too costly and abstain from searching at all. This
happens when the initial island is too big (costs are very large).

We have already considered the first possibility in the previous subsection. Now
we formally analyze the situation when players search for exactly two periods in the
worst case. The first step is to construct Ψ2(x). Equation (17) in this case transforms
into

Ψ2(x) = max
(n−1)I≤y≤x

{(1− x)(x− y) + δΨ1(z)}. (26)

Necessary conditions for y to be the optimal value in the interior of [0, x] is

−(1− x) + δΨ′
1(z) = 0 (27)

and
0 < z ≤ u1. (28)

The sufficient condition for y to be the optimal value in the interior of [0, x] is satisfied
because

Ψ′′
1(z) = a1 < 0. (29)

The way to proceed is to use condition (27) in order to to construct an equilibrium
and then show that the derived equilibrium satisfies condition (28).

From condition (27) and expression (22), it follows

−(1 − x) + δ

(
1− 2z

n

)
= 0.

Consequently,

z(x) =
n(x− 1) + δ

2δ
. (30)

It is straightforward now that

y =
x(n− 1) + z(x)

n
=

2δ(n− 1)x+ n(x− 1) + δ

2δn
. (31)

Plugging (31) into equation (26) and using (16) one obtains a spline of degree two on
the interval [0, u2]

Ψ2(x) =

⎧⎨
⎩

Ψ1(x), if 0 ≤ x ≤ t1,
P2(x), if t1 < x ≤ u2,
0, if x > u2,

(32)
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where u2 > 0 is the largest positive root of polynomial

P2(x) =
a2
n
(1− x)2 +

b2
n
(1− x) +

c2
n
, (33)

with

a2 = −1 − s, b2 =
1

2
, c2 =

δ

4
,

and

s =
n(n− 2)

4δ
. (34)

To find u2 one needs to solve quadratic equation P2(u2) = 0. It is easy to check
that

u2 = 1 +

√
4δ(s+ 1) + 1− 1

4(s+ 1)
.

Point x = t1 is the first knot of the spline. The knot t1 is an initial island size
such that players are indifferent between searching the island in two periods or in one
period:

Ψ1(t1) = Ψ2(t1). (35)

From (23) and (33) one finds11

t1 = 1− δ

n
. (36)

Note that all our calculations so far are valid for any n ≥ 1. Consider parameter
s now. From expression (34) it follows

s

⎧⎨
⎩

< 0, if n = 1,
= 0, if n = 2,
> 0, if n ≥ 3.

(37)

Condition (37) characterizes three different types of behavior in SMPE. There are
three cases: n = 1 (a monopolist); n = 2 (two players); and n ≥ 3 (many players).

It is straightforward to check that condition (28) holds for any initial island size
x ∈ [t1, u2] in the expression (32). Therefore, if the players can search the island in
at most two periods, then y(x) is a spline of degree one on the interval [0, u2] with
one knot x = t1

y(x) =

⎧⎨
⎩

(n−1)x
n

, if x ≤ t1,
2δ(n−1)x+n(x−1)+δ

2δn
, if t1 < x ≤ u2,

x, if x > u2.

(38)

The SMPE (if the players can search the island in at most 2 periods) is also a spline

11Note that condition t1 ≤ u1 = 1 must hold.
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of degree one on the interval [0, u2] with one knot x = t1

I(x) =

⎧⎨
⎩

x
n
, if x ≤ t1,

(2δ−n)x+n−δ
2δn

, if t1 < x ≤ u2,
0, if x > u2,

(39)

and the value function is

V2(x) =

⎧⎨
⎩

V1(x), if x ≤ t1,
P2(x)/x, if t1 < x ≤ u2,
0, if x > u2.

(40)

4.1.3 Construction of Ψk and Vk

What will be the value of the game, if players can search the whole island in at most
k ≥ 3 periods? In general there could be k + 1 possibilities depending on the island
size. The players can search the island in 1, 2, ..., k periods or don’t search at all.

First, let us construct Ψk(x). Equation (17) in this case transforms into

Ψk(x) = max
(n−1)I≤y≤x

{(1− x)(x− y) + δΨk−1(z)} =: BΨk−1(z). (41)

A necessary condition for y to be the optimal value in the interior of [0, x] is

(1− x) = δΨ′
k−1(z). (42)

and
tk−2 < z ≤ uk−1, (43)

where t0 := 0. The sufficient condition for y to be the optimal value in the interior
of [0, x] is satisfied if

Ψ′′
k−1(z) < 0. (44)

As before the way to proceed is to use condition (42) to construct the equilibrium
and then show that it satisfies conditions (43) and (44).

Note that if function Ψk−1(x) in (41) is a quadratic polynomial, Ψk(x) = BΨk−1(x)
has to be a quadratic polynomial as well. Since from (23) and (33), P1(x) and P2(x)
are quadratic polynomials, any Pk(x) can be represented in the following form:

Pk(x) =
ak
n
(1− x)2 +

bk
n
(1− x) +

ck
n
, k ≥ 1. (45)

From condition (42) and expression (45), it follows

z(x) = 1 +
δbk−1 + (1− x)n

2δak−1
. (46)
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It is straightforward now that

y = x+
z − x

n
= x+

(1− x)(n + 2δak−1)

2δnak−1
+

bk−1

2nak−1
. (47)

Hence,

Ψk(x) = −(1− x)

(
(1− x)(n + 2ak−1δ)

2nak−1δ
+

bk−1

2nak−1

)
+ δΨk−1(z). (48)

Define the largest root of polynomial Pk(x) as uk and an initial island size such that
players are indifferent between searching the island in k periods or in k − 1 periods
as knot tk−1,

Ψk−1(tk−1) = Ψk(tk−1). (49)

Plugging (47) into equation (41) and using (16), one obtains a spline of degree two
on the interval [0, uk] with knots t1, ..., tk−1

Ψk(x) =

⎧⎨
⎩

Ψk−1(x), if 0 ≤ x ≤ tk−1,
Pk(x), if tk−1 < x ≤ uk,
0, if x > uk,

(50)

where Pk(x) is defined in (45). Our description will be complete if conditions (43)
and (44) hold. The following lemma proves condition (43).

Lemma 2. Solution (50) satisfies condition (43) for any n ≥ 1 and any initial island
size x.

The proof of condition (44) will be presented at the end of the next subsection.
Its exposition is simpler with the help of some of the preliminary results.

4.2 Preliminary results

Let us find ak, bk, and ck for any k ≥ 2 now. Using (41), (45) and (46) one can get
the following result.

Theorem 1.

ak = −1 +
s

ak−1
, bk = − bk−1

2ak−1
, ck = δ

(
ck−1 −

b2k−1

4ak−1

)
, k ≥ 2, (51)

where s is defined in (34) and

a1 = −1, b1 = 1, c1 = 0. (52)

Theorem 1 describes all coefficients of the quadratic polynomials Pk(x). Note that
the dynamics of coefficients ak depends on parameter s, which for different values of
n can be negative, zero and positive. Let us consider separately the following three
cases: n = 1 (a monopolist); n = 2 (two players); and n ≥ 3 (many players).
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4.2.1 n = 1

Let us start with the monopolist case. The following results characterize the splines
in (50) and their knots when n = 1.

Proposition 1. When n = 1 system (51) with intial conditions (52) has the following
solution

ak = −sin (k + 1)ϕ

2v sin kϕ
, bk =

vk−1 sinϕ

sin kϕ
, ck =

v2k−1 sin (k − 1)ϕ

2 sin kϕ
, (53)

tk = 1− vk cos kϕ, uk = 1 +
vk(sin kϕ− sinϕ)

sin (k + 1)ϕ
, k ≥ 1, (54)

where v =
√
δ and ϕ = arccos v.

Proof. See the Appendix.

4.2.2 n = 2

Next let us consider n = 2 case.

Proposition 2. When n = 2 system (51) with intial conditions (52) has the following
solution

ak = −1, bk =
1

2k−1
, ck =

(
(4δ)k−1 − 1

4k−1(4δ − 1)

)
δ, (55)

tk = 1− 3δ + (4δ)k(δ − 1)

2k(4δ − 1)
, uk = 1 +

1

2k

(√1− (4δ)k

1− 4δ
− 1

)
, k ≥ 1. (56)

Proof. See the Appendix.

4.2.3 n ≥ 3

Finally, let us consider n ≥ 3 case.

Proposition 3. When n ≥ 3 system (51) with intial conditions (52) has the following
solution

ak =

(√
1+4s−1

2

)k+1

−
(

−√
1+4s−1
2

)k+1

(√
1+4s−1

2

)k

−
(

−√
1+4s−1
2

)k
, bk =

(−1
2
)k−1

√
1 + 4s(√

1+4s−1
2

)k

−
(

−√
1+4s−1
2

)k
, (57)

ck =
k∑

i=2

−(1 + 4s)δk

(4δ)i−1

[(√
1+4s−1

2

)i

−
(

−√
1+4s−1
2

)i
] [(√

1+4s−1
2

)i−1

−
(

−√
1+4s−1
2

)i−1
] ,

tk = 1 +
bk+1 − bk −

√
(bk+1 − bk)2 − 4(ak+1 − ak)(ck+1 − ck)

2(ak+1 − ak)
, (58)
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uk = 1 +
bk −

√
b2k − 4akck
2ak

. (59)

Proof. See the Appendix.

Lemma 3. Solution (50) satisfies condition (44) for any n ≥ 1 and any initial island
size x.

4.3 SMPE

The SMPE can be described now. If players can search the island in at most k periods,
then y(x) is a spline of degree one on the interval [0, uk] with knots t1, ..., tk−1

y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)x
n

, if x ≤ t1,

x+ (1−x)(n+2δa1)
2δna1

+ b1
2na1

, if t1 < x ≤ t2,
...

x+ (1−x)(n+2δak−2)

2δnak−2
+ bk−2

2nak−2
, if tk−2 ≤ x ≤ tk−1,

x+
(1−x)(n+2δak−1)

2δnak−1
+

bk−1

2nak−1
, if tk−1 < x ≤ uk,

x, if x > uk.

(60)

The SMPE (if the players can search the island in at most k periods) is also a spline
of degree one on the interval [0, uk] with knots t1, ..., tk−1

I(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
n
, if x ≤ t1,

− (1−x)(n+2δa1)
2δna1

− b1
2na1

, if t1 < x ≤ t2,
...

− (1−x)(n+2δak−2)

2δnak−2
− bk−2

2nak−2
, if tk−2 ≤ x ≤ tk−1,

− (1−x)(n+2δak−1)
2δnak−1

− bk−1

2nak−1
, if tk−1 < x ≤ uk,

0, if x > uk,

(61)

and the value function (if the players can search the island in at most k periods) is

Vk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1(x)/x, if x ≤ t1,
P2(x)/x, if t1 < x ≤ t2,
...
Pk−1(x)/x, if tk−2 ≤ x ≤ tk−1,
Pk(x)/x, if tk−1 < x ≤ uk,
0, if x > uk,

(62)

or

Vk(x) =

⎧⎨
⎩

Vk−1(x), if 0 ≤ x ≤ tk−1,
Pk(x)/x, if tk−1 < x ≤ uk,
0, if x > uk.

(63)
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5 Properties of SMPE

The SMPE was described in the previous section. Let us discuss its properties now.

5.1 Maximum number of periods

Let us fix the number of players n and ask the following question: what is the min-
imum number k that V (x) ≡ Vk(x). In other words, what is the maximum number
of periods (the worst case scenario) in which the treasure will be found for sure. The
answer in general is expected to depend on δ.

Note that from (22) and (36) it follows that u1 > t1. It means that there exists
an island size x such that, in the worst case scenario, the treasure is found in at least
two periods. This observation is true for any n ≥ 1.

One way to answer the above question is to write the condition that the largest
positive root of quadratic polynomial Pk(x) coincides with the largest positive root
of quadratic polynomial Pk+1(x). It means that Ψk(x) ≡ Ψk+1(x) or V (x) ≡ Vk(x).
Since such k depends on δ, let us define for each n a knot discount factor δk(n) which
is the solution to the following equation

uk(δk(n)) = uk+1(δk(n)), k ≥ 2. (64)

The knot discount factor δk(n) “connects” two regions: V (x) ≡ Vk(x) ≡ Vk+1(x)
for 0 < δ < δk(n), and V (x) 
≡ Vk(x) for δk(n) < δ < 1. The following theorem
characterizes the knot discount factors for n = 1 and n = 2.

Theorem 2. If n = 1, equation (64) has the following unique solution

δk(1) = cos2
π

k + 1
, k ≥ 2. (65)

If n = 2, equation (64) can be simplified to

(1− δk(2))
2(1− (4δk(2))

k) = 1− 4δk(2), k ≥ 2. (66)

Proof. See the Appendix.

Figure 2 illustrates δk(n) for n = 1 and n = 2. One can see that there is a
monotonic convergence of δk → 1 when k → ∞. This convergence is easy to prove by
taking a limit k → ∞ and applying it to (65) and (66). One possible interpretation
of this result is that when n = 1 and n = 2 players always search the island for a
finite number of periods or not at all.

5.2 Tragedy of the Commons or Free Riding?

Let us look again at equation (17):

Ψ(x) = max
(n−1)I≤y≤x

{(1− x)(x− y) + δΨ(z)} =: BΨ(z).
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Figure 2: Different zones

Note that Ii = (x − y) is the current search of player i. There are two main effects
in the model: tragedy of the commons and free riding. The first effect works if the
island is small, 0 < x < 1. In this case the first term in equation (17) is positive and
each player wants to take advange of the situation and as the result players search
too fast which is a standard tragedy of the commons. The second effect is present
for large islands, namely when x > 1. In this case the first term in equation (17)
is negative and players want to decrease their current losses and as a result players
search too slow, in other words there is a free riding effect. If the island size is x = 1,
then none of the effects is present and that explains Puzzle 2. Figure 5 illustrates
these two effects: tragedy of the commons (for x < 1) and free riding (for x > 1)
for small discount factors. At the first interval, the aggregate search is the same for
n = 1, n = 2, and n = 3: players search the whole island in just one period. At this
part of the graph all three curves coincide. At the second interval curves for n = 2
and n = 3 are above the curve for n = 1. It means that the monopolist, n = 1,
searches the island in one or two periods, but in the case of multiple players, n = 2
or n = 3, tragedy of the commons takes place and players search the whole island too
fast in just one period. This is the region where x < 1. Finally, we can see that the
curve for n = 1 is above the curves for n = 2 and n = 3 for x > 1. Free riding takes
place on this interval and multiple players search the island too slow relative to the
monopolist.
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Figure 3: Wn(x): n = 1 is a blue line, n = 2 is a green line, n = 3 is a red line;
δ = 0.75.
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5.3 Puzzle 1.

Now let us look at puzzle 1 which was introduced in the Example. It seems intuitive
that if the treasure is hidden on a smaller island, all players are expected to be
better off in the SPME. One could expect that costs go down (smaller island), but
the probability to find the treasure does not change in the SPME. However, as it
was shown in the Example, this intuition does not take into account the fact that
players search too fast (tragedy of the commons) a smaller island. It turns out that
sometimes this tragedy of the commons effect can be so strong that all players are
better off searching bigger island. The following proposition demonstrates that this
result holds whenever there are at least n = 3 players.

Proposition 4. For any n ≥ 3, there exists x > t1 such that V (x) > V (t1).

Proof. See the Appendix.

5.4 Puzzle 2.

It is intuitive that aggregate search is independent from the number of players when
the island size is small: players search the whole island in just one period. In this
sense players search efficiently. It is also intuitive that the total value of the game
does not increase with the number of players n. However, the efficient behavior of
players is not limited only to small sizes of the island. When island size x = 1 and
δ ≤ 0.5, players also search efficiently. Formally,

Proposition 5. For any 0 < δ ≤ 0.5, Wn(1) = W1(1) for any n ≥ 2.

Figure 4 illustrates Puzzle 2. It shows the total value function when one, two,
three, or four players search the island and δ = 0.5. The total value function at x = 1
is the same in all four cases.

If the discount factor is slightly greater than 0.5, the monopolist will have an
incentive to search slower, while in the multi-player cases players will still search as
fast as before.

Proposition 6. For any 0 < δ ≤ 0.75, Wn(1) = W2(1) for any n ≥ 3.

Figure 3 illustrates Proposition 6. It shows that the value function of the monop-
olist at x = 1 is greater than the total value for two, three, or four players at x = 1.
The total values are the same at x = 1 for n = 2, 3, 4.

6 Conclusion

In this paper, we introduce a new dynamic search model and develop new methods
in order to analyze it. Our symmetry assumption makes the analysis simpler and
transparent. We construct the SMPE for any number of players and demonstrate
that search is typically inefficient if n ≥ 2.
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Figure 4: W1(x) is a blue line, W2(x) is a green line, n = 3 is a red line; δ = 0.5.
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Figure 5: Jn(x): n = 1 is a blue line, n = 2 is a green line, n = 3 is a red line;
δ = 0.75.

There are several natural extensions of our project. The first one is to allow
players to have a positive externality on each other. For example, all players can
benefit from the treasure in some way. The question is how this will affect the SMPE
and our results.

It will be interesting to test our predictions in the experimental laboratory. For
example, check whether subjects’ behavior is consistent with the SMPE and either
Puzzles 1 and 2 hold in experiments.

Appendix

Proof of Lemma 2

Firstly, let us show that z ≤ uk−1. Let us prove by contradiction assuming that
z > uk−1. Refer to equation (41) which could be seen below

Ψk(x) = max
(n−1)I≤y≤x

{(1− x)(x− y) + δΨk−1(z)}.

Given x ≥ y ≥ z > uk−1 ≥ . . . ≥ u2 ≥ u1 = 1 it follows that the first term on the
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right (1− x)(x− y) has to be non-positive. If z > uk−1 then the second term on the
right δΨk−1(z) is negative. That means the whole expression on the right of equation
(41) has to be negative. Obviously that could not be an optimal choice for a player
because by choosing y = x, i.e. making no investment, a player can get the value of
zero. Consequently, there is a contradiction and condition z ≤ uk−1 is proved.

Now let us show that tk−2 < z. Again let us prove by contradiction assuming that
z ≤ tk−2. Note that by construction when z ≤ tk−2 the following condition holds
Pk−1(z) ≤ Pk−2(z). That implies that instead of using the original k-period path
(invest x − y in the first period and make further k − 1 investments according to
Pk−1(z)) one could use k − 1 period path (invest the same amount x− y in the first
period and make further k − 2 investments according to Pk−2(z)) and increase the
value. Refer to equation (41), both paths have the same first term while the second
term is larger for the k − 1 period path. That implies the k period path does not
improve the value in comparison with the optimal k − 1 period path, which means
whenever z ≤ tk−2 the k period path is not optimal. Condition tk−2 < z is proved. �

Proof of Proposition 1

Derivation of ak, bk and ck

Let us show that when n = 1 formula (53) describes the solution to the system of
difference equations (51).

Define

Rk := vk ·
k∏

j=1

aj k = 1, 2, . . . (67)

Using (51) one gets the following second-order difference equation

Rk+1 = vRk ·
(
−1 − 1

4δak

)
= −vRk − 1

4
Rk−1 k ≥ 2. (68)

The initial conditions are R0 = 1 and R1 := −v. The characteristic equation
4z2 + 4vz + 1 = 0 has two complex roots

z1 =
−v + ir

2
, z2 =

−v − ir

2
, r :=

√
1− v2 > 0. (69)

Denote ϕ := {arg z1 ∈ [0, π/2]} = arccos v, then z1,2 = −e±iϕ

2
. Further, write

solutions to equation (68) in form Rk = Azk+1
1 − Bzk+1

2 and use initial conditions to
get A = B = − i

sinϕ
. Consequently

Rk = − i

(−2)k+1 sinϕ
(ei(k+1)ϕ − e−i(k+1)ϕ) = −sin [(k + 1)ϕ]

(−2)k sinϕ
. (70)
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Apply (67) and (51) to get

ak =
Rk

vRk−1
= −sin (k + 1)ϕ

2v sin kϕ
, (71)

bk = − bk−1

2ak−1

=
vk−1 sinϕ

sin kϕ
, (72)

ck = δ

[
ck−1 − b2k−1

4ak−1

]
=

v2k−1 sin (k − 1)ϕ

2 sin kϕ
. (73)

Derivation of tk

To find tk one needs to solve quadratic equation Pk(tk) = Pk+1(tk), namely

(ak+1 − ak)(1− tk)
2 + (bk+1 − bk)(1− tk) + ck+1 − ck = 0, k ≥ 1. (74)

Substitute ak from (71) to derive

ak+1 − ak = sin (k+1)ϕ
2v sin kϕ

− sin (k+2)ϕ
2v sin (k+1)ϕ

= sin2 (k+1)ϕ−sinkϕ sin (k+2)ϕ
2v sin kϕ sin (k+1)ϕ

= sin2 ϕ
2v sinkϕ sin (k+1)ϕ

.

(75)
Substitute bk from (72) and note that v = cosϕ to derive

bk+1 − bk = vk sinϕ
sin (k+1)ϕ

− vk−1 sinϕ
sinkϕ

= 2vk sinϕ(cosϕ sinkϕ−sin (k+1)ϕ)
2v sin kϕ sin (k+1)ϕ

= −2vk sin2 ϕ cos kϕ
2v sin kϕ sin (k+1)ϕ

.

(76)
Substitute ck from (73) and note that v = cosϕ to derive

ck+1 − ck = v2k+1 sin kϕ
2 sin (k+1)ϕ

− v2k−1 sin (k−1)ϕ
2 sinkϕ

= v2k(cos2 ϕ sin2 kϕ−sin (k+1)ϕ sin (k−1)ϕ)
2v sin kϕ sin (k+1)ϕ

= v2k sin2 ϕ cos2 kϕ
2v sin kϕ sin (k+1)ϕ

.

(77)
Substitute the above relationships into (74) and cancel non-zero common term

sin2 ϕ
2v sinkϕ sin (k+1)ϕ

to derive

(1− tk)
2 − 2vk cos kϕ(1− tk) + v2k cos2 kϕ = (1− tk − vk cos kϕ)2 = 0. (78)

Consequently,
tk = 1− vk cos kϕ. (79)

Derivation of uk

To find uk one needs to solve quadratic equation Pk(uk) = 0, namely

ak(1− uk)
2 + bk(1− uk) + ck = 0, k ≥ 1. (80)

Substitute (71), (72) and (73) into (80) to get

−(1− uk)
2 sin (k + 1)ϕ+ 2(1− uk)v

k sinϕ+ v2k sin (k − 1)ϕ. (81)
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Solving this quadratic equation results in

uk = 1 +
vk(sin kϕ− sinϕ)

sin (k + 1)ϕ
. (82)

This concludes the proof. �

Proof of Proposition 2

Derivation of ak, bk and ck

Let us show that when n = 2 formula (55) describes the solution to the system of
difference equations (51). It is straightforward to derive ak = −1 and bk = 1

2k−1 . The
expression for ck in (51) can be simplified to

ck = δ(ck−1 + 1/4k−1). (83)

Introduce new variable ek = ck4
k. Equation (83) transforms to

ek = 4δ(ek−1 + 1), (84)

where e1 = 0. The solution to this linear difference equation is ek = 4δ−(4δ)k

1−4δ
. Substi-

tute ck = ek/4
k to derive

ck =
4δ − (4δ)k

(1− 4δ)4k
. (85)

Derivation of tk

To find tk one needs to solve quadratic equation Pk(tk) = Pk+1(tk), namely

ak(1− tk)
2 + bk(1− tk) + ck = ak+1(1− tk)

2 + bk+1(1− tk) + ck+1, k ≥ 1.

From equation (55) ak = ak+1 = −1; consequently,

tk = 1 +
ck+1 − ck
bk+1 − bk

. (86)

Substitute bk and ck from equation (55) to derive the following indifference points

tk = 1− 3δ + (4δ)k(δ − 1)

2k(4δ − 1)
. (87)

Derivation of uk

To find uk one needs to solve quadratic equation Pk(uk) = 0, namely

ak(1− uk)
2 + bk(1− uk) + ck = 0, k ≥ 1.
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Substituting ak = −1 from equation (55) and solving the above quadratic equation
gives

uk = 1 +

√
b2k + 4ck − bk

2
. (88)

Note that with the help of (55) one can simplify

b2k + 4ck =
(4δ)k − 1

4k−1(4δ − 1)
. (89)

Substitute equation (89) into equation (88) to get

uk = 1 +

√
1−(4δ)k

1−4δ
− 1

2k
. (90)

This concludes the proof. �

Proof of Proposition 3

Derivation of ak, bk and ck

Let us show that when n ≥ 3 the solution to the system of difference equations (51)
is described by (57).

Define

Rk :=
k∏

j=1

aj k = 1, 2, . . . (91)

Using (51) one gets the following second-order difference equation

Rk +Rk−1 − sRk−2 = 0 k ≥ 2. (92)

The initial conditions are R1 = −1 and R2 := 1 + s. The characteristic equation
z2 + z − s = 0 has two real roots

z1 =

√
1 + 4s− 1

2
, z2 =

−√
1 + 4s− 1

2
. (93)

The solutions to equation (92) have to be in form Rk = Azk+1
1 − Bzk+1

2 . Applying
initial conditions gives A = B = 1√

1+4s
. Next from ak = Rk

Rk−1
one can derive ak in

(57).

Note that from (51) it follows that ak−1 = − bk−1

2bk
. On the other hand, ak−1 =

Rk−1

Rk−2
.

Consequently, bk is inversely proportional to Rk−1. Find bk in (57) by substitution.
ck has to satisfy the initial condition c1 = 0. Introducing dk = ck

δk
and rewriting

the difference equation gives

dk = dk−1 +
bkbk−1

2δk−1
.
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Substituting the initial condition d1 = 0 gives

dk = d1 +

k∑
i=2

(di − di−1) =

k∑
i=2

bibi−1

2δi−1
.

Finally it follows that

ck = δkdk = δk
k∑

i=2

bibi−1

2δi−1
.

Substitute bk from (57) to derive ck in (57).

Derivation of tk and uk

To find tk one needs to solve quadratic equation Pk(tk) = Pk+1(tk), namely

ak(1− tk)
2 + bk(1− tk) + ck = ak+1(1− tk)

2 + bk+1(1− tk) + ck+1, k ≥ 1.

The players’ indifference points are

tk = 1 +
bk+1 − bk −

√
(bk+1 − bk)2 − 4(ak+1 − ak)(ck+1 − ck)

2(ak+1 − ak)
. (94)

To find uk one needs to solve quadratic equation Pk(uk) = 0, namely

ak(1− uk)
2 + bk(1− uk) + ck = 0, k ≥ 1.

Ψk(x) is strictly positive for any tk−1 < x < uk and zero for any x ≥ uk, where

uk = 1 +
bk −

√
b2k − 4akck
2ak

. (95)

This concludes the proof. �

Proof of Lemma 3

Let us show that Ψ′′
k−1(z) < 0. From equation (50) it is clear that the sufficient

condition for Ψ′′
k−1(z) < 0 is that P ′′

i−1(z) < 0 ∀ i = 2, . . . , k − 1. From equation (45)
it is easy to see that the above condition is equivalent to ai−1 < 0 ∀ i = 2, . . . , k − 1.
For n ≥ 2 it is straightforward that s ≥ 0. From (51) one can see that ak is a sum of
two negative numbers, consequently it has to be negative.

Now let us prove this condition for n = 1. Substitute tk from (54) into (45) to get

Pk(tk) =
v2k−1

2n sin kϕ
(− sin (k + 1)ϕ cos2 kϕ+ 2 sinϕ cos kϕ+ sin (k − 1)ϕ). (96)
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Substitute the following equality

sin (k + 1)ϕ = sin (k − 1)ϕ+ 2 sinϕ cos kϕ (97)

into (96) to derive

Pk(tk) =
−δkak sin

2 kϕ

n
. (98)

Wherever the value function at tk−1 is positive, ak−1 has to be negative. �

Proof of Theorem 2

Firstly let us prove the n = 1 case. Equation (64) (which defines δk) is equivalent to
condition Rk = 0 (Rk is defined in (67)). Apply (70) to get

ϕk : (k + 1)ϕ = nπ, (99)

where n ≥ 1 is some integer which can be different for different values of k, i.e.
n = nk. Let us prove by induction that nk = 1 ∀ k. It is easy to see that for k = 2
the statement is correct, i.e. ϕ2 = π/3 and δ2(1) = cos2 π/3 = 1/4. Substitute
k′ := k+1 in (99) to get (using the assumption of induction that nk = 1 and the fact
that ϕk = arccos

√
δk is monotonically decreasing in k)

nk+1π = (k + 1)ϕk+1 ≤ (k + 1)ϕk =
k + 1

k
π < 2π.

Given that nk+1 is an integer, it must be that nk+1 = 1. Substitute n = 1 in (99) to
get ϕk = π/(k + 1), which means δk(1) = cos2 π

k+1
, k ≥ 2.

Now let us prove the n = 2 case. Substitute tk from equation (56) and uk from
equation (90) into equation (64) to get

1 +

√
1−(4δ)k

1−4δ
− 1

2k
= 1− 3δ + (4δ)k(δ − 1)

2k(4δ − 1)
. (100)

Simplify the above expression to√
1− (4δ)k

1− 4δ
− 1 =

3δ + (4δ)k(δ − 1)

(4δ − 1)
(101)

Further simplifications give√
(4δ)k − 1

4δ − 1
=

((4δ)k − 1)(1− δ)

(4δ − 1)
(102)

and √
(4δ)k − 1

4δ − 1
(1− δ) = 1. (103)
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Take squares of both sides of equation (103) to derive equation (66). This con-
cludes the proof. �

Proof of Proposition 4

When x = t1 players are indifferent between searching the island in two periods or in
one period:

V1(t1) = V2(t1).

Let us show that V ′
2(t1) > 0 for n ≥ 3, which means that there exists an island size

x which is “slightly” bigger than island size t1, i.e. x > t1, such that V (x) = V2(x) >
V (t1):

V ′
2(t1) =

(
P2(x)

x

)′

x=t1

> 0. (104)

Applying (33) and (36) transforms inequality (104) to

V ′
2(t1) = a2 − a2 + b2 + c2

(1− δ/n)2
> 0. (105)

With the help of (33) and (34), inequality (105) simplifies to

n2(2n− 6− 2δ) + δ(10n− 4δ) > 0. (106)

When n ≥ 4 the above inequality always holds because both terms on the left are
positive. When n = 3 inequity (106) simplifies to

δ(12− 4δ) > 0,

which is also valid. The proposition is proved. �

Proof of Proposition 5

Let us prove this proposition in two steps. Firstly, let us show that when 0 < δ ≤ 0.5,
knot t2 ≥ 1 for any n ≥ 1, which implies V (1) = V2(1) for any n. Applying (54) when
n = 1 gives t2 = 1− v2 cos 2ϕ = 1− δ(2 cos2 ϕ− 1) = 1 + δ(1− 2δ). It is easy to see

that t2 ≥ 1 when 0 < δ ≤ 0.5. Applying (56) when n = 2 gives t2 = 1− 3δ+16δ2(δ−1)
4(4δ−1)

=

1 + 3
4
δ − δ2. It is easy to see that t2 ≥ 1 when 0 < δ ≤ 3

4
. Applying (51) when

n ≥ 3 one can derive a2 = −1 − s, b2 = 1
2
, c2 = δ

4
, a3 = −1+2s

1+s
, b3 = 1

4(1+s)
, c3 =

δ2

4
+ δ

16(1+s)
. When n ≥ 3 it is easy to see that a3 − a2 = 1 + s − 1+2s

1+s
= s2

1+s
> 0,

b3−b2 =
1

4(1+s)
− 1

2
< 0 and finally c3−c2 =

δ
16(1+s)

− δ
4
(1−δ) = δ(4δ2−3δ−(1−δ)n(n−2))

4(4δ+n(n−2))
< 0

when 0 < δ ≤ 3
4
. Applying (58) one can see that t2 > 1 when 0 < δ ≤ 3

4
.
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Secondly, one needs to show that nV2(1) is the same for any n. Applying (45)
gives nV2(1) = c2 =

δ
4
. The proposition is proved. �

Proof of Proposition 6

Proof of this proposition follows directly from the proof of proposition 5. �
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