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Achieving Pareto Optimality Through Distributed Learning

Jason R. Marden, H. Peyton Young, and Lucy Y. Pao

Abstract

We propose a simple payoff-based learning rule that is completely decentralized, and that leads to

an efficient configuration of actions in any n-person game with generic payoffs. The algorithm requires

no communication. Agents respond solely to changes in their own realized payoffs, which are affected

by the actions of other agents in the system in ways that they do not generally understand. The method

has potential application to the optimization of complex systems with many distributed components,

such as the routing of information in networks and the design and control of wind farms.

I. INTRODUCTION

The field of game theory is gaining popularity as a paradigm for the design and control of

multiagent systems [1]–[9]. This design choice requires two steps. First, the system designer

must model the system components as “players” embedded in an interactive, game-theoretic

environment. This step involves defining a set of choices and a local objective function for each

player. Second, the system designer must specify the players’ behavioral rules, i.e., the way in

which they react to local conditions and information. The goal is to complete both steps in such

a way that the agents’ behavior leads to desirable system wide behavior even though the agents

themselves do not have access to the information needed to determine the state of the system.

The existing literature primarily focuses on distributed learning algorithms that are suitable

for implementation in large scale engineering systems [2], [3], [10]–[13]. Accordingly, most
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of the results focus on particular classes of games, notably potential games, that are pertinent

to distributed engineering systems. The motivation for this work stems from the fact that the

interaction framework for a distributed engineering system can frequently be represented as a

potential game. Consequently, these distributed learning algorithms can be utilized as distributed

control algorithms that provide strong asymptotic guarantees on the emergent global behavior [5]–

[7], [14], [15]. This approach provides a hierarchical decomposition in the design (game design)

and control (learning rule) of a multiagent system where the intermediate layer is constrained

by the potential game structure [5].

There are two limitations to this framework however. First, most results in this domain focus on

convergence to Nash equilibrium, which may be very inefficient with regard to the system level

objective. Characterizing this inefficiency is a highly active research area in algorithmic game

theory [16]. The second limitation of this framework is that it is frequently impossible to represent

the interaction framework of a given system as a potential game. This stems from the fact that a

given engineering system possesses inherent constraints on the types of objective functions that

can be assigned to the agents. These constraints are a byproduct of the information available to

different parts of the system. Furthermore, in many complex systems the relationship between

the behavior of the components and the overall system performance is not well characterized.

One example of a system that exhibits these challenges is the control of a wind farm to

maximize total power production. Controlling an array of turbines in a wind farm is funda-

mentally more challenging than controlling a single turbine. The reason is the aerodynamic

interactions amongst the turbines, which render many of the single turbine control algorithms

highly inefficient for optimizing total energy production [17]. The goal is to establish a distributed

control algorithm that enables the individual turbines to adjust their behavior based on local

conditions, so as to maximize total system performance. One approach to handle this large-scale

coordination problem is to model the interactions of the turbines in a game theoretic environment.

The space of admissible utility functions for the individual turbines is limited because of the

following informational limitations:

(i) Each turbine does not have access to the actions1 of other turbines due to the lack of a

1A turbine’s action is called an axial induction factor. The axial induction factor captures the amount of energy the turbine

extracts from the wind.
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suitable communication system.

(ii) No turbine has access to the functional relationship between the total power generated and

the action of the other turbines. This is because the aerodynamic interaction between the

turbines is poorly understood.

These limitations restrict the ability to represent the interaction framework as a potential game.

For example, one of the common utility design approaches is to assign each turbine an objective

function which measures the turbine’s marginal contribution to the power production of the

wind farm, i.e., the difference between the total power produced when that turbine is active

and the total power produced when that turbine is inactive [6], [14]. Calculating this difference

is not possible due to a lack of knowledge about the aerodynamic interactions. Essentially,

the interaction framework is constrained to being the case where each turbine responds to

it’s individual power production. It is not known whether this interaction framework can be

represented by a potential game, or even whether the game is question possesses a pure strategy

Nash equilibrium. The existing results in the literature do not provide suitable control algorithms

for this type of situation.

The contribution of this paper is to demonstrate the existence of simple, completely de-

centralized learning algorithms that lead to efficient system-wide behavior irrespective of the

game structure. We measure the efficiency of an action profile by the sum of the agent’s utility

functions. In a wind farm this sum is precisely equal to the total power generated. The main

result of this work is a simple payoff-based learning algorithm that guarantees convergence to

this Pareto efficient action profile when the underlying game has generic payoffs. This result

holds whether or not this efficient action profile is a Nash equilibrium. It therefore differs from

the approach of [13] who show how to achieve constrained efficiency within the set of Nash

equilibrium outcomes.

II. BACKGROUND

We consider finite strategic-form games with n agents denoted by the set N := {1, ..., n}. Each

agent i ∈ N has a finite action set Ai and a utility function Ui : A → R where A = A1×· · ·×An
denotes the joint action set. We refer to a finite strategic-form game as “a game,” and we

sometimes use a single symbol, e.g., G, to represent the entire game, i.e., the player set, N ,

action sets, Ai, and utility functions Ui. For an action profile a = (a1, a2, ..., an) ∈ A, let a−i
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denote the profile of agent actions other than player i, i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an).

With this notation, we shall sometimes denote a profile a of actions by (ai, a−i) and Ui(a) by

Ui(ai, a−i). We shall also let A−i =
∏

j 6=iAj denote the set of possible collective actions of all

agents other than agent i. Define the welfare of an action profile a ∈ A as W (a) =
∑

i∈N Ui(a).

An action profile that optimizes the welfare will be denoted by aopt ∈ arg maxa∈AW (a).

A. Repeated Games

In a repeated game, at each time t ∈ {0, 1, 2, . . . }, each player i ∈ N simultaneously chooses

an action ai(t) ∈ Ai and receives the utility Ui(a(t)) where a(t) := (a1(t), . . . , an(t)). Each

player i ∈ N chooses the action ai(t) at time t according to a probability distribution pi(t) ∈
∆(Ai), which we will refer to as the strategy of player i at time t where ∆(Ai) is defined as

the simplex over the set Ai. We adopt the convention that pai
i (t) is the probability that player i

selects action ai at time t according to the strategy pi(t). A player’s strategy at time t can rely

only on observations from times {0, 1, 2, ..., t− 1}. Different learning algorithms are specified

by both the assumptions on available information and the mechanism by which the strategies

are updated as information is gathered. For example, if a player knows his own utility function

and is capable of observing the actions of all other players at every time step but does not know

their utility functions, then the strategy adjustment mechanism of player i can be written in the

general form

pi(t) = Fi
(
a(0), ..., a(t− 1);Ui

)
.

Such an algorithm is said to be uncoupled [18], [19].

In this paper we ask whether players can learn to play the welfare maximizing action profile

under even more restrictive observational conditions. In particular, we shall assume that players

only have access to (i) the action they played and (ii) the payoff they received. In this setting,

the strategy adjustment mechanism of player i takes the form

pi(t) = Fi

(
{ai(τ), Ui(a(τ))}τ=0,...,t−1

)
. (1)

Such a learning rule is said to be completely uncoupled or payoff-based [20]. Recent work in [21]

has shown that for generic two-player games there are completely uncoupled learning rules that
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lead to Pareto optimal behavior. In this paper we exhibit a different class of learning procedures

that lead to Pareto optimal outcomes in any finite n-person game with generic payoffs.2

III. A PAYOFF BASED ALGORITHM FOR MAXIMIZING WELFARE

In this section we introduce a payoff-based algorithm that converges to the Pareto efficient

action profile in any finite n-person game with generic payoffs. The proposed algorithm is a

variant of the approach in [13], where each player possesses an internal state variable which

impacts the player’s behavior rule. The core difference between our proposed algorithm and the

one in [13] is the asymptotic guarantees. In particular, [13] guarantees convergence to the Pareto

efficient Nash equilibrium while our proposed algorithm converges to the Pareto efficient action

profile irrespective of whether or not this action profile is a Nash equilibrium. Furthermore, our

algorithm uses fewer state variables than the design in [13].

At each point in time a player’s state can be represented as a triple [āi, ūi,mi], where

• The benchmark action is āi ∈ Ai.
• The benchmark payoff is ūi which is in the range of Ui(·).

• The mood is mi which can take on two values: content (C) and discontent (D).

The learning algorithm produces a sequence of action profiles a(1), ..., a(t), where the behavior

of an agent i at each iteration k = 1, 2, ..., is conditioned on agent i’s underlying benchmark

payoff ūi(k), benchmark action āi(k), and mood mi(k) ∈ {C,D}. We divide the dynamics into

the following two parts: the player dynamics and the state dynamics. Without loss of generality

we focus on the case where player utility functions are strictly bounded between 0 and 1, i.e.,

for any player i ∈ N and action profile a ∈ A we have 1 > Ui(a) ≥ 0. Consequently, for any

action profile a ∈ A, the welfare function satisfies n > W (a) ≥ 0.

Player Dynamics: Fix an experimentation rate ε > 0. Let [āi, ūi,mi] be the current state of agent

i.

2Such a result might seem reminiscent of the Folk Theorem, which specifies conditions under which a Pareto efficient action

profile can be implemented as an equilibrium of a repeated game. See among others [22], [23]. In the present context, however,

we are interested in whether players can learn to play a Pareto efficient action profile without having any information about the

game as a whole or even what the other players are doing.
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• Content (mi = C): In this state, the player chooses an action ai according to the following

probability distribution

pai
i =

 εc

|Ai|−1
for ai 6= āi

1− εc for ai = āi
(2)

where c ≥ n is a constant.

• Discontent (mi = D): In this state, the player chooses an action ai according to the

following probability distribution:

pai
i =

1

|Ai| for every ai ∈ Ai (3)

Note that the benchmark action and utility play no role with regards to the player dynamics

when the player is discontent.

State Dynamics: Once the player selects an action ai ∈ Ai and receives the payoff ui =

Ui(ai, a−i), where a−i is the action selected by all players other than player i, the state is

updated as follows:

• Content (mi = C): If [ai, ui] = [āi, ūi] the new state is determined by the transition

[āi, ūi, C]
[āi,ūi]−→ [āi, ūi, C] (4)

If [ai, ui] 6= [āi, ūi] the new state is determined by the transition

[āi, ūi, C]
[ai,ui]−→

 [ai, ui, C] with prob ε1−ui

[ai, ui, D] with prob 1− ε1−ui

• Discontent (mi = D): If the selected action and received payoff are [ai, ui], the new state

is determined by the transition

[āi, ūi, D]
[ai,ui]−→

 [ai, ui, C] with prob ε1−ui

[ai, ui, D] with prob 1− ε1−ui

Ensuring that the dynamics converge to the Pareto efficient action profile requires the following

level of interdependence in the game structure.

Definition 1 (Interdependence). An n-person game G on the finite action space A is interde-

pendent if, for every a ∈ A and every proper subset of players J ⊂ N , there exists a player

i /∈ J and a choice of actions a′J ∈
∏

j∈J Aj such that Ui(a′J , a−J) 6= Ui(aJ , a−J).
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Roughly speaking, the interdependence condition is relatively weak and states that it is not

possible to divide the players into two distinct subsets that do not mutually interact with one

another.

The above dynamics induce a Markov process over the finite state space Z =
∏

i∈N (Ai × Ui ×M)

where Ui denotes the finite range of Ui(a) over all a ∈ A and M = {C,D} is the set of moods.

We denote the transition probability matrix by P ε for each ε > 0. Computing the stationary

distribution of this process is challenging because of the large number of states and the fact that

the underlying process is not reversible. Accordingly, we focus on characterizing the support of

the limiting stationary distribution which is referred to as the stochastically stable states. More

precisely, a state z ∈ Z is stochastically stable if and only if limε→0+ µ(z, ε) > 0 where µ(z, ε)

is a stationary distribution of the process P ε for a fixed ε > 0. We now provide the following

characterization of the stochastically stable states.

Theorem 1. Let G be an interdependent n-person game on a finite joint action space A. If

all players use the dynamics highlighted above then a state z = [a, u,m] ∈ Z is stochastically

stable if and only if the following conditions are satisfied:

(i) The action profile a optimizes W (a) =
∑

i∈N Ui(a).

(ii) The benchmark actions and payoffs are aligned, i.e., ui = Ui(a).

(iii) The mood of each player is content, i.e., mi = C.

IV. PROOF OF THEOREM 1

In this section we provide the proof of Theorem 1. We rely on the theory of resistance trees

for regular perturbed Markov decision processes to prove that an action profile is stochastically

stable if and only if it is Pareto efficient. We first provide a brief background on the theory of

resistance tree.

A. Background on Resistance Trees

For a detailed review of the theory of resistance trees, please see [24]. Let P 0 denote the

probability transition matrix for a finite state Markov chain over the state space Z. Consider a

“perturbed” process such that the size of the perturbations can be indexed by a scalar ε > 0,

and let P ε be the associated transition probability matrix. The process P ε is called a regular
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perturbed Markov process if P ε is ergodic for all sufficiently small ε > 0 and P ε approaches

P 0 at an exponentially smooth rate [24]. Specifically, the latter condition means that ∀z, z′ ∈ Z,

lim
ε→0+

P ε
zz′ = P 0

zz′ ,

and

P ε
zz′ > 0 for some ε > 0 ⇒ 0 < lim

ε→0+

P ε
zz′

εr(z→z′)
<∞,

for some nonnegative real number r(z → z′), which is called the resistance of the transition

z → z′. (Note in particular that if P 0
zz′ > 0 then r(z → z′) = 0.)

Let the recurrence classes of P 0 be denoted by E1, E2, ..., EN . For each pair of distinct

recurrence classes Ei and Ej , i 6= j, an ij-path is defined to be a sequence of distinct states

ζ = (z1 → z2 → ...→ zn) such that z1 ∈ Ei and zn ∈ Ej . The resistance of this path is the sum

of the resistances of its edges, that is, r(ζ) = r(z1 → z2) + r(z2 → z3) + ... + r(zn−1 → zn).

Let ρij = min r(ζ) be the least resistance over all ij-paths ζ . Note that ρij must be positive for

all distinct i and j, because there exists no path of zero resistance between distinct recurrence

classes.

Now construct a complete directed graph with N vertices, one for each recurrence class. The

vertex corresponding to class Ej will be called j. The weight on the directed edge i→ j is ρij .

A tree, T , rooted at vertex j, or j-tree, is a set of N − 1 directed edges such that, from every

vertex different from j, there is a unique directed path in the tree to j. The resistance of a rooted

tree, T , is the sum of the resistances ρij on the N − 1 edges that compose it. The stochastic

potential, γj , of the recurrence class Ej is defined to be the minimum resistance over all trees

rooted at j. The following result provides a simple criterion for determining the stochastically

stable states ( [24], Theorem 4).

Let P ε be a regular perturbed Markov process, and for each ε > 0 let µε be the unique

stationary distribution of P ε. Then limε→0 µ
ε exists and the limiting distribution µ0 is a stationary

distribution of P 0. The stochastically stable states (i.e., the support of µ0) are precisely those

states contained in the recurrence classes with minimum stochastic potential.

B. Proof of Theorem 1

We will prove Theorem 1 by the following sequence of lemmas. First, we introduce the

following notation by dividing up the state space Z. Let C0 be the subset of states in which

July 7, 2011 DRAFT



9

each player is content and the benchmark action and utility are aligned. That is, if [a, u,m] ∈ C0

then ui = Ui(a) and mi = C for each player i ∈ N . Let D0 represent the set of states in which

everyone is discontent. That is, if [a, u,m] ∈ D0 then ui = Ui(a) and mi = D for each player

i ∈ N .

The process described above is clearly a regular perturbed Markov decision process. The

unperturbed process, denoted as P 0, is the Markov decision process where ε = 0. The first

lemma provides a characterization of the recurrent classes of the unperturbed process.

Lemma 2. The recurrence classes of the unperturbed process P 0 are D0 and all singletons

z ∈ C0.

Proof: First, the states D0 clearly represent a single recurrent class of the unperturbed

process since the probability of transitioning between any two states z1, z2 ∈ D0 is O(1).

Next, suppose that a proper subset players S ⊂ N is discontent and the benchmark action

and benchmark utility of all other players are a−S and u−S respectively. By our interdependence

condition there exists a player j /∈ S such that uj 6= Uj(a
′
S, a−S) for some action a′S ∈

∏
i∈S Ai.

Hence, the player set S will eventually play action a′S with probability 1 thereby causing player

j to become discontent. Hence, this cannot be a recurrent class of the unperturbed process.

This process can be repeated to show that all players will become discontent; hence any state

that consists of a partial collection of discontent players S ⊂ N is not a recurrent class of the

unperturbed process. Lastly, consider a state [a, u, C] where all players are content but there

exists at least one player i whose benchmark action and benchmark utility are not aligned, i.e.,

ui 6= Ui(a). For the unperturbed process, at the ensuing time step the action profile a will be

played and player i will become discontent since ui 6= Ui(a). Since one player is discontent, all

players will become discontent as highlighted above. This completes the proof.

We know from [24] that the computation of the stochastically stable states can be reduced

to an analysis of rooted trees on the vertex set consisting solely of the recurrence classes. We

denote the collection of states D0 by a single variable D to represent this single recurrent

class. By Lemma 2, the set of recurrence classes consists of the singleton states in C0 and also

the singleton state D. Accordingly, we represent a state z ∈ C0 by just [a, u] and drop the

extra notation highlighting that the players are content. We now reiterate the definition of edge

resistance.
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Definition 2 (Edge resistance). For every pair of distinct recurrence classes w and z, let r(w →
z) denote the total resistance of the least-resistance path that starts in w and end in z. We call

w → z an edge and r(w → z) the resistance of the edge.

Let z = [a, u] and z′ = [a′, u′] be any two distinct states in C0. We point out the following

observations regarding the resistance of transitions between the states z, z′, and D.

(i) The resistance of the transition z → D satisfies

r(z → D) = c.

This is true since one experimentation can cause all players to become discontent.

(ii) The resistance of the transition D → z satisfies

r(D → z) =
∑
i∈N

(1− ui) = n−W (a).

This is true since each player i needs to accept the benchmark payoff ui which has a

resistance (1− ui).

(iii) The resistance of the transition z → z′ satisfies

c ≤ r(z → z′) < 2c.

This is true since by definition of edge resistance we have that r(z → z′) ≤ r(z →
D) + r(D → z′). Therefore, each transition of minimum resistance includes at most one

player that experiments.

Before stating the next lemma we introduce the notion of a path or sequence of edges. A path

P over the states D ∪ C0 is a sequence transitions of the form

P = {z0 → z1 → ...→ zm}

where each zk for k ∈ {0, 1, ...,m} is in D ∪ C0. The resistance of a path P is the sum of the

resistance of each edge

R(P) =
m∑
k=1

r(zk−1 → zk).

Lemma 3. The stochastic potential associated with any state z = [a, u] in C0 is

γ(z) = c
(∣∣C0

∣∣− 1
)

+
∑
i∈N

(1− ui) . (5)
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Proof: We first prove that (5) is an upper bound for the stochastic potential of z by

constructing a tree rooted at z with the prescribed resistance. To that end, consider the tree

T with the following properties:

P-1: The edge exiting each state z′ ∈ C0 \ {z} is of the form z′ → D. The total resistance

associated with these edges is c (|C0| − 1).

P-2: The edge existing the state D is of the form D → z. The resistance associated with this

edge is
∑

i∈N (1− ui).

The constructed tree T is clearly rooted at z and has a total resistance c (|C0| − 1)+
∑

i∈N (1− ui) .
Therefore we know that γ(z) ≤ c (|C0| − 1) +

∑
i∈N (1− ui) .

We now prove that (5) is also a lower bound for the stochastic potential by contradiction.

Suppose there exists a tree T rooted at z with resistance R(T ) < c (|C0| − 1) +
∑

i∈N (1− ui) .
Since the tree T is rooted at z we know that there exists a path P from D to z of the form

P = {D → z1 → z2 → ...→ zm → z}

where zk ∈ C0 for each k ∈ {1, ...,m}. The resistance associated with this path of m + 1

transition satisfies

R(P) ≥ mc+
∑
i∈N

(1− ui)

where mc comes from invoking observation (iii) at the last m transitions in the path P and∑
i∈N (1− ui) comes from the fact that each player needs to accept ui as the benchmark payoff

at some point during the transitions. Construct a new tree T ′ still rooted at z by removing the

edges in P and adding the following edges:

• D → z which has resistance
∑

i∈N (1− ui).

• zk → D for each k ∈ {1, ...,m} which has total resistance mc.

The new tree T ′ has a total resistance that satisfies R(T ′) ≤ R(T ). Note that if the path P was

of the form D → z then this augmentation did not alter the tree structure.

Now, suppose there exists an edge z′ → z′′ in the tree T ′ for some states z′, z′′ ∈ C0. By

observation (iii) the resistance of this edge satisfies r(z′ → z′′) ≥ c. Construct a new tree T ′′

by removing the edge z′ → z′′ and adding the edge z′ → D which has a resistance c. Note that
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this new tree T ′′ is rooted at z. The resistance associated with the tree T ′′ satisfies

R(T ′′) = R(T ′) + r(z′ → D)− r(z′ → z′′)

≤ R(T ′)

≤ R(T ).

Repeat this process until we have constructed a tree T ∗ for which no such edges exist. Note

that the tree T ∗ satisfies properties P-1 and P-2 and consequently has a total resistance R(T ∗) =

c (|C0| − 1) +
∑

i∈N (1− ui) . Since by construction R(T ∗) ≤ R(T ) we have a contradiction

which completes the proof.

We will now complete the proof by analyzing the minimum resistance trees using the above

lemmas. We first show that the state D is not stochastically by contradiction. Suppose there

exists a minimum resistance tree, denoted as T , rooted at the state D. Then there exists an edge

in the tree T of the form z → D for some state z ∈ C0 and the resistance of this edge is c.

Create a new tree T ′ rooted at z by removing the edge z → D from the tree T and adding the

edge D → z which has at most a resistance of n < c. Therefore, we have that

R(T ′) = R(T ) + r(D → z)− r(z → D)

≤ R(T ) + n− c

< R(T )

Hence, T is not a minimum resistance tree. Consequently, the state D is not stochastically stable.

Therefore, we know that the stochastically stable stable must be contained in the set C0. From

Lemma 3 we know that a state z = [a, u] in C0 is stochastically stable if and only if

a ∈ arg min
a∗∈A

{
c
(∣∣C0

∣∣− 1
)

+
∑
i∈N

(1− Ui(a∗))
}

or equivalently

a ∈ arg max
a∗∈A

{∑
i∈N

Ui(a
∗)

}
.

Therefore, a state is stochastically stable if and only if the action profile is Pareto efficient. This

completes the proof.
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V. RELAXING INTERDEPENDENCE

In this section we focus on whether our interdependence condition can be relaxed while

ensuring that the only stochastically stable states remain the Pareto efficient action profiles.

Interdependence is a relatively weak condition which states that it is not possible to partition

the players into two distinct groups S and N \S that do not mutually interact with one another.

One trivially relaxation of this condition is the situation where neither group interacts with the

other group, i.e., for any action profile a, any player j ∈ S (or j ∈ N \ S), and any action

a′S ∈
∏

j∈S Aj we have Uj(a) = Uj(a
′
S, a−S). Roughly speaking, this condition states that the

game can be broken into separate games that can be analyzed independently. Therefore, the

proposed algorithm ensures that in each game the only stochastically stable states are the Pareto

efficient action profiles. Hence, Theorem 1 directly carries over to this setting.

Unfortunately, relaxing this condition further does not yield similar results. For example,

consider the following game:
A B

A 1/2, 1/4 1/2, 0

B 1/4, 0 1/4, 3/4

Here, the row player impacts the column player but the reverse is not true. Consequently, the

recurrent states of the unperturbed process are now {AA,AB,BA,BB,A∅, B∅, ∅∅} where A∅
indicates the state where player 1 is content with action profile A and player 2 is discontent.

Alternatively, ∅∅ represents the state where both players are discontent. Figure V proves that

the action profile (A,A), which is not Pareto efficient, is stochastically stable by evaluating the

minimum resistance tree rooted at (A,A). In the figure we set c = n = 2. The illustrated resis-

tance tree is of minimum stochastic potential because each edge in the given tree is of minimum

resistance. That is for every edge z → z′ in the highlighted tree r(z → z′) = minz′′ r(z → z′′).

Consequently, in this new domain the unique Nash equilibrium is stochastically stable as opposed

to the Pareto efficient action profile.

This example demonstrates that in games with such a structure the proposed dynamics do not

converge to the Pareto efficient action profile. Rather, the proposed dynamics converge to a Nash

equilibrium of a new game where the interconnected player sets are viewed as a single player

with a payoff equal to the sum of the players’ payoffs. We avoid including a rigorous analysis

of the resulting behavior for such scenarios.

July 7, 2011 DRAFT



14

∅, ∅
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B, ∅
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2.5

2.75

2.25

2

2

2

Fig. 1. Illustration of the minimum resistance tree rooted at the action profile (A, A).

VI. ILLUSTRATIVE EXAMPLES

In this section we highlight the contribution of this paper on two problem. First, we focus on

the game of prisoner’s dilemma to illustrate our algorithms through a simple example. Next, we

demonstrate how the proposed algorithm can be used to optimize energy production in a wind

farm.

A. Prisoner’s dilemma

Consider the following prisoner’s dilemma game where all player utilities are scaled between

0 and 1:

C D

C 1/2, 1/2 0, 2/3

D 2/3, 0 1/3, 1/3

The prisoner’s dilemma game is generic and hence satisfies our interdependence condition.

Consequently, the presented algorithm guarantees that the action profile (C,C) is the only

stochastically stable state. We will now verify this by computing the resistances for of each

of the transitions. The recurrent classes of the unperturbed process are (CC,CD,DC,DD, ∅)
where the players are content for the given action profiles and ∅ corresponds to the scenario

where both players are discontent. Here, we omit explicitly highlighting the baseline utility for
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CC CD DC DD ∅

CC · 2 + (1− 2/3) + (1− 0) = 10/3 2 + (1− 2/3) + (1− 0) = 10/3 2 + 2(1− 1/3) = 10/3 2

CD 2 + 2(1− 1/2) = 3 · 2 + (1− 2/3) + (1− 0) = 10/3 2 + 2(1− 1/3) = 10/3 2

DC 2 + 2(1− 1/2) = 3 2 + (1− 2/3) + (1− 0) = 10/3 · 2 + 2(1− 1/3) = 10/3 2

DD 2 + 2(1− 1/2) = 3 2 + (1− 2/3) + (1− 0) = 10/3 2 + (1− 2/3) + (1− 0) = 10/3 · 2

∅ 2(1− 1/2) = 1 (1− 2/3) + (1− 0) = 4/3 (1− 2/3) + (1− 0) = 4/3 2(1− 1/3) = 4/3 ·

TABLE I

EVALUATION OF RESISTANCES FOR PRISONER’S DILEMMA GAME.

each of the 4 joint action profiles to avoid redundancy. Lets initially focus on one particular

transition CC → DD. The resistance of this transition is

r(CC → DD) = c+ (1− 1/3) + (1− 1/3) = c+ 4/3

where c comes from the fact that we have only one experimenter and the 2(1 − 1/3) results

from the fact that both players 1 and 2 need to accept the new benchmark payoff of 1/3 in this

transition. Let c = n = 2 for the remaining portion of this section. The resistances of all possible

transitions are highlighted in Table VI-A. Each entry in this table represents the resistance going

from the state highlighted by the row on the left column to the state highlighted by the column

on the the top row. First, note that the resistances associated with any two state z, z′ ∈ C0 to

a new state z′′ ∈ C0 is the same. This is because a single experimentation leads to all players

becoming discontent. Hence, all players need to accept the new benchmarks in z′′ which gives

us the equivalence.

The stochastic potential of each of the 5 states can be evaluated by analyzing the family

of trees rooted at each state. The minimum resistance tree rooted at each of the 5 states is

illustrated in Figure VI-A. Note that each of the minimum resistance trees has a very simple

structure as identified in Lemma 3. Hence, this analysis verifies that (C,C) is of minimum

stochastic potential and hence is the unique stochastically stable state.

B. Wind farms

In this section we focus on the control of a wind farm where the goal is to generate as much

power as possible. The ingredients of the problem are the following:
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Fig. 2. Stochastic potential for each state in the prisoner’s dilemma game.

• Agents: Individual wind turbines denoted by the set N .

• Decisions: The action set for turbine i includes the orientation and the axial induction factor.

The set of such choices is denoted by Ai. The axial induction factor relates to how much

energy the turbine extracts from the wind given the current wind conditions.

• Power production: The power produced by turbine i is a function of the current wind

conditions and the actions of all turbines. The power generated by turbine i given the

decision of all turbines a = (a1, a2, ..., an) = (ai, a−i) is given by Pi(ai, a−i). We assume

throughout that the exogenous wind conditions are fixed so we omit this in the power

expression for each turbine.

• System level objective: The goal is to optimize the total energy production in the wind

farm, i.e.,

P (a) =
∑
i∈N

Pi(a)
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Most of the existing research on the control of wind turbines focuses on the single turbine

setting [25]. Controlling an array of turbines in a wind farm is fundamentally more challeng-

ing than controlling a single turbine stemming from the aerodynamic interaction between the

turbines. These aerodynamic interactions render most of the single turbine control algorithms

highly inefficient for optimizing wind farm productivity [17], [26] by introducing a degree of

interconnectivity between the objective (or power) functions of the individual turbines. More

specifically, the power generated by one turbine is dependent on the exogenous wind conditions

coupled with the axial induction factors of other turbines. Lastly, these aerodynamic interactions

are poorly characterized hence the precise structural form of the power generated by the wind

farm P (a1, ..., an) as a function of the axial induction factors in not characterized.

The results in this paper provide a model-free approach to energy optimization in a wind

farm. Our proposed payoff-based algorithm guarantees convergence to the action profile which

maximizes the total power generated in the wind farm provided that the underlying game satisfies

the interdependence condition. This condition seems plausible in the context of wind farms since

the turbines mutually interact with one another through the aerodynamic interactions, i.e., the

action by one turbine impacts the local wind conditions seen by neighboring turbines. The key

point of this exposition is that we do not need to characterize the aerodynamic interactions

between the turbines in order to design algorithms that optimize energy production.
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