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Abstract
This paper studies implementation problems in the wake of a re-
cent new trend of implementation theory which incorporates a non-
consequentialist �avor of the evidence from experimental and behav-
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works by Matsushima (2008) and Dutta and Sen (2009), the paper
considers implementation problems with partially honest agents, which
presume that there exists at least one individual in the society who
concerns herself with not only outcomes but also honest behavior at
least in a limited manner. Given this setting, the paper provides a
general characterization of Nash implementation with partially-honest
individuals. It also provides the necessary and su¢ cient condition for
Nash implementation with partially-honest individuals by mechanisms
with some types of strategy-space reductions. As a consequence, it
shows that, in contrast to the case of the standard framework, the
equivalence between Nash implementation and Nash implementation
with strategy space reduction no longer holds.
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1 Introduction

The theory of (Nash) implementation aims to reach goals in situations in
which the planner does not have all the relevant necessary information, but
needs to elicit it from the agents.1 To this end, she designs a mechanism or
game form in which agents will act strategically in accordance with the so-
lution concept of Nash equilibrium. When the (Nash) equilibrium outcomes
of the mechanism coincide with the goals set by the planner, these goals
are implementable. Seminal paper on implementation is Maskin (1999) who
proves that a social choice correspondence (SCC) - which summarizes the
planner�s goals - is (Maskin)monotonic if it is implementable; when there are
at least three agents, an SCC is implementable if it is monotonic and satis-
�es an auxiliary condition called no-veto power. Moore and Repullo (1990),
Dutta and Sen (1991), Danilov (1992), Sjöström (1991) and Yamato (1992)
re�ned Maskin�s characterization result by providing necessary and su¢ cient
conditions for an SCC to be implementable.2

A fundamental tenet of implementation theory is the consequentialism
axiom. Its core idea is that the ranking of outcomes of agents should be
independent of the process that generates these outcomes. An immediate
implication of this axiom for implementation theory is that agents should be
indi¤erent between a lie and a truthful statement if they result in the same
material payo¤s. This axiom, however, is inconsistent with the well docu-
mented behavior that agents may display concern for procedures; that is, they
may care about how outcomes are generated and, therefore, their ranking of
outcomes may be structurally dependent on the outcome-generating process
(Camerer, 2003; Sen, 1997). Remarkably, a considerable amount of exper-
imental data suggests that agents may display preferences for truth-telling;
that is, an agent lies only when she prefers the outcome obtained from false-
telling over the outcome obtained from truth-telling (Gneezy, 2005; Hurkens
and Kartik, 2009). This paper aims at narrowing the gap between these
two strands. It follows the non-consequentialist approach by accommodat-
ing concerns for truthful revelation of agents; but like mainstream theory,
it keeps the idea that even these agents respond primarily to material in-
centives.3 The paper refers to agents having preferences for truth-telling as

1Henceforth, by implementation we mean Nash implementation.
2For excellent introductions to the theory of implementation, see, for instance, Jackson

(2001) and Maskin and Sjöström (2002).
3In its turn, the impressive body of evidence accumulated by psychologists over the past
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being partially-honest.
Its general thrust goes as follows. Assume, as an example, that the mes-

sage conveyed by each agent to the planner involves the announcement of
a preference pro�le (i.e., agents�preferences over outcomes). A message is
truthful if it involves the announcement of the true preference pro�le. A
partially-honest agent is an agent who strictly prefers to announce a truth-
ful message rather than a lie when the former (given a message announced
by other agents) produces an outcome which is at least as good as the one
that would be achieved if the agent lied (keeping constant the other agents�
messages). Suppose that agent h is a partially-honest agent, who believes
that the other agents will send the message m�h, and let mh be the truthful
message of agent h and m0

h be not truthful. Moreover, let both the message
pro�le (mh;m�h) and the message pro�le (m0

h;m�h) result in the same out-
come x. Then, unlike an agent who is concerned solely with outcomes, the
partially-honest agent h strictly prefers (mh;m�h) to (m0

h;m�h). Put di¤er-
ently, the agent at issue has preferences over message pro�les in which she
cares about two dimensions in lexicographic order: primarily to her outcome,
secondarily to her truth-telling behavior.
Seminal works on the role of honesty in implementation theory are Mat-

sushima (2008) and Dutta and Sen (2009), which show that the assump-
tion that the planner is aware of the existence of partially-honest agents
but ignores their identities drastically improves the scope of implementation.
Yet, the signi�cant impact of the presence of partially-honest agents upon
implementation theory has not been fully appreciated - as described below.
In the line with these works, this paper also investigates implementation
problems with partially-honest agents, where an SCC is partially-honestly
implementable if there is a mechanism whose equilibrium outcomes are de-
termined with each pro�le of preferences over message pro�les, and coincide
with the optimal outcomes set by this SCC.
Given this setting, the paper provides, in section 3.1, a minimal set of

necessary conditions for partially-honest implementation, though the above

two decades has caused scholars to study the implications of weakening other fundamental
assumptions in a variety of ways, and has already turned in a number of alternatives
back to the standard implementation model (for instance, Eliaz, 2002; Renou and Schlag,
2009; Bergemann et al., 2010; Cabrales and Serrano, 2010). Noteworthy, the �rst paper
on �behavioral implementation theory� goes back to 1986, in which Hurwicz solves the
implementation problem without positing the completeness and the transitivity of agents�
preferences (Hurwicz, 1986).
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seminal works solely study su¢ cienct conditions. Due to this result in the pa-
per, it is possible to examine which of the SCCs cannot be partially-honestly
implemented. For instance, as shown in section 4, the (strong) Pareto SCC
de�ned in abstract social choice environments is not partially-honestly im-
plementable. Furthermore, under mild and reasonable domain restrictions
of preferences and mechanisms, the paper shows that a slight strengthening
of these conditions is necessary and su¢ cient for partially-honest implemen-
tation in more than two person societies. The set of conditions is much
weaker than the necessary and su¢ cient condition given by Moore and Re-
pullo (1990) for the standard Nash implementation, and in particular it con-
tains no variant of the Maskin monotonicity-like condition. For instance, in
rationing problems when agents have single-plateaued preferences, it can be
shown from this characterization that the Pareto SCC is partially-honestly
implementable, though this SCC violates the Moore and Repullo (1990)
condition, and also satis�es neither monotonicity nor no-veto power.
Note that the aforementioned theorem of this paper applies a canonical

mechanism to show the su¢ ciency part. This type of mechanism requests
agents to announce a feasible social outcome, an agent index, and moreover a
pro�le of agents�preferences on outcomes, which is not an attractive feature,
given that an important role of the mechanism is to economize on commu-
nication. Facing this issue, the paper pays attention to informational decen-
tralization of mechanisms by considering mechanisms with strategy space re-
ductions. While sub-section 3.2 assumes s-mechanism (Saijo, 1988) in which
the message conveyed by each agent to the planner involves the announce-
ment of only her own and her neighbor�s preferences - in addition to an
outcome and an agent index, sub-section 3.3 assumes self-relevant mecha-
nisms (Tatamitani, 2001) in which each agent announces - inter alia - only
her own preference. Then, the paper identi�es a minimal set of necessary
conditions for partially-honest implementation by s-mechanisms (resp., self-
relevant mechanisms); moreover, it shows that a slight strengthening of these
conditions fully identi�es the class of partially-honest implementable SCCs
by s-mechanisms (resp., self-relevant mechanisms). Notably, these conditions
respectively contain the weaker variants of (Maskin) monotonicity-type con-
ditions, each of which respectively restricts the class of partially-honestly im-
plementable SCCs by s-mechanisms and by self-relevant mechanisms. These
�ndings have at least two immediate consequences. First, there is a trade-
o¤ between what the planner can achieve when there are partially-honest
agents in the society and the strengthening of informational decentralization
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in mechanisms. Second, this con�ict breaks down the equivalence between
implementation and implementation by s-mechanism which holds in the stan-
dard framework (Lombardi and Yoshihara, 2010).
Finally, the paper turns to study partially-honest implementation prob-

lems in two-agent societies. This issue has recently been analyzed by Dutta
and Sen (2009) on the assumption that agents�preferences are linear orders.
Their contribution is that, even in the more problematic case of two agents,
the stringent condition of monotonicity is no longer required. The paper
extends their analysis to the domain of weak orders in view of its potential
applications to bargaining and negotiating. The paper identi�es the class of
partially-honest implementable SCCs, not only in the case that the planner
knows that exactly one agent is partially-honest, but also in the more subtle
case that she only knows that there are partially-honest agents.
The paper is organized as follows. Section 2 describes the formal envi-

ronment. Section 3 reports the analysis for the many-person case, whereas
Section 4 brie�y discusses its implications. Section 5 reports the analysis for
the two-agent case and its implications.

2 The implementation problem

The set of outcomes is denoted by X and the set of agents is N = f1; :::; ng.
Unless otherwise speci�ed, we assume that the cardinality of X is #X � 2,
while the cardinality of N is n � 3. Let R (X) be the set of all possible weak
orders on X.4 Let R` � R (X) be the (non-empty) set of all admissible weak
orders for agent ` 2 N .5 Let Rn � R1 � :::�Rn be the set of all admissible
pro�les of weak orders (or states). A generic element of Rn is denoted by R,
where its `th component is R` 2 R`, ` 2 N .6 The symmetric and asymmetric
factors of any R` 2 R` are, in turn, denoted P` and I`, respectively.7 For
any R 2 Rn and any ` 2 N , let R�` be the list of elements of R for all
agents except `, i.e., R�` � (R1; :::; R`�1; R`+1; :::; Rn). Given a list R�` and

4A weak order is a complete and transitive binary relation. A relation R on X is
complete if, for all x; x0 2 X, (x; x0) 2 R or (x0; x) 2 R; transitive if, for all x; x0; x00 2 X,
if (x; x0) 2 R and (x0; x00) 2 R , then (x; x00) 2 R.

5The weak set inclusion is denoted by �, while the strict set inclusion is denoted by (.
6(x; y) 2 R` stands for �x is at least as good as y�.
7(x; y) 2 P` if and only if (x; y) 2 R` and (y; x) =2 R` and P` stands for �strictly better

than�. On the other hand, (x; y) 2 I` if and only if (x; y) 2 R` and (y; x) 2 R` and I`
stands for �indi¤erent to�.
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R` 2 R`, we denote by (R�`; R`) the preference pro�le consisting of these
R` and R�`. For any preference pro�le R 2 Rn and any ? 6= S � N ,
let R�S be the list of elements of R for all agents in NnS. Given a list
R�S and a list RS 2 �`2SR`, we denote by (R�S; RS) the preference pro�le
consisting of these RS and R�S. Let Pn � Rn be the set of all admissible
pro�les of linear orders.8 Let L (R`; x) denote agent i�s lower contour set at
(R`; x) 2 R`�X, that is, L (R`; x) � fy 2 Xj (x; y) 2 R`g. For any R` 2 R`

and Y � X, let maxR` Y be the set of optimal outcomes in Y according to
R`, that is, maxR` Y � fx 2 Y j (x; y) 2 R` for all y 2 Y g. For any R` 2 R`,
@L (R`; x) = fxg means fxg = maxR` L (R`; x).
A social choice correspondence (SCC) F on Rn is a correspondence F :

Rn � X with ? 6= F (R) � X for all R 2 Rn. Denote the class of such
correspondences by F . An SCC F on Rn is (Maskin) monotonic if, for all
R;R0 2 Rn with x 2 F (R), x 2 F (R0) if L (R`; x) � L (R0`; x) for all ` 2 N .
An SCC F on Rn satis�es i) no-veto power if, for all R 2 Rn, x 2 F (R)
if x 2 maxR` X for at least n � 1 agents; ii) unanimity if, for all R 2 Rn,
x 2 F (R) if x 2 maxR` X for all ` 2 N .
A mechanism is a pair  � (M; g), where M � M1 � ::: � Mn, with

each Mi being a (non-empty) set, and g : M ! X. It consists of a message
space M , where M` is the message space for agent ` 2 N , and an outcome
function g. Denote the admissible class of mechanisms by �. Let m` 2 M`

denote a generic message (or strategy) for agent `. A message pro�le is
denoted m � (m1; :::;mn) 2 M . For any m 2 M and ` 2 N , let m�` �
(m1; :::;m`�1;m`+1; :::;mn). Let M�` � �i2Nnf`gMi. Given an m�` 2 M�`
and an m` 2M`, denote by (m`;m�`) the message pro�le consisting of these
m` and m�`. For any m 2 M and ? 6= S � N , let m�S � (m`)`2NnS. Let
M�S � �`2NnSM`. Given m�S 2 M�S and mS 2 MS, denote by (mS;m�S)
the message pro�le consisting of these mS and m�S.
Amechanism  induces a class of (non-cooperative) games f(;R) jR 2 Rng.

Given a game (;R), we say that m� 2M is a (pure strategy) Nash equilib-
rium at R if and only if, for all ` 2 N ,

�
m�;

�
m`;m

�
�`
��
2 R` for all m` 2M`.

Given a game (;R), let NE (;R) denote the set of Nash equilibria mes-
sage pro�les of (;R), whereas NA (;R) represents the corresponding set of
Nash equilibrium outcomes.
A mechanism  implements F in Nash equilibria, or simply implements

8A linear order is a complete, transitive, and antisymmetric binary relation. A binary
relation R on X is antisymmetric if, for all x; x0 2 X, x = x0 if (x; x0) 2 R and (x0; x) 2 R.
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F , if and only if F (R) = NA (;R) for all R 2 Rn. If such mechanism
exists, then F is (Nash)-implementable.
Given a mechanism , for each ` 2 N , let us de�ne truth-telling cor-

respondence T ` : Rn � F � M` such that for each (R;F ) 2 Rn � F ,
? 6= T ` (R;F ) � M`. An interpretation of the set T


` (R;F ) is that, given

the mechanism  and the current state (R;F ), agent ` behaves truthfully at
the message pro�le m 2 M if and only if m` 2 T ` (R;F ). In other words,
T ` (R;F ) is the set of truthful message of ` under the mechanism , when
the current social state is R 2 Rn and the social goal is given by F . Note
that the type of elements of M` constituting T


` (R;F ) depends on the type

of mechanism  that one may consider. For example, if the message conveyed
by each agent to the planner involves the announcement of a preference pro-
�le, a feasible social outcome and an agent integer index, and sending the
truthful preference pro�le constitutes the relevant truthful message for each
(R;F ) 2 Rn � F , then M` may be de�ned by M` � M1

` �M2
` , where there

is a bijection �` : Rn ! M1
` such that T


` (R;F ) = f�` (R)g �M2

` for each
(R;F ) 2 Rn �F .
For any ` 2 N and R 2 Rn, let <R` be agent `�s (weak) order over M

under the state R. The asymmetric factor of <R` is denoted �R` , while the
symmetric part is denoted sR` . For any R 2 Rn, let <R denote the pro�le of
(weak) orders over M under the state R, that is, <R�

�
<R`
�
`2N .

De�nition 1. Given a mechanism , an agent h 2 N is a partially-honest
agent if, for any R 2 Rn, and any m � (mh;m�h) ;m

0 � (m0
h;m�h) 2 M ,

the following properties hold:

(i) if mh 2 T h (R;F ), m
0
h =2 T h (R;F ), and (g (m) ; g (m

0)) 2 Rh, then
(m;m0) 2�Rh ;
(ii) otherwise, (m;m0) 2<Rh if and only if (g (m) ; g (m0)) 2 Rh.
If agent ` 2 N is not a partially-honest agent, then for each game (;R), for
all m;m0 2M : (m;m0) 2<R` if and only if (g (m) ; g (m0)) 2 R`.
Unless otherwise speci�ed, the following informational assumption holds

throughout the paper.

Assumption 1. There are partially-honest agents in N . The planner is
aware of it but ignores the identity of these agents.

Let H � fH � N j H 6= ?g be the class of subsets in N . Note that H
is considered as the potential class of partially-honest agents�groups. That
is, if H 2 H, this H is a potential group of partially-honest agents in N . By
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Assumption 1, the planner knows thatH is non-empty, and perhaps, she may
know what subsets of N belong to H, but she never knows which element of
H is the true set of partially-honest agents in the society.
A mechanism  induces a class of (non-cooperative) games with partially-

honest agents
��
;<R

�
jR 2 Rn

	
. Given a game

�
;<R

�
, we say that m� 2

M is a (pure strategy) Nash equilibrium with partially-honest agents at R
if and only if, for all ` 2 N ,

�
m�;

�
m`;m

�
�`
��
2<R` for all m` 2 M`. Given

a game
�
;<R

�
, let NE

�
;<R

�
denote the set of Nash equilibria message

pro�les of
�
;<R

�
, whereas NA

�
;<R

�
represents the corresponding set of

Nash equilibrium outcomes. Then:

De�nition 2. An SCC F on Rn is partially-honest (Nash) implementable if
there exists a mechanism  = (M; g) 2 � such that F (R) = NA

�
;<R

�
for

all R 2 Rn.

To conclude, let us introduce two mild conditions imposed on the models
of this paper. One is a condition on the domain of agents�preferences, while
the other is a condition on the domain of mechanisms admissible in the soci-
ety. The �rst condition basically requires that the class of available pro�les
of preferences is su¢ ciently rich. Examples of preference domains satisfying
such a condition would be the set of all pro�les of weak orders, linear orders,
and single peaked preferences on X. Moreover, it is vacuously satis�ed in the
classical economic environments. Hence, our models are applicable to those
environments. The condition can be stated as follows.

Rich Domain (RD): For any i 2 N , any R 2 Rn, and any x 2 X, if
R0i 2 Ri (X) is such that L (R0i; x) = L (Ri; x) with @L (R0i; x) = fxg, then
(R0i; R�i) 2 Rn holds.

Next, our informational assumption is that the planner knows that there
are partially-honest agents but ignores their identities. The partially-honest
agent is an agent who prefers to be truthful if a lie is not bene�cial for
her. Given this structure, the existence of truthful messages is presumed,
since, otherwise, the issue reduces to the standard implementation problem.
Moreover, the admissible class of mechanisms should be constituted by those
which involve a simple scheme to punish such a partially-honest agent if she
takes a false message. As such one, let us consider a type of mechanism in
which, if an outcome x is F -optimal at the state R and the outcome function
g selects x as the resulting outcome of the messages announced by agents, a
partially-honest agent can �nd a truthful message which results in the same
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outcome x - keeping constant the messages of all other agents. In such a
mechanism, any false statement by a partially-honest agent can be punished
independently of the detailed information about the real state of the society.
This condition on the class of admissible mechanisms � can be stated as
follows.

Simple Punishment (SP): For any R;R0 2 Rn, any x 2 F (R), any i 2 N ,
and any m 2 M such that g (m) = x, there is m0

i 2 T

i (R

0; F ) such that
g (m0

i;m�i) = g (m).

A mechanism  is a mechanism with simple punishment if it satis�es SP.
Denote the class of mechanisms with SP by �SP .
Before closing this section, it may be worth noting that the simple pun-

ishment property is satis�ed by all classical mechanisms in the literature of
Nash implementation (see, for instance, Repullo, 1987; Moore and Repullo,
1990; Saijo, 1988; Dutta and Sen, 1991; Tatamitani, 2001).

3 Characterization results

In this section, we analyze partially-honest implementation of SCCs in the
many-person case.
Sub-section 3.1 basically imposes no restriction on the types of admissible

mechanisms except for � = �SP . Under this setting, we begin by showing
a minimal set of necessary conditions for partially-honest implementation
with no restriction on �. Then, given � = �SP , we prove that a slight
strengthening of this minimal set of necessary conditions fully characterizes
partially-honest implementation when the message conveyed by each agent
involves the announcement of a preference pro�le, an outcome and an agent
integer index - canonical mechanism.
Canonical mechanisms are not so attractive in most economic settings,

where an important feature of the mechanism is to economize on communica-
tion. We then pay attention to informational decentralization in mechanisms.
While sub-section 3.2 assumes that the message conveyed by each agent to the
planner involves the announcement of only her own and her neighbor�s prefer-
ences - in addition to a feasible social outcome and an integer - s-mechanism,
sub-section 3.3 assumes that each agent announces - inter alia - only her own
preferences, self-relevant mechanisms. We identify a minimal set of neces-
sary conditions for partially-honest implementation by s-mechanisms (resp.,
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self-relevant mechanisms); �nally, given � = �SP , we report that a slight
strengthening of these necessary conditions for s-mechanisms (resp., self-
relevant mechanisms) fully characterizes partially-honest implementation by
s-mechanisms (resp., self-relevant mechanisms).
The sets of conditions that are necessary and su¢ cient for partially-honest

implementation are more complex than those obtained by Moore and Repullo
(1990), Tatamitani (2001), and Lombardi and Yoshihara (2010), but they are
remarkably weaker and do provide additional insights; we refer the reader to
Section 4 for more details.

3.1 Partially-honest implementation: A general char-
acterization

In implementation theory, it is Maskin�s Theorem (Maskin, 1999) which
shows that an SCC F is implementable if it satis�es monotonicity and no-
veto power in the many-person case; conversely, any implementable SCC is
monotonic. Since Maskin�s Theorem, there have been impressive advances
in the implementation theory. Speci�cally, in societies with at least three
agents, Moore and Repullo (1990) established that an SCC F is imple-
mentable if and only if it satis�es Condition � de�ned below.

Condition � (for short, �): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R; x))`2N such that x 2
C` (R; x) � L (R`; x)\ Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iii) are satis�ed:
(i) if C` (R; x) � L (R�` ; x) for all ` 2 N , then x 2 F (R�);
(ii) for all i 2 N , if y 2 Ci (R; x) � L (R�i ; y) and y 2 maxR�` Y for all
` 2 Nn fig, then y 2 F (R�);
(iii) if y 2 maxR�` Y for all ` 2 N , then y 2 F (R

�).9

Condition �(i) is equivalent to monotonicity, while Conditions �(ii)-�(iii) are
weaker versions of no-veto power.
In this sub-section, we begin by taking an arbitrary SCC that can be

partially-honest implemented, and showing that it must satisfy Condition ��

below. We then prove that a slight strengthening of Condition �� - Condition

9We refer to the condition that requires only one of the conditions (i)�(iii) in Condition
� as Conditions �(i)��(iii) each. Note that Condition � implies Conditions �(i)��(iii),
but the converse is not true. We use similar conventions below.
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���- fully identi�es the class of partially-honest implementable SCCs under
mild conditions on agents�preferences and mechanisms.

Condition �� (for short, ��): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R; x))`2N such that x 2
C` (R; x) � L (R`; x)\ Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iii) are satis�ed:
(i) if C` (R; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�), then (x; x0) 2 I�h for
some x0 2 Ch (R; x) and some h 2 H � H;
(ii) for all i 2 N , if y 2 Ci (R; x) � L (R�i ; y), y 2 maxR�` Y for all ` 2 Nn fig,
and y =2 F (R�), then there is an H 2 H such that:
(a) if H = fig, then (y; y0) 2 I�i for some y0 2 Ci (R; x) n fyg;
(b) if i 2 H and #H > 1, then R� 6= R or (y; y0) 2 I�i for some y

0 2
Ci (R; x) n fyg;
(iii) if y 2 maxR�` Y for all ` 2 N and y =2 F (R�), then there is an ` 2 N
such that (y; y0) 2 I�` for some y0 2 Y n fyg.
We are now ready to present our �rst main result, which shows that

Condition �� is a minimal set of necessary conditions for the partially-honest
implementation.

Theorem 1. Let Assumption 1 hold. If an SCC F onRn is partially-honest
implementable, then it satis�es Condition ��.

Proof. Let Assumption 1 hold. Let h 2 N be a partially-honest agent.
Let  � (M; g) be a mechanism which partially-honest implements F . Let
Y � g (M). Take any R 2 Rn and x 2 F (R). Then, there is a strategy m 2
NE

�
;<R

�
such that g (m) = x. Then, fxg � g (M`;m�`) � L (R`; x) \ Y

for all ` 2 N . This is true even for h. In fact, if mh =2 T h (R;F ), m 2
NE

�
;<R

�
implies that (g (m) ; g (m0

h;m�h)) 2 Ph for all m0
h 2 T


h (R;F ).

Let C` (R; x) � g (M`;m�`) for all ` 2 N . We show that F satis�es Condi-
tions ��(i)-��(iii). Take any R� 2 Rn.
Suppose that C` (R; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�) =

NA
�
;<R�

�
. Since g (M`;m�`) � L (R�` ; x) and m =2 NE

�
;<R�

�
it fol-

lows that there is an H 2 H such that, for some h 2 H, mh =2 T h (R�; F )
and (g (m0

h;m�h) ; g (m)) 2 R�h for some m
0
h 2 T h (R

�; F ). Moreover, as
Ch (R; x) � g (Mh;m�h) � L (R�h; x), (g (m

0
h;m�h) ; g (m)) 2 I�h. Thus, F

satis�es Condition ��(i).
Let i 2 N and suppose that y 2 Ci (R; x) � L (R�i ; y) and y 2 maxR�` Y

for all ` 2 Nn fig. As y 2 Ci (R; x) = g (Mi;m�i), it follows that there is an

11



m0
i 2Mi such that g (m0

i;m�i) = y. Thus, g (Mi;m�i) � L (R�i ; y). Let m̂ �
(m0

i;m�i). Let y =2 F (R�) = NA
�
;<R�

�
. Then, as g (M`; m̂�`) � L (R�` ; y)

and m̂ =2 NE
�
;<R�

�
, it follows from the same reasoning as the case of ��(i)

that there is an H 2 H such that, for some h 2 H, m̂h =2 T h (R�; F ) and
(g (m�

h; m̂�h) ; g (m̂)) 2 I�h for some m�
h 2 T


h (R

�; F ).
Let H = fig, and assume, to the contrary, that fyg = maxR�i Ci (R; x),

so that g (m�
i ; m̂�i) = g (m̂) = y for all m�

i 2 T

i (R

�; F ). Since there cannot
be any further deviation by g (M) = Y , we have that y 2 NA

�
;<R�

�
, a

contradiction. Thus, F satis�es ��(ii.a).
Let #H > 1 and i 2 H. Suppose R� = R. Then, Ci (R; x) � L (Ri; x)

and Ci (R; x) � L (R�i ; y) imply that (x; y) 2 I�i . From x 2 F (R), y =2 F (R�),
and R� = R, it follows that x 6= y. Moreover, suppose fyg = maxR�i Ci (R; x).
This immediately implies that R� 6= R as (y; x) 2 P �i and (x; y) 2 Ri.
Therefore, F satis�es ��(ii.b).
Let y 2 maxR�` Y for all ` 2 N . Suppose y =2 F (R�) = NA

�
;<R�

�
.

Since y 2 Y = g (M), there is an m̂ 2 M such that g (m̂) = y. Therefore,
y 2 maxR�` g (M) for all ` 2 N . Assume, to the contrary, that fyg = maxR�` Y
for all ` 2 N . As y =2 NA

�
;<R�

�
, it follows that m̂ =2 NE

�
;<R�

�
.

Then, there is an H 2 H such that, for some h 2 H, m̂h =2 T h (R�; F ) and
(g (m�

h; m̂�h) ; g (m̂)) 2 I�h for some m�
h 2 T


h (R

�; F ). Let H 0 be the set of all
such h 2 H. Take any h1 2 H 0. Then, there is anm1

h1
2 T h1 (R

�; F ) such that�
g
�
m1
h1
; m̂�h1

�
; y
�
2 I�h1. As fyg = maxR�h1 g (M), g

�
m1
h1
; m̂�h1

�
= y. Let

m1 �
�
m1
h1
; m̂�h1

�
. Since y =2 F (R�) = NA

�
;<R�

�
andm1 =2 NE

�
;<R�

�
,

there should exist an h2 2 H 0n fh1g and an m2
h2
2 T h2 (R

�; F ) such that�
g
�
m2
h2
;m1

�h2
�
; y
�
2 I�h2. As fyg = maxR�h2 g (M), g

�
m2
h2
;m1

�h2
�
= y. Let

m2 �
�
m2
h2
;m1

�h2
�
. Again, as m2 =2 NE

�
;<R�

�
, there should exist an h3 2

H 0n fh1; h2g and an m3
h3
2 T h3 (R

�; F ) such that
�
g
�
m3
h3
;m2

�h3
�
; y
�
2 I�h3.

As#H 0 = s � n, the above reasoning will stop after at most s iterations. Let
ms be the strategy pro�le corresponding to the iteration s and g (ms) = y.
Then, y 2 NA

�
;<R�

�
, a contradiction. Therefore, F satis�es ��(iii).

We also introduce another new condition, Condition ���, which lies strictly
between Condition �� and Condition �. It can be stated as follows.

Condition ��� (for short, ���): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R; x))`2N such that x 2
C` (R; x) � L (R`; x)\ Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iv) are satis�ed:
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(i) if C` (R; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�), then (x; x0) 2 I�h for
some x0 2 Ch (R; x) and some h 2 H � H.
(ii) for all i 2 N , if y 2 Ci (R; x) � L (R�i ; y), y 2 maxR�` Y for all ` 2 Nn fig,
and y =2 F (R�), then there is an H 2 H such that:
(a) if H = fig, then (y; y0) 2 I�i for some y0 2 Ci (R; x) n fyg;
(b) if i 2 H and #H > 1, then R� 6= R or (y; y0) 2 I�i for some y

0 2
Ci (R; x) n fyg;
(c) if i =2 H, then R 6= R�;
(iii) if y 2 maxR�` Y for all ` 2 N , then y 2 F (R

�).
(iv) for all i 2 N , if L (R�i ; x) = L (Ri; x), x 2 maxR�` Y for all ` 2 Nn fig,
R��i = R�i, and x =2 F (R�), then there is an H 2 H such that H 6= fig.
Our second main result is given by applying Condition ��� as follows.

Theorem 2. Let Assumption 1 and � = �SP hold, and suppose that Rn

satis�es RD. An SCC F on Rn is partially-honest implementable if and
only if it satis�es Condition ���.

Proof. Let Assumption 1 hold and let Rn satisfy RD. Let h 2 N denote a
partially-honest agent.

1. The necessity of Condition ���.
Let F on Rn be an SCC which is partially-honest implementable by a

mechanism  � (M; g) 2 �SP . Let Y � g (M). Take any R 2 Rn and
any x 2 F (R). The, there is an m (R; x) 2 NE

�
;<R

�
� M such that

g (m (R; x)) = x. Moreover, mh (R; x) 2 T h (R;F ) for every partially-honest
agent h 2 H. For, assume, to the contrary, that mh (R; x) =2 T h (R;F ) for
some h 2 H. As  2 �SP , we have that agent h can change mh (R; x) to
an mh 2 T h (R;F ) and obtain g (m (R; x)) = g (mh;m�h (R; x)) = x, which
contradicts from m (R; x) 2 NE

�
;<R

�
. For all ` 2 N , let C` (R; x) �

g (M`;m�` (R; x)). Then, C` (R; x) � g (M`;m�` (R; x)) � L (R`; x) \ Y for
all ` 2 N . Take any R� 2 Rn.
By similar argument used in Theorem 1 it follows that F satis�es Condi-

tion ��. Thus, we only show that F satis�es ���(ii.c)-���(iv).
Let i 2 N ; suppose that y 2 Ci (R; x) � L (R�i ; y), y 2 maxR�` Y for

all ` 2 Nn fig, and y =2 F (R�). Since y 2 Ci (R; x) � g (Mi;m�i (R; x)),
it follows that g (mi;m�i (R; x)) = y for some mi 2 Mi. Assume, to the
contrary, that R = R� and i =2 H for allH 2 H. Sincemh (R; x) 2 T h (R�; F )
for all h 2 H and there cannot be any pro�table deviation, we have that
(mi;m�i (R; x)) 2 NE

�
;<R�

�
, a contradiction.
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Suppose that y 2 maxR�` Y for all ` 2 N . Then there is an �m 2 M such
that g ( �m) = y. Consider �R �

�
�R`
�
`2N 2 R

n such that L
�
�R`; y

�
= L (R�` ; y)

with @L
�
�R`; y

�
= fyg for all ` 2 N . As Rn satis�es RD, such a pro�le

is admissible. Then, since F satis�es Condition ��(iii) by Theorem 1, it
follows that y 2 F

�
�R
�
. Suppose that there is an ? 6= S � N such that

�m` =2 T ` (R�; F ) for all ` 2 S, otherwise g ( �m) 2 F (R�), as sought. Then, by
SP, for each ` 2 S, there is an �m0

` 2 T

` (R

�; F ) such that g ( �m0
`; �m�`) = y.

By repeatedly applying SP from `1 2 S to `s 2 S, where S = f`1; : : : ; `sg,
it follows that g ( �m0

S; �m�S) = y. Thus, ( �m0
S; �m�S) 2 NE

�
;<R�

�
and so

y 2 NA
�
;<R�

�
= F (R�), as we sought. Therefore, F satis�es Condition

���(iii).
Suppose that L (Ri; x) = L (R�i ; x), x 2 maxR�` Y for all ` 2 Nn fig,

R�i = R
�
�i, and x =2 F (R�). Since x 2 F (R) and R��i = R�i, R�i 6= Ri holds.

By x =2 F (R�) = NA
�
;<R�

�
, m (R; x) =2 NE

�
;<R�

�
holds. However,

as x 2 maxR�` g (M) for all ` 2 Nn fig and g (Mi;m�i (R; x)) � L (R�i ; x) =
L (Ri; x), m (R; x) =2 NE

�
;<R�

�
implies that there is an H 2 H such that,

for some h 2 H,mh (R; x) =2 T h (R�; F ) and (g (mh;m�h (R; x)) ; g (m (R; x))) 2
I�h for some mh 2 T h (R�; F ). Assume, to the contrary that, H = fig. Then,
it follows that the unique deviator is agent i. Since  satis�es SP, there is
an m�

i 2 T

i (R

�; F ) such that g (m�
i ;m�i (R; x)) = g (m (R; x)) = x. This

implies (m�
i ;m�i (R; x)) 2 NE

�
;<R�

�
so that x 2 NA

�
;<R�

�
= F (R�),

a contradiction. Therefore, F satis�es Condition ���(iv).

2. The su¢ ciency of Condition ���.
Conversely, suppose that F satis�es Condition ���. Let � 2 N be an

arbitrary agent index. Let  � (M; g) be a mechanism having M` � Rn �
Y � N with a generic element m` =

�
R`; x`; k`

�
for each ` 2 N , where R`

is the preference pro�le announced by agent ` 2 N , while x` and k` are the
outcome and the integer announced by the agent at issue, respectively.
De�ne the outcome function g :M ! X as follows:

Rule 1 : If m 2 M is such that for some
�
�R; x

�
2 Rn � Y with x 2 F

�
�R
�
,�

R`; x`
�
=
�
�R; x

�
for all `, then g (m) = x;

Rule 2 : If m 2 M is such that there is a unique agent i 2 N such that for
some

�
�R; x

�
2 Rn � Y with x 2 F

�
�R
�
,
�
�R; x

�
=
�
R`; x`

�
for all ` 6= i, and

(Ri; xi) 6=
�
�R; x

�
with Ri 6= �R, then

g (m) =

�
xi if xi 2 Ci

�
�R; x

�
,

x otherwise;
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Rule 3 : If m 2 M is such that there is a unique agent i 2 N such that for
some

�
�R; x

�
2 Rn � Y with x 2 F

�
�R
�
,
�
�R; x

�
=
�
R`; x`

�
for all ` 6= i, and

(Ri; xi) 6=
�
�R; x

�
with Ri = �R, then g (m) = x;

Rule 4 : Otherwise, g (m) = x`
�(m) where `� (m) =

P
i2N

ki (mod n).10

By the de�nition of g, it follows that any  = (M; g) satis�es SP, that
is,  2 �SP . Moreover, for each ` 2 N , the truth-telling correspondence
T ` : Rn�F �M` is given by: T


` (R;F ) = fRg� Y �N for each (R;F ) 2

Rn �F , where Y may change according to F .
Let us show that  partially-honest implements F . Take any R 2 Rn.

Since F satis�es ���, F (Rn) � Y .
To show that F (R) � NA

�
;<R

�
, let x 2 F (R) and suppose that, for all

` 2 N , m` = (R; x; �) 2 M`. Notice that m` 2 T ` (R;F ) for all ` 2 N . Rule
1 implies that g (m) = x. Suppose that ` 2 N deviates from m` to m�

` =�
R`; x`; �

�
2 M`. It follows from Rules 1-3 that g (M`;m�`) � C` (R; x).

Since F satis�es ���, it follows that g (M`;m�`) � L (R`; x). As it holds for
any ` 2 N , it follows that m 2 NE

�
;<R

�
and so x 2 NA

�
;<R

�
.

Conversely, to show that NA
�
;<R

�
� F (R), let m 2 NE

�
;<R

�
.

Consider the following cases.

Case 1 : m corresponds to Rule 1.
Then, for some �R 2 Rn and x 2 F

�
�R
�
,
�
�R; x

�
=
�
R`; x`

�
for all ` 2

N and g (m) = x. Suppose that R 6= �R. Then, m` =2 T ` (R;F ) for all
` 2 N . Take any m0

h 2 T

` (R;F ) such that x

h = x. Rule 2 implies that
g (m0

h;m�h) = x so that ((m0
h;m�h) ;m) 2�Rh , a contradiction. Otherwise,

R = �R and so x 2 F (R).
Case 2 : m corresponds to Rule 2.
Then, there exists an i 2 N such that

�
�R; x

�
=
�
R`; x`

�
6= (Ri; xi) for

all ` 2 Nn fig, where
�
�R; x

�
2 Rn � Y with x 2 F

�
�R
�
and Ri 6= �R. By

the de�nition of g, g (M`;m�`) = Y for all ` 2 Nn fig and Ci
�
�R; x

�
�

g (Mi;m�i). Thus, m 2 NE
�
;<R

�
implies that Y � L (R`; g (m)) for all

` 2 Nn fig and Ci
�
�R; x

�
� L (Ri; g (m)).

Suppose that mh =2 T h (R;F ) for some h 2 Hn fig. Then, agent h 2
Hn fig can induce Rule 4 by deviating to a suitable m0

h 2 T

h (R;F ) so as

to obtain g (m0
h;m�h) = g (m), which contradicts that m 2 NE

�
;<R

�
.

Therefore, mh 2 T h (R;F ) for all h 2 Hn fig.
10If the remainder is zero, the winner of the game is agent n.
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Suppose that #H > 1 and i 2 H. We show that this case contradicts
that m 2 NE

�
;<R

�
. As #H > 1, we have that mh 2 T h (R;F ) for all

h 2 Hn fig; moreover, R = �R and x 2 F (R). Since m falls into Rule 2,
it follows that Ri 6= R, so mi =2 T i (R;F ). It follows from x 2 Ci

�
�R; x

�
�

L (Ri; g (m)) and g (m) 2 Ci
�
�R; x

�
� L (Ri; x) that (x; g (m)) 2 Ii. Agent

i can deviate to m0
i = (R; x; ki) 2 T i (R;F ) so that she induces Rule 1

and obtains g (m0
i;m�i) = x, which contradicts that m 2 NE

�
;<R

�
. We

conclude that #H � 1 or i =2 H.
Suppose that #H � 1 and i =2 H. Condition ���(ii.c) implies that

g (m) 2 F (R). Otherwise, let H = fig. Observe that R 6= �R, otherwise
a contradiction that m 2 NE

�
;<R

�
can be obtained by the same rea-

soning used in the case that i 2 H and #H > 1. Therefore, let R 6= �R.
Notice that mi 2 T i (R;F ), otherwise agent i can induce Rule 2 by de-
viating to an m0

i = (R; g (m) ; ki) 2 T i (R;F ) and obtain g (m
0
i;m�i) =

g (m), which contradicts that m 2 NE
�
;<R

�
. Take an R̂i 2 Ri (X)

such that L
�
R̂i; y

�
= L (Ri; g (m)), with @L

�
R̂i; g (m)

�
= fg (m)g. As

Rn satis�es RD, we have that R̂ �
�
R̂i; R�i

�
2 Rn. Then, ��(ii.a) im-

plies that g (m) 2 F
�
R̂
�
. Since F satis�es ���, there exists a pro�le�

C`

�
R̂; g (m)

��
`2N

such that C`
�
R̂; g (m)

�
� L

�
R̂`; g (m)

�
\ Y for all

` 2 N . As L
�
R̂i; g (m)

�
= L (Ri; g (m)), R�i = R̂�i, and H = fig, Condi-

tion ���(iv) implies that g (m) 2 F (R).
Case 3 : m corresponds to Rule 3.
Then, there exists an i 2 N such that

�
�R; x

�
=
�
R`; x`

�
6= (Ri; xi) for

any ` 2 Nn fig, where
�
�R; x

�
2 Rn � Y , with x 2 F

�
�R
�
, Ri = �R and

g (m) = x. By the de�nition of g, g (M`;m�`) = Y for all ` 2 Nn fig and
Ci
�
�R; x

�
� g (Mi;m�i). Thus, m 2 NE

�
;<R

�
implies that Y � L (R`; x)

for all ` 2 Nn fig and Ci
�
�R; x

�
� L (Ri; x). Suppose that �R 6= R. Then,

mh =2 T h (R;F ) for all h 2 H. Suppose that h 6= i. Agent h can in-
duce Rule 4 by unilaterally deviating to m0

h =
�
R; x; kh

�
2 T h (R;F ). By

choosing kh so as h = `� (m�h;m
0
h), she obtains g (m�h;m

0
h) = x. Then,

((m�h;m
0
h) ;m) 2�Rh which contradicts m 2 NE

�
;<R

�
. Otherwise, let

h = i. As agent h can induce Rule 2 by deviating to m0
h = (R; x; �) 2

T h (R;F ), we have that g (m�h;m
0
h) = x, which again leads to a contradic-

tion. Therefore, �R = R and so x 2 F (R).
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Case 4 : m corresponds to Rule 4.
From the de�nition of g and the supposition that m 2 NE

�
;<R

�
, it

follows that g (m) 2 maxR�` g (M) for all ` 2 N . Thus, by �
��(iii), g (m) 2

F (R).

3.2 Partially-honest implementation by s-mechanisms

In this sub-section, we pay attention to informational decentralization and
e¢ ciency of admissible mechanisms and consider implementation by mecha-
nisms with a smaller strategy space - s-mechanisms: each agent announces,
in addition to a feasible social outcome and an integer, her own and her
neighbor�s preferences (Saijo, 1988). We will �nd below that the class of
SCCs partially-honest implementable by such mechanisms is dwindled down
with respect to the class of SCCs identi�ed by Theorem 2.
We de�ne partially-honest implementation by s-mechanisms as follows.

De�nition 3. A mechanism  = (M; g) is an s-mechanism if, for any ` 2 N ,
M` � R` �R`+1 � Y �N , with `+ 1 = 1 if ` = n, where Y � X.
Note that, if  is an s-mechanism, then T ` (R;F ) � f(R`; R`+1)g�Y �N

for any (R;F ) 2 Rn �F .
De�nition 4. An SCC F on Rn is partially-honest implementable by an
s-mechanism if there exists an s-mechanism  � (M; g) such that:
(i) for all R 2 Rn, F (R) = NA

�
;<R

�
; and

(ii) for all R 2 Rn and all x 2 F (R), if m` =
�
R`; R`+1; x; k

`
�
2 M` for all

` 2 N , with `+ 1 = 1 if ` = n, then m 2 NE
�
;<R

�
and g (m) = x.

In De�nition 4, it is required not only that all F -optimal outcomes co-
incide with partially-honest Nash equilibrium outcomes of the game

�
;<R

�
de�ned by an s-mechanism - for any state R 2 Rn -, but also that such
an s-mechanism satis�es forthrightness. Forthrightness requires that if the
outcome x is F -optimal at the state R and each agent announces truthfully
her preference R` and her neighbor�s preference R`+1 and announces this x,
then the message pro�le should be a partially-honest Nash equilibrium of an
s-mechanism and its equilibrium outcome be the announced outcome x.
Forthrightness was originally introduced in economic environments by

Dutta, Sen, and Vohra (1995) and Saijo, Tatamitani, and Yamato (1996),
and it has desirable implications. A mechanism satisfying forthrightness is
simple in the sense that it is easy to compute the outcome of an equilibrium
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strategy pro�le. Moreover, if a mechanism fails to satisfy this condition, it is
subject to information smuggling; that is, the strategy space can be reduced
to an arbitrary smaller dimensional space. Thus, any partially-honest im-
plementable SCC by s-mechanisms would be partially-honest implementable
by a �further strategy space reduction mechanism�like self-relevant mecha-
nisms (Tatamitani, 2000), unless forthrightness is required. This indicates
that there is no legitimate reason for characterizing partially-honest imple-
mentation by s-mechanisms without forthrightness. Hence, to make sense of
partially-honest implementation by s-mechanisms, we require this regularity
condition in De�nition 4.
The issue of what constitutes the necessary and su¢ cient condition for

implementation by s-mechanisms in the standard framework has been re-
cently addressed by Lombardi and Yoshihara (2010), who introduce a new
condition - Condition Ms -, which is similar to Condition M appearing in
Sjöström (1991). This condition can be stated as follows.

Condition Ms (for short, Ms): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R`; x))`2N such that x 2
C` (R`; x) � L (R`; x)\Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iii) are satis�ed:
(i) if C` (R`; x) � L (R�` ; x) for all ` 2 N , then x 2 F (R�);
(ii) for all i 2 N , if y 2 Ci (Ri; x) � L (R�i ; y) and y 2 maxR�` Y for all
` 2 Nn fig, then y 2 F (R�);
(iii) if y 2 maxR�` Y for all ` 2 N , then y 2 F (R

�).

In what follows, we state a condition - Condition M�
s - which is slightly

weaker than Condition Ms and show that if an SCC F is partially-honest
implementable by any s-mechanism, then it must satisfy it.

Condition M�
s (for short, M

�
s ): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R`; x))`2N such that x 2
C` (R`; x) � L (R`; x)\Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iii) are satis�ed:
(i) if C` (R`; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�), then there is an
H 2 H such that, for some H 0 � H and all h 2 H 0, (Rh; Rh+1) 6=

�
R�h; R

�
h+1

�
;

(ii) for all i 2 N , if y 2 Ci (Ri; x) � L (R�i ; y), y 2 maxR�` Y for all ` 2 Nn fig,
and y =2 F (R�), then for some H 2 H and some H 0 � H:
(a) if H 0 = fig, then (y; y0) 2 I�i for some y0 2 Ci (Ri; x) n fyg;
(b) otherwise,

�
R0h; R

0
h+1

�
6=
�
R�h; R

�
h+1

�
for all h 2 H 0n fig;
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(iii) if y 2 maxR�` Y for all ` 2 N and y =2 F (R�), then there is an ` 2 N
such that (y; y0) 2 I�` for some y0 2 Y n fyg.
Theorem 3. Let Assumption 1 hold. If an SCC F onRn is partially-honest
implementable by s-mechanisms, then it satis�es Condition M�

s .

Proof. Let Assumption 1 hold. Let h 2 N be a partially-honest agent; let
� 2 N be an arbitrary agent index. Let  � (M; g) be an s-mechanism which
partially-honest implements F . Let Y � g (M). Take any R 2 Rn and x 2
F (R). For all ` 2 N , let C` (R`; x) � g (M`;m�` (R; x)) where m�` (R; x) is
such thatmi (R; x) = (Ri; Ri+1,x; si) 2Mi for all i 2 Nn f`g, with i+1 = 1 if
i = n. By forthrightness, it follows that m (R; x) = (m` (R; x) ;m�` (R; x)) is
an equilibriummessage pro�le,m (R; x) 2 NE

�
;<R

�
, and g (m (R; x)) = x.

Then, C` (R; x) � g (M`;m�` (R; x)) � L (R`; x) \ Y for all ` 2 N . We show
that F satis�es ConditionsM�

s (i)-M
�
s (iii). As the proof that F meetsM

�
s (iii)

directly follows by employing the same reasoning used in Theorem 1, we omit
it here. Take any R� 2 Rn.
Suppose that C` (R`; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�) =

NA
�
;<R�

�
. Then, for some ` 2 N and somem0

` 2M`, (g (m0
`;m�` (R; x)) ; g (m (R; x))) 2

R�` . As g (M`;m�` (R; x)) � L (R�` ; x) we have that (g (m0
`;m�` (R; x)) ; g (m (R; x))) 2

I�` ; and, agent ` is a partially-honest agent, ` = h. Asm (R; x) =2 NE
�
;<R�

�
there is an H 2 H such that, for some H 0 � H and all h 2 H 0, mh (R; x) =2
T h (R

�; F ); moreover, there is anmh 2 T h (R�; F ) for each h 2 H 0, otherwise
a contradiction. Since T h (R

�; F ) =
��
R�h; R

�
h+1

�	
� Y �N and T h (R;F ) =

f(Rh; Rh+1)g�Y �N , it follows frommh (R; x) 2 T h (R;F ) nT

h (R

�; F ) that�
R�h; R

�
h+1

�
6= (Rh; Rh+1) for all h 2 H 0. Thus, F satis�es Condition M�

s (i).
Pick any i 2 N ; suppose that y 2 Ci (Ri; x) � L (R�i ; y), y 2 maxR�` Y

for all ` 2 Nn fig, and y =2 F (R�) = NA
�
;<R�

�
. Since y 2 Ci (Ri; x) �

g (Mi;m�i (R; x)), it follows that g (mi;m�i (R; x)) = y for some mi 2 Mi.
Let (mi;m�i (R; x)) � m. Moreover, as y =2 NA

�
;<R�

�
, it follows that, for

some ` 2 N and some m0
` 2M`, (g (m0

`;m�`) ; g (m)) 2 R�` . As g (M`;m�`) �
L (R�` ; y), we have that (g (m

0
`;m�`) ; g (m)) 2 I�` ; and, agent ` is a partially-

honest agent, ` = h. Therefore, there is an H 2 H such that, for some H 0 �
H and all h 2 H 0,mh =2 T h (R�; F ), that is,H 0 = fh 2 Hjmh =2 T h (R�; F )g 6=
? for some H 0 � H; furthermore, for all h 2 H 0, there is an m�

h 2 T

h (R

�; F )
such that (g (m�

h;m�h) ; g (m)) 2 I�h.
Let H 0 = fig and fyg = maxR�i Ci (Ri; x). It follows that g (m

�
i ;m�i) = y,

which leads to (m�
i ;m�i) 2 NE

�
;<R�

�
, a contradiction. Thus, F satis�es

M�
s (ii.a). To examine M

�
s (ii.b), assume, to the contrary, that for all H

0 � H
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with H 0 6= fig, (Rh; Rh+1) =
�
R�h; R

�
h+1

�
for some h 2 H 0n fig. Then, it

follows from the de�nition of H 0 that either H 0 = ? if i =2 H 0 or H 0 = fig.
In either case case, we have a contradiction.

We also introduce another new condition, which lies between Condition
M�
s and Condition Ms.

Condition M��
s (for short, M��

s ): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R`; x))`2N such that x 2
C` (R`; x) � L (R`; x)\Y for all ` 2 N ; �nally, for all R� 2 Rn, the following
(i)-(iv) are satis�ed:
(i) if C` (R`; x) � L (R�` ; x) for all ` 2 N and x =2 F (R�), then there is an
H 2 H such that, for some H 0 � H and all h 2 H 0, (Rh; Rh+1) 6=

�
R�h; R

�
h+1

�
;

(ii) for all i 2 N , if y 2 Ci (Ri; x) � L (R�i ; y), y 2 maxR�` Y for all ` 2 Nn fig,
and y =2 F (R�), then for some H 2 H and some H 0 � H:
(a) if H 0 = fig, then (y; y0) 2 I�i for some y0 2 Ci (Ri; x) n fyg;
(b) otherwise, (Rh; Rh+1) 6=

�
R�h; R

�
h+1

�
for all h 2 H 0n fig;

(iii) if y 2 maxR�` Y for all ` 2 N , y 2 F (R
�);

(iv) for all i 2 N , if L (R�i ; x) = L (Ri; x), x 2 maxR�` Y for all ` 2 Nn fig,
R��i = R�i, and x =2 F (R�), then there is an H 2 H such that H 6= fig.
We are ready to show that this new condition is necessary and su¢ cient

for partially-honest implementation by s-mechanisms under the same mild
requirements employed in Theorem 2.

Theorem 4. Let Assumption 1 and � = �SP hold, and let Rn satisfy RD.
An SCC F on Rn is partially-honest implementable by an s-mechanism if
and only if F satis�es Condition M��

s .

Proof. Let Assumption 1 hold and let Rn satisfy RD. Let h 2 N denote a
partially-honest agent.

1. The necessity of Condition M��
s .

Suppose that F is partially-honest implementable by an s-mechanism
 = (M; g) 2 �SP . From Theorem 3, it follows that F satis�es Condition
M�
s . Finally, by using the same reasoning using in Theorem 2, it can readily

be obtained that F satis�es Condition M��
s (iii) and Condition M

��
s (iv).

2. The su¢ ciency of Condition M��
s .

Conversely, let  � (M; g) be an s-mechanism. Suppose that F on Rn

satis�es Condition M��
s . Fix any m 2 M , R 2 Rn, and x 2 Y , and let

m` =
�
R``; R

`
`+1; x

`; k`
�
2 M`, with ` + 1 = 1 if ` = n, and where the
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announcement of agent ` 2 N about agent ` + 1�s preferences is R``+1. Let
� 2 N be an arbitrary agent index. We say that the message pro�le m 2M
is:

(i) consistent with R and x if, for all ` 2 N , R`` = R`�1` = R` and x` = x,
where `� 1 = n if ` = 1;
(ii) m�i quasi-consistent with x and R, where i 2 N , if for all ` 2 N , x` = x,
and for all ` 2 Nnfi; i + 1g, R`` = R`�1` = R`, Ri�1i = Ri, Ri+1i+1 = Ri+1, and
[Rii 6= Ri or Rii 6= Ri+1], where j � 1 = n if j = 1 for j 2 fi; `g;
(iii) m�i consistent with x and R, where i 2 N , if, for all ` 2 Nnfig,
x` = x 6= xi, and, for all ` 2 Nnfi; i + 1g, R`` = R`�1` = R`, Ri�1i = Ri and
Ri+1i+1 = Ri+1, where j � 1 = n if j = 1 for j 2 fi; `g.
De�ne the outcome function g :M ! X as follows: For any m 2M ,

Rule 1 : m is consistent with
�
�R; x

�
2 Rn � Y such that x 2 F

�
�R
�
, then

g (m) = x.
Rule 2 : For some i 2 N , m�i is quasi-consistent with

�
�R; x

�
2 Rn � Y such

that x 2 F
�
�R
�
, then g (m) = x.

Rule 3 : For some i 2 N , m is m�i consistent with
�
�R; x

�
2 Rn � Y such

that x 2 F
�
�R
�
, and Ci

�
�Ri; x

�
6= Y , then

g (m) =

�
xi if xi 2 Ci

�
�Ri; x

�
x otherwise

.

Rule 4 : Otherwise, g (m) = x`
�(m) where `� (m) �

P
i2N

ki (mod n).11

By the de�nition of g, it follows that any  = (M; g) satis�es SP, that
is,  2 �SP . Moreover, for each ` 2 N , the truth-telling correspondence
T ` : Rn � F � M` is given by: T


` (R;F ) = f(R`; R`+1)g � Y �N for each

(R;F ) 2 Rn � F , where Y may change according to F . We show that 
partially-honest implements F . Take any R 2 Rn.
Since F satis�es M��

s , it follows that, for all (R; x) 2 Rn � X with x 2
F (R), x 2 Y . The proof of F (R) � NA

�
;<R

�
follows the same argument

in Lombardi and Yoshihara (2010), so we omit it here. Conversely, to show
that NA

�
;<R

�
� F (R), let m 2 NE

�
;<R

�
. Consider the following

cases.

Case 1 : m falls into Rule 1.
11If the remainder is zero, the winner of the game is agent n.
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Then, m is consistent with x and �R 2 Rn, where x 2 F
�
�R
�
. Thus,

g (m) = x. By the de�nition g andm 2 NE
�
;<R

�
, we have thatC`

�
�R`; x

�
�

L (R`; x) for all ` 2 N . Suppose that mh =2 T h (R;F ) for some h 2 H. Sup-
pose that Ch

�
�Rh; x

�
= Y . By changing her strategymh intom0

h 2 T

h (R;F ),

agent h can trigger the modulo game and choose an integer index kh so
that ` = `� (m0

h;m�h) 6= h. This implies g (m0
h;m�h) = x. Hence, m =2

NE
�
;<R

�
, a contradiction. Otherwise, let Ch

�
�Rh; x

�
6= Y . By changing

her strategy mh into m0
h = (Rh; Rh+1; x; �) 2 T


h (R;F ), the message pro�le

(m0
h;m�h) falls into Rule 2, so that g (m0

h;m�h) = x. Again, we conclude
that m =2 NE

�
;<R

�
, a contradiction. Therefore, mh 2 T h (R;F ) for all

h 2 H. Condition M��
s (i) implies x 2 F (R).

Case 2 : m falls into Rule 2.
Then m is m�i quasi-consistent with

�
�R; x

�
2 Rn � Y and x 2 F

�
�R
�
.

Thus, g (m) = x. We proceed according the following sub-cases: 1) Rii 6= �Ri
and Rii 6= �Ri+1 and 2) Rii 6= �Ri and Rii = �Ri+1.12

Sub-case 2.1. Rii 6= �Ri and Rii+1 6= �Ri+1
By the de�nition g and m 2 NE

�
;<R

�
, we have that Ci

�
�Ri; x

�
�

L (Ri; x) and x 2 maxR` Y for all ` 2 Nn fig. By the de�nition of g, we
also have that mh 2 T h (R;F ) for all h 2 H, otherwise a contradiction can
be obtained. Observe that if agent i is a partially-honest agent, it must
be the case that Ri�1i 6= Ri or Ri+1i+1 6= Ri+1. To show this, suppose that
Ri�1i = Ri and Ri+1i+1 = Ri+1. Then, agent i 2 H can change mi into m0

i =
(Ri; Ri+1; x; k

i) 2 T i (R;F ) and induce Rule 1. Then, g (m0
i;m�i) = x and

so ((m0
i;m�i) ;m) 2�Ri , which contradicts that m 2 NE

�
;<R

�
. Therefore,

if m 2 NE
�
;<R

�
falls into Rule 2 and i 2 H, it has to be the case that

Ri�1i 6= Ri or Ri+1i+1 6= Ri+1. It follows that i� 1 =2 H or i+ 1 =2 H if i 2 H.
Suppose that #H > 1. Since mh 2 T h (R;F ) for each h 2 Hn fig,

Condition M��
s (ii.b) implies that x 2 F (R). Otherwise, let #H = 1. If

H � Nn fig, Condition M��
s (ii.b) again implies that x 2 F (R). Finally,

suppose that H = fig. By following the same reasoning used in Case 2 of
the proof of Theorem 2, RD, Condition M��

s (ii.a), and Condition M
��
s (iv)

together imply that x 2 F (R).
Sub-case 2.2. Rii 6= �Ri and Rii+1 = �Ri+1
Let Rii = R

0
i. We distinguish whether x 2 F

�
�R0
�
where �R0 �

�
�R�i; R

0
i

�
or not. Suppose that x =2 F

�
�R0
�
. Then, since x 2 F

�
�R
�
, the same reasoning

12The sub-case Rii = �Ri and Rii+1 6= �Ri+1 is not explicitly considered as it can be proved
similarly to the sub-case 2.2 shown below.
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used above for sub-case 2.1 carries over into this sub-case, so that x 2 F (R).
Otherwise, let x 2 F

�
�R0
�
. Then, there are two potential deviators, i�1 and

i. Agent ` 2 Nn fi� 1; ig can attain any y 2 Y n fxg by inducing Rule
4, so that x 2 maxR` Y as m 2 NE (;R). Consider agent i � 1. Take
any y 2 Ci�1

�
�Ri�1; x

�
= Ci�1

�
Ri�2i�1; x

�
. Suppose that Ci�1

�
�Ri�1; x

�
6= Y .

By changing mi�1 to m�
i�1 =

�
Ri�1i�1; R

i�1
i ; y; �

�
2 Mi�1, agent i � 1 can

obtain y = g
�
m�
i�1;m�(i�1)

�
via Rule 3. In the case that Ci�1

�
�Ri�1; x

�
=

Y , by changing mi�1 to m�
i�1 =

�
Ri�1i�1; R

i�1
i ; y; ki�1

�
2 Mi�1, agent i � 1

can attain y = g
�
m�
i�1;m�(i�1)

�
via Rule 4 with appropriately choosing

ki�1. It follows that Ci�1
�
�Ri�1; x

�
� g

�
Mi�1;m�(i�1)

�
; and Ci�1

�
�Ri�1; x

�
�

L (Ri�1; x) as m 2 NE (;R). Consider agent i. Again, take any y 2
Ci
�
�Ri; x

�
= Ci

�
Ri�1i ; x

�
. Suppose that Ci

�
�Ri; x

�
6= Y . By changing mi to

m�
i =

�
Rii; R

i
i+1; y; �

�
2Mi, agent i can obtain y = g (m�

i ;m�i) via Rule 3. In
the case that Ci

�
�Ri; x

�
= Y , by changing mi to m�

i =
�
Rii; R

i
i+1; y; k

i
�
2Mi,

agent i can attain y = g (m�
i ;m�i) via Rule 4 with appropriately choosing

ki. It follows that Ci
�
�Ri; x

�
� g (Mi;m�i); and Ci

�
�Ri; x

�
� L (Ri; x) as

m 2 NE (;R). By de�nition of g, we also have that mh 2 T h (R;F ) for all
h 2 H. Therefore, x 2 F (R) by M��

s (i).

Case 3 : m falls into Rule 3.
Then, m is m�i consistent with x and �R 2 Rn, where x 2 F

�
�R
�
. More-

over, Ci
�
�Ri; x

�
6= Y . By the de�nition g and m 2 NE

�
;<R

�
, we have that

g (m) 2 Ci
�
�Ri; x

�
� L (Ri; g (m)) and g (m) 2 maxR` Y for all ` 2 Nn fig.13

Moreover, by the de�nition of g, we also have that mh 2 T h (R;F ) for all
h 2 H, otherwise a contradiction can be obtained. Suppose that #H > 1.
Condition M��

s (ii.b) implies that g (m) 2 F (R). Otherwise, let #H = 1.
If H � Nn fig, Condition M��

s (ii.b) implies that g (m) 2 F (R). Finally,
suppose that H = fig. By following the same reasoning used in Case 2 of
Theorem 2, it follows from RD, Condition M��

s (ii.a) and Condition M
��
s (iv)

that g (m) 2 F (R).
Case 4 : m falls into Rule 4.
Then, the outcome is determined by the winner of the modulo game.

Thus, Y � g (M`;m�`) for all ` 2 N . As m 2 NE
�
;<R

�
, g (m) 2 maxR` Y

for all ` 2 N . It follows from the de�nition of g that mh 2 T h (R;F ) for all
h 2 H, otherwise a contradiction from m 2 NE

�
g;<R

�
. Condition M��

s (iii)
implies that g (m) 2 F (R).
13A detailed and exhaustive argument is provided in Lombardi and Yoshihara (2010).
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3.3 Partially-honest implementation by self-relevant mech-
anisms

From the viewpoint of informational decentralization in mechanisms, it is
desirable that an agent discloses information related only to her own char-
acteristics (Hurwicz, 1960, 1972). In this sub-section, we then focus on im-
plementation by self-relevant mechanisms. A self-relevant mechanism is a
mechanism in which each agent reveals her preference only and announces a
feasible outcome and an agent index (Tatamitani, 2001).
Our �rst task here is to �nd a necessary condition for an SCC to be

partially-honest implementable by self-relevant mechanisms. To this end,
we introduce a condition, Condition ��, which is weaker than Tatamitani�s
Condition �. Moreover, we introduce a slight strengthening of Condition
�� - Condition ���-, which is necessary and su¢ cient for partially-honest
implementation by self-relevant mechanisms under mild requirements on Rn

and �.
Implementation by self-relevant mechanisms in the standard framework

is given by Tatamitani (2001) as follows.

De�nition 5. A mechanism  � (M; g) is a self-relevant mechanism if, for
any ` 2 N , M` � R` � Y �N .
Note that, if  is a self-relevant mechanism, then T ` (R;F ) � fR`g� Y �N
for any (R;F ) 2 Rn �F .
De�nition 6. An SCC F is partially-honest implementable by a self-relevant
mechanism if there exists a self-relevant mechanism  � (M; g) such that:
(i) for all R 2 Rn, F (R) = NA

�
;<R

�
; and

(ii) for all R 2 Rn and all x 2 F (R), if m` =
�
R`; x; k

`
�
2 M` for all ` 2 N ,

then m 2 NE
�
;<R

�
and g (m) = x.

Tatamitani (2001) shows that Condition � de�ned below is necessary and
su¢ cient for implementation by self-relevant mechanisms. Before stating
it, we need additional notation. For any ` 2 N , any R�` 2 Rn�1, and
x 2 X, let F�1` (R�`; x) � fR0` 2 R`jx 2 F (R0`; R�`)g, and �F` (R�`; x) �
\R`2F�1` (R�`;x)

L (R`; x). Given (R; x) 2 Rn�X, de�neD (R; x) �
�
` 2 N jF�1` (R�`; x) 6= ?

	
.

Now, Condition � can be stated as follows.

Condition � (for short, �): There is a set Y � X and, for all (R; x) 2
Rn � X with D (R; x) 6= ?, there is a pro�le of sets (C` (R�`; x))`2N such
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that x 2 C` (R�`; x) � �F` (R�`; x) \ Y for all ` 2 D (R; x); �nally, for all
R� 2 Rn, the following (i)-(iv) are satis�ed:
(i) if x 2 F (R) and C` (R�`; x) � L (R�` ; x) for all ` 2 N , then x 2 F (R�);
(ii) for all i 2 D (R; x), if y 2 Ci (R�i; x) � L (R�i ; y) and y 2 maxR�` Y for
all ` 2 Nnfig, then y 2 F (R�);
(iii) if y 2 maxR�` Y for all ` 2 N , then y 2 F (R

�);
(iv) there exists an outcome p (R; x) 2 X such that:
(a) p (R; x) 2 C` (R�`; x) for all ` 2 D (R; x);
(b) if Ci (R�i; x) � L (R�i ; p (R; x)) for all i 2 D (R; x) and p (R; x) 2 maxR�` Y
for all ` 2 NnD (R; x), then p (R; x) 2 F (R�).
Condition � is markedly stronger than Condition �. Notable parts of Con-
dition � are Condition �(i) and Condition �(iv). Condition �(i) is much
stronger than (Maskin) monotonicity.14

We introduce Condition �� below -which is a weakening of Condition �-
and show that it is necessary for partially-honest implementation by self-
relevant mechanisms.

Condition �� (for short, ��): There is a set Y � X and, for all (R; x) 2
Rn � X with D (R; x) 6= ?, there is a pro�le of sets (C` (R�`; x))`2N such
that x 2 C` (R�`; x) � �F` (R�`; x) \ Y for all ` 2 D (R; x); �nally, for all
R� 2 Rn, the following (i)-(iv) are satis�ed:
(i) if x 2 F (R), C` (R�`; x) � L (R�` ; x) for all ` 2 N , and x =2 F (R�), then
there is an H 2 H such that, for some H 0 � H and for all h 2 H 0, Rh 6= R�h;
(ii) for all i 2 D (R; x), if y 2 Ci (R�i; x) � L (R�i ; y), y 2 maxR�` Y for all
` 2 Nnfig, and y =2 F (R�), then there is an H 2 H such that for some
H 0 � H:
(a) if H 0 = fig, then (y; y0) 2 I�i for some y0 2 Ci (R�i; x) n fyg;
(b) otherwise, Rh 6= R�h for all h 2 H 0n fig;
(iii) if y 2 maxR�` Y for all ` 2 N and y =2 F (R�), then there is an ` 2 N
such that (y; y0) 2 I�` for some y0 2 Y n fyg;
(iv) there exists an outcome p (R; x) 2 X such that:
(a) p (R; x) 2 C` (R�`; x) for all ` 2 D (R; x);
(b) if Ci (R�i; x) � L (R�i ; p (R; x)) for all i 2 D (R; x) 6= ?, p (R; x) 2
maxR�` Y for all ` 2 NnD (R; x), and p (R; x) =2 F (R�), then there is an
H 2 H such that Rh 6= R�h for some h 2 H.
14For a detailed analysis on how restrictive Condition �(i) is, see Tatamitani (2002).
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Theorem 5. Let Assumption 1 hold. If an SCC F on Rn is partially-honest
implementable by self-relevant mechanisms, then it satis�es Condition ��.

Proof. Let Assumption 1 hold. Let  � (M; g) be a self-relevant mech-
anism which partially-honest implements F . Let Y � g (M). Take any
(R; x) 2 Rn � X with D (R; x) 6= ?. Denote by h 2 N a partially-
honest agent. For any i 2 D (R; x), let Ci (R�i; x) � g (Mi;m�i), where
m�i is such that m` = (R`; x; �) 2 M` for all ` 2 Nn fig. Therefore,
Ci (R�i; x) � Y . Next, we show that x 2 Ci (R�i; x) � �Fi (R�i; x). To
see this, take any R0i 2 F�1i (R�i; x) and let m0

i = (R0i; x; �) 2 Mi. By

forthrightness, (m0
i;m�i) 2 NE

�
;<(R0i;R�i)

�
and g (m0

i;m�i) = x. So,

x 2 g (Mi;m�i) � Ci (R�i; x) � L (R0i; x). Since it holds for any R0i 2
F�1i (R�i; x), we have that x 2 Ci (R�i; x) � �Fi (R�i; x). Note that the
proof that F meets Conditions ��(i)-��(iii) can be obtained by following the
reasoning used in Theorem 3, so we omit them here. Finally, we show that
F satis�es Condition ��(iv).
Take any (R; x) 2 Rn � X with D (R; x) 6= ?. Let m 2 M be such

that m` = (R`; x; �) 2 M` for all ` 2 N . Let g (m) � p (R; x). Then,
p (R; x) 2 g (M`;m�`) = C` (R�`; x) � Y for all ` 2 D (R; x). Furthermore,
suppose that Ci (R�i; x) � L (R�i ; p (R; x)) for all i 2 D (R; x), p (R; x) 2
maxR�` Y for all ` 2 NnD (R; x), and p (R; x) =2 F (R�). This implies that
m =2 NE

�
;<R�

�
. Then, there is an H 2 H such that mh =2 T h (R�; F ) =

fR�hg�Y �N for some h 2 H. Since mh = (Rh; x; �), by de�nition, Rh 6= R�h
holds. Thus, F satis�es Condition ��(iv).

Condition �� and Condition � are very close to each other; indeed, Con-
dition �� incorporates not only a monotonicity-type condition but also a
punishment-type condition, ��(iv). It follows from Theorem 5 that the
class of partially-honest implementable SCCs by self-relevant mechanisms
is further dwindled down with respect to the class of partially-honest imple-
mentable SCCs by s-mechanisms - Theorem 4.
To fully identi�es the class of partially-honest implementable SCCs by

self-relevant mechanisms, let us introduce a slight strengthening of Condition
�� - Condition ���- which can be stated as follows.

Condition ��� (for short, ���): There is a set Y � X and, for all (R; x) 2
Rn � X with D (R; x) 6= ?, there is a pro�le of sets (C` (R�`; x))`2N such
that x 2 C` (R�`; x) � �F` (R�`; x) \ Y for all ` 2 D (R; x); �nally, for all
R� 2 Rn, the following (i)-(v) are satis�ed:
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(i) if x 2 F (R), C` (R�`; x) � L (R�` ; x) for all ` 2 N , and x =2 F (R�), then
there is an H 2 H such that, for some H 0 � H and for all h 2 H 0, Rh 6= R�h;
(ii) for all i 2 D (R; x), if y 2 Ci (R�i; x) � L (R�i ; y), y 2 maxR�` Y for all
` 2 Nnfig, and y =2 F (R�), then there is an H 2 H such that for some
H 0 � H:
(a) if H 0 = fig, then (y; y0) 2 I�i for some y0 2 Ci (R�i; x) n fyg;
(b) otherwise, Rh 6= R�h for all h 2 H 0n fig;
(iii) if y 2 maxR�` Y for all ` 2 N , then y 2 F (R

�);
(iv) there exists an outcome p (R; x) 2 X such that:
(a) p (R; x) 2 C` (R�`; x) for all ` 2 D (R; x); and
(b) if Ci (R�i; x) � L (R�i ; p (R; x)) for all i 2 D (R; x) 6= ?, p (R; x) 2
maxR�` Y for all ` 2 NnD (R; x), and p (R; x) =2 F (R�), then there is an
H 2 H such that Rh 6= R�h for some h 2 H;
(v) for all i 2 N , if x 2 F (R), L (R�i ; x) = L (Ri; x) and x 2 maxR�` Y for all
` 2 Nn fig, R��i = R�i, and x =2 F (R�), then there is an H 2 H such that
H 6= fig.
We are ready to show that this new condition is necessary and su¢ cient

for partially-honest implementation by self-relevant mechanisms under the
same mild requirements on Rn and � used in Theorem 2.

Theorem 6. Let Assumption 1 and � = �SP hold, and let Rn satisfy
RD. An SCC F on Rn is partially-honest implementable by a self-relevant
mechanism if and only if it satis�es Condition ���.

Proof. Let Assumption 1 hold and let Rn satisfy RD. Denote by h 2 N a
partially-honest agent.

1. The necessity of Condition ���.
Suppose that F is partially-honest implementable by a self-relevant mech-

anism  = (M; g) 2 �SP . It is clear that F satis�es Condition ��. Further,
as in the proof of Theorem 2, we can see that F satis�es Condition ���(iii)
and Condition ���(v). Thus, F satis�es Condition ���.

2. The su¢ ciency of Condition ���.
Conversely, let F onRn satisfy Condition ���, and let  � (M; g) be a self-

relevant mechanism. Let m` =
�
R`; x`; k`

�
2 R` � Y � N denote a generic

message of agent ` 2 N , where R`` is the preference pro�le announced by
agent ` 2 N , while x` and k` are the outcome and the integer announced by
the agent at issue, respectively. The proof of the statement can be obtained
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by using the mechanism devised by Tatamitani (2001). We report it only for
completeness.
De�ne the outcome function g : M ! X as follows. For all m 2 M and�

�R; x
�
2 Rn � Y ,

Rule 1: If
�
R``; x

`
�
=
�
�R`; x

�
for all ` 2 N with x 2 F

�
�R
�
, then g (m) = x.

Rule 2: If there exists i 2 N such that
�
R``; x

`
�
=
�
�R`; x

�
6= (Rii; xi) for all

` 2 Nn fig with xi 6= x 2 F
�
�R
�
, i 2 D

��
Rii; �R�i

�
; x
�
, and Ci

�
�R�i; x

�
6= Y ,

then

g (m) =

�
xi if xi 2 Ci

�
�R�i; x

�
x otherwise

.

Rule 3: If
�
R``; x

`
�
=
�
�R`; x

�
for all ` 2 N , x =2 F

�
�R
�
, and D

�
�R; x

�
6= ?,

then g (m) = p
�
�R; x

�
.

Rule 4: Otherwise, g (m) = x`
�(m) where `� (m) �

P
i2N

ki (mod n).15

By the de�nition of g, it follows that  = (M; g) 2 �SP . Moreover, for
each ` 2 N , the truth-telling correspondence T ` : Rn�F �M` is given by:
T ` (R;F ) = fR`g � Y �N for each (R;F ) 2 Rn �F , where Y may change
according to F . We show that  partially-honest implements F . Take any
R 2 Rn.
Since F satis�es ���, it follows that, for all R 2 Rn and all x 2 F (R),

x 2 Y . The proof that F (R) � NA
�
;<R

�
follows Tatamitani (2001)�s

argument, so we omit it here. Conversely, to show that NA
�
;<R

�
� F (R),

let m 2 NE
�
;<R

�
. Consider the following cases.

Case 1 : m falls into Rule 1.
Then, m is such that, for all ` 2 N , m` =

�
�R`; x; �

�
and x 2 F

�
�R
�
.

By de�nition of g and the assumption that m 2 NE
�
;<R

�
, we have

that C` (R�`; x) � L (R`; x) for all ` 2 N . Suppose mh =2 T h (R;F ) for
some h 2 H. Suppose that Ch

�
�R�h; x

�
= Y . By changing her strategy

mh to m0
h =

�
Rh; x

h; kh
�
2 T h (R;F ) with xh 2 Y n fxg, agent h induces

Rule 4 and can obtain ` = `� (m�h;m
0
h) 6= h. Then, g (m0

h;m�h) = x.
Hence, ((m�h;m

0
h) ;m) 2�Rh , a contradiction. Otherwise, let Ch

�
�R�h; x

�
6=

Y . By changing her strategy mh to m0
h =

�
Rh; x

h; kk
�
2 T h (R;F ) with

xh 2 Y nCh
�
�R�h; x

�
, (m0

h;m�h) falls into Rule 2 as h 2 D
�
�R�h; Rh

�
. Then,

g (m0
h;m�h) = x. Again, ((m0

h;m�h) ;m) 2�Rh , a contradiction. We conclude
that mh 2 T h (R;F ) for all h 2 H. Condition �

�(i) implies x 2 F (R).
15If the remainder is zero, the winner of the game is agent n.
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Case 2 : m falls into Rule 2.
Then, m is such that m` =

�
�R`; x; �

�
for any ` 2 Nn fig and mi =

(Rii; x
i; �), with xi 6= x, i 2 D

��
�R�i; R

i
i

�
; x
�
, and Ci

�
�R�i; x

�
6= Y . By the

de�nition of g, we have that Ci
�
�R�i; x

�
� g (Mi;m�i).

Next, we claim that g (M`;m�`) = Y for all ` 2 Nn fig. We proceed
according to whether #Y = 2 and n = 3 or not.

Sub-case 2.1. not[#Y = 2 and n = 3]
Suppose that #Y > 2. Take any ` 2 Nn fig. Then, agent ` can in-

duce the modulo game by choosing any y 2 Y n fx; xig and changing m`

into m�
` =

�
�R`; y; k

`
�
. To attain y, agent ` has only to adjust k` by which

`� (m�
` ;m�`) = `. To attain x (resp., xi), agent ` has only to adjust k` by

which `� (m�
` ;m�`) = j for j 2 Nn f`; ig (resp., `� (m�

` ;m�`) = i). There-
fore, Y � g (M`;m�`) for any ` 2 Nn fig. Otherwise, let #Y = 2. Then,
n > 3. Take any ` 2 Nn fig. Choosing x` = xi, agent ` can make
#
�
` 2 N jx` = x

	
� 2 and #

�
` 2 N jx` 6= x

	
� 2. As the outcome is de-

termined by Rule 4, agent ` can attain any outcome in Y by appropriately
choosing k`. Therefore, Y � g (M`;m�`) for any ` 2 Nn fig.
Sub-case 2.2. #Y = 2 and n = 3
Then, Y = fx; xig and N = fi; `; `0g. Moreover, g (m) = x. Agent `

can change her strategy m` to m�
` =

�
�R`; x

i; k`
�
. If `0 =2 D

�
�R; xi

�
, then the

outcome is determined by Rule 4. Therefore, agent ` can attain xi 2 Y by
appropriately choosing the integer index k`. Otherwise, let `0 2 D

�
�R; xi

�
.

Suppose that C`0
�
�R�`0 ; x

i
�
6= Y . As (m�

` ;m�`) falls into Rule 2 , it follows
that g (m�

i ;m�i) = x
i, as sought. Otherwise, agent ` can attain xi by appro-

priately choosing the integer index k` as the outcome is determined by Rule
4.

Asm 2 NE
�
;<R

�
, we have thatCi

�
�R�i; x

�
� L (Ri; g (m)) and g (m) 2

maxR` Y for all ` 2 Nn fig. Moreover, by the de�nition of g, we have that
mh 2 T h (R;F ), otherwise a contradiction that m 2 NE

�
g;<R

�
can be ob-

tained (see Annex). Suppose that #H > 1, Condition ��(ii.b) implies that
g (m) 2 F (R). Otherwise, let #H = 1. Suppose that H � Nn fig. Again,
Condition ��(ii.b) implies that g (m) 2 F (R). Finally, let H = fig. By
following the same reasoning used in Case 2 of Theorem 2, it follows from
RD, Condition ��(ii.a), and Condition ��(v) that g (m) 2 F (R).
Case 3 : m falls into Rule 3.
Then, m is such that m` =

�
R``; x

`; �
�
=
�
�R`; x; �

�
2M`, x =2 F

�
�R
�
, and

D
�
�R; x

�
6= ?. By Rule 3, g (m) = p

�
�R; x

�
.
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Take any i 2 D
�
�R; x

�
. We show that Ci

�
�R�i; x

�
� g (Mi;m�i). As i 2

D
�
�R; x

�
, there exists R0i 2 Ri such that x 2 F

�
R0i;

�R�i
�
. By changing mi

to m0
i = (R0i; x; �), agent i can induce Rule 1 and obtain g (m0

i;m�i) = x.
Take any xi 2 Ci

�
�R�i; x

�
n fxg. Suppose Ci

�
�R�i; x

�
6= Y . By changing mi

to m0
i =

�
�Ri; x

i; ki
�
, agent i can induce Rule 2 and obtain g (m0

i;m�i) = x
i.

Suppose Ci
�
�R�i; x

�
= Y , then the modulo game is triggered and agent i can

attain xi by choosing ki appropriately.
Take any ` 2 NnD

�
�R; x

�
. We show that Y � g (M`;m�`). Then, agent

` can induce the modulo game by choosing any x` 2 Y n fxg and changing
m` into m0

` =
�
�R`; x

`; k`
�
. To attain x and x`, agent ` has only to adjust k`

by which `� (m0
`;m�`) = i for i 2 Nn f`g and `� (m�

` ;m�`) = `, respectively.
Therefore, we obtained thatCi

�
�R�i; x

�
� g (Mi;m�i) for any i 2D

�
�R; x

�
and Y � g (M`;m�`) for any ` 2 NnD

�
�R; x

�
. As m 2 NE

�
;<R

�
, it fol-

lows that Ci
�
�R�i; x

�
� L

�
Ri; p

�
�R; x

��
for any i 2 D

�
�R; x

�
and p

�
�R; x

�
2

maxR` Y for all ` 2 NnD
�
�R; x

�
. Moreover, by the de�nition of g, we

have that mh 2 T h (R;F ) for any h 2 H, otherwise a contradiction that
m 2 NE

�
g;<R

�
can be obtained (see Annex). Condition ��(iv) implies

that p
�
�R; x

�
2 F (R).

Case 4 : m falls into Rule 4.
Then, g (m) = x`

�(m) where `� (m) 2 N is the winner of the modulo game.
We show that Y � g (M`;m�`) for any ` 2 N . Take any i 2 N and consider
the following two sub-cases. Let

�
R``
�
`2N � �R.

Sub-case 4.1 : For all `; `0 2 Nn fig, x` = x`0.
Suppose that x` = x for all ` 2 N . As m falls into Rule 4, it follows

that x =2 F
�
�R
�
and D

�
�R; x

�
= ?, so that i =2 D

�
�R; x

�
. By changing mi to

m0
i =

�
�Ri; x

i; ki
�
with xi 2 Y , agent i can trigger the modulo game and obtain

g (m0
i;m�i) by choosing ki appropriately. Therefore, Y � g (Mi;m�i). On

the other hand, suppose that x` = x for all ` 2 Nn fig and xi 6= x. Take any
x̂i 2 Y n fxg. Since g (m) = x`�(m) where `� (m) 2 N , it follows that either
i =2 D

�
�R; x

�
or i 2 D

�
�R; x

�
and Ci

�
�R�i; x

�
= Y . Therefore, by deviating

from mi to m0
i =

�
�Ri; x̂

i; ki
�
, agent i can trigger the modulo game. To attain

x and x̂i, agent i has only to adjust ki so that `� ((m0
i;m�i)) 2 Nn fig and

`� ((m0
i;m�i)) = i, respectively. Again, we have that Y � g (Mi;m�i).

Sub-case 4.2 : For some `; `0 2 Nn fig, x` 6= x`0.
Suppose that #Y = 2, so that Y =

�
x`; x`

0	
. By changing mi to m0

i =�
�Ri; x

i; ki
�
, agent i induces the modulo game. To attain x` and x`

0
, agent

i has only to adjust the integer index ki so that `� ((m0
i;m�i)) = ` and

30



`� ((m0
i;m�i)) = `0, respectively. Otherwise, let #Y > 2. Take any xi 2

Y n
�
x`; x`

0	
. By deviating from mi to m0

i =
�
�Ri; x

i; ki
�
, agent i can trigger

the modulo game. To attain x`, x`
0
, and xi, agent i has only to adjust

ki so that `� ((m0
i;m�i)) = `, `� ((m0

i;m�i)) = `0, and `� ((m0
i;m�i)) = i,

respectively. Again, we have that Y � g (Mi;m�i).

Since Y � g (Mi;m�i) for any i 2 N and m 2 NE
�
;<R

�
, we have

that g (m) 2 maxR` Y for all ` 2 N . Moreover, by the de�nition of g, it
is clear that mh 2 T h (R;F ) for all h 2 H. Condition �

��(iii) implies that
g (m) 2 F (R).

4 Implications

In this section, we brie�y discuss the implications of the results reported in
section 3.
In the many-person case, the only requirement of no-veto power is suf-

�cient for partially-honest implementation; that is, the Dutta-Sen Theorem.
This requirement is not necessary for implementation but only su¢ cient.
Moreover, there are many interesting SCCs which fail to satisfy it. Last
but not least, though the no-veto power condition is a weak requirement in
many environments, it is by no means universally acceptable (Benoît and Ok,
2006, 2008). Theorem 2 avoids these problems by providing a necessary and
su¢ cient condition -Condition ���- for the partially-honest implementation.
In sub-section 4.1, �rst, we show that even the weak Condition �� imposes
non-trivial restrictions on F ; second, we show that the class of partially-
honest implementable SCCs becomes wider with respect to the Dutta-Sen
Theorem by discussing the implementability of an SCC which fails to satisfy
Conditions �(i) and �(ii), but is partially-honest implementable by virtue of
Theorem 2.
Theorem 4 provides a necessary and su¢ cient condition - ConditionM��

s -
for the partially-honest implementation by s-mechanisms. Even though Con-
dition M��

s is weaker than Condition Ms, it imposes non-trivial restrictions
on F . Moreover, it incorporates a Maskin monotonicity-type condition. In
sub-section 4.2, we analyze how the monotonicity-type condition incorpo-
rated in Condition M��

s a¤ects the ability to partially-honest implement.
The analysis reveals that this condition is restrictive, though it is weaker
than (Maskin) monotonicity. This result has at least two immediate con-
sequences. First, there is a trade-o¤ between what the planner can achieve
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when there are partially-honest agents in the society and the strengthening of
informational decentralization in mechanisms. Second, this con�ict breaks
down the equivalent relationship between implementation and implemen-
tation by s-mechanisms holding in the classical implementation framework
(Lombardi and Yoshihara, 2010).

4.1 Impossibility and possibility of partially-honest Im-
plementation

Despite Condition �� being a very weak requirement, we �rst show that even
this condition imposes non-trivial restrictions on the class of partially-honest
implementable SCCs. For example, the Pareto SCC is not partially-honest
implementable, as we argue next.
An SCC F PO on Rn is Pareto if, for all R 2 Rn,

F PO (R) = PO (R) � fx 2 Xj@y 2 X: (y; x) 2 Ri (8i 2 N) & (y; x) 2 Pi (9i 2 N)g .

Proposition 1. F PO on Rn is not partially-honest implementable.

Proof. Assume, to the contrary, that F PO satis�es Condition ���. Let
N = f1; 2; 3g with #N = 3, X = fx; y; zg with #X = 3, and R3 = fR;R�g,
where agents�preferences are as follows:

R R�

1 2 3 1 2 3
x y z x x; y x; y
y z x y z z
z x y z

where, as usual, xy means that the agent in question strictly prefers x to y,
while x; y means that the agent at issue is indi¤erent between x and y.
Since y 2 PO (R), there exists a pro�le (C` (R; y))`2N such that y 2

C` (R; y) � L (R`; y) \ Y for all ` 2 N . Since PO (R) = X, it follows
that Y = X. Notice that Condition ��(ii.a) is vacuously satis�ed if H =
fig � f2; 3g. Then, let H = f1g. Observe y 2 maxR�` X for all ` 2 f2; 3g
and y 2 C1 (R; y) � L (R1; y) = L (R�1; y). Condition �

�(ii.a) implies that
y 2 F PO (R�) 6= PO (R�) = fxg, a contradiction.
The Dutta-Sen Theorem is silent with respect to the partially-honest

implementability of SCCs which violate no-veto power. In what follows,
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we discuss that there is an SCC which fails to satisfy Conditions �(i) and
�(ii), but is partially-honest implementable by virtue of Theorem 2. Since
Condition �(ii) is weaker than no-veto power, this indicates that the class of
partially-honest implementable SCCs is wider with respect to the Dutta-Sen
Theorem.
Additional notation is needed. An amount M 2 R++ of some in�-

nitely divisible commodity has to be allocated among a set of agents N ,
with n � 3. An allocation is a list x 2 Rn+ such that

P
x` = M .16 Let

X �
�
x 2 Rn+j

P
x` =M

	
be the set of feasible allocations. Each agent

is equipped with a continuous and single-plateaued preference relation R`
de�ned on X as follows: there exists a continuous and quasi-concave real-
valued function uR` : [0;M ] ! R such that for any x; x0 2 X, uR` (x`) �
uR` (x

0
`) , (x; x0) 2 R`. For ` 2 N , the preference relation R` de�ned on X

is called single-plateaued when there exist two numbers �x`; x` 2 [0;M ] such
that x` � �x` and for all x`; y` 2 [0;M ]: (i) if x` < y` � x` or x` > y` � �x`,
then for any x0; y0 2 X with x0` = x` and y0` = y`, (y0; x0) 2 P`; (ii) if
x`; y` 2 [x`; �x`], then for any x0; y0 2 X with x0` = x` and y

0
` = y`, (x

0; y0) 2 I`.
The interval p (R`) � [x`; �x`] is the plateau of R`, x is the left end-point of
the plateau of R`, and �x is the right end-point. Let �R` be the class of all
such preference relations for agent `. Note that by de�nition of R` 2 �R`, it
follows that R` is single-peaked if x` = �x`.
Given x` 2 [0;M ], let r` (x`) be the consumption bundle on the other

side of agent `�s plateau amounts that she �nds indi¤erent to x` if such
consumption exists, and the end-point of [0;M ] on the other side of her
plateau amounts otherwise. Given a pro�le of preferences R 2 �Rn, p (R) �
(p (R1) ; :::; p (Rn)) denotes its associated pro�le of plateau amounts.
Let F be de�ned on �Rn such that ? 6= F (R) � X for all R 2 �Rn.

Proposition 2. Let F PO on �Rn be Pareto. Then, (i) F PO satis�es neither
of Conditions �(i) and �(ii); (ii) F PO satis�es Condition ���.

Proof. Let F PO on �Rn be Pareto, that is, F PO (R) = PO (R) for all R 2 �Rn.
We illustrate part (i) by considering the following the three-agent exam-

ple.17

Let M = 1, N � f1; 2; 3g, with #N = 3, and R;R� 2 �Rn be such

16When its bounds are not explicitly indicated, a summation should be understood to
cover all agents.
17The Pareto SCC is monotonic and satis�es no-veto power when �Rn consists only of

single-peaked preference pro�les.
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that R1 = R�1, p (R) =
�
1
4
; 1; [0; 1]

�
, and p (R�) =

�
1
4
;
�
1
2
; 1
�
; [0; 1]

�
. Let

x =
�
1
6
; 5
6
; 0
�
and y =

�
1
5
; 4
5
; 0
�
. First note that x; y 2 X, x 2 PO (R), and

L (R1; x) = L (R
�
1; x) =

�
z 2 X j 0 � z1 � 1

6
or r1 (x1) � z1 � 1

	
, L (R2; x) =�

z 2 X j 0 � z2 � 5
6

	
and L (R3; x) = L (R�3; x) = X. Moreover, note that

y =2 L (R1; x) while y 2 L (R2; x); and L (R�2; x) = X. Suppose that PO sat-
is�es Conditions �(i) and �(ii). Note that x; y 2 maxR�2 X \maxR�3 X. Note
also that, for any C1 (R; x) which is a subset of L (R1; x) with x 2 C1 (R; x),
C1 (R; x) � L (R�1; x). Thus, according to Condition �(ii), x 2 PO (R�)
should hold. However, x =2 PO (R�) as y Pareto dominates it, a contra-
diction. Also, since x 2 PO (R) and L (R`; x) � L (R�` ; x) for all ` 2 N ,
Condition �(i) implies that x 2 PO (R�) should hold, thus a contradiction,
since x =2 PO (R�).
To show part (ii), let (R; x; `) 2 �Rn � X � N with x 2 F PO (R), and

let C` (R; x) � L (R`; x). Also, X = Y as F PO satis�es unanimity. We will
show that F PO satis�es Condition ��� under these speci�cations. Pick any
arbitrary (R;R�; x) 2 �Rn � �Rn �X with x 2 F PO (R). Condition ���(i) is
always vacuously satis�ed. Condition ���(iii) is satis�ed as F PO is Pareto.
Take any (H; i) 2 H � N . Suppose that y 2 Ci (R; x) = L (Ri; x) �

L (R�i ; y) and y 2 maxR�` X for all ` 2 Nn fig. We check for ���(ii) and
���(iv).
Let H = fig and y =2 F PO (R�). We show that fyg 6= maxR�i Ci (R; x). As

y =2 F (R�), it follows that there is an allocation z 2 X such that (z; y) 2 R�j
for all j 2 N and (z; y) 2 P �j for some j 2 N . As y 2 maxR�` X for all
` 2 Nn fig, it follows that (z; y) 2 P �i and (z; y) 2 I�` for all ` 2 Nn fig;
moreover, z =2 L (R�i ; y) � L (Ri; x) as (z; x) 2 P �i . Then, y is not a plateau
amount for agent i and so L (R�i ; y) 6= X. Let y0 � (yi; w�i) 6= y where
w�i 2 Rn�1+ such that

P
`2Nnfigw` =

P
`2Nnfig y`. The allocation y

0 exists
and belongs to the set L (Ri; x) as (x; y) 2 Ri and (y; y0) 2 Ii. As y0 2
L (Ri; x) n fyg and (y; y0) 2 I�i , we have that fyg 6= maxR�i Ci (R; x). Hence,
F PO satis�es Condition ���(ii.a).
Let i 2 H and #H > 1, R� = R, and fyg = maxR�i Ci (R; x). It follows

that x = y and so y 2 F PO (R�). Therefore, F PO satis�es Condition ���(ii.b).
Let i =2 H and R� = R. It follows that (y; x) 2 Ii and (y; x) 2 I` for

all ` 2 Nn fig. Suppose that y =2 F PO (R). Then, there is a z 2 X such
that (z; y) 2 Rj and (z; y) 2 Pj for some j 2 N . By transitivity of Rj for
all j 2 N , it follows that z Pareto dominates x under the state R. Then,
x =2 F PO (R), a contradiction. Therefore, F PO satis�es Condition ���(ii.c).
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Let H = fig, x = y, R�i = R��i, and L (Ri; x) = L (R�i ; x). We show that
x 2 F PO (R�). Assume, to the contrary, that x =2 F PO (R�). Then, there is
an allocation z 2 X such that (z; x) 2 R�j for all j 2 N and (z; x) 2 P �j for
some j 2 N . As x 2 maxR�` X for all ` 2 Nn fig, it follows that (z; x) 2 P �i
and (z; x) 2 I�` for all ` 2 Nn fig; and (z; x) 2 I` for all ` 2 Nn fig as
R�i = R��i. Moreover, z =2 L (R�i ; x) = L (Ri; x) as (z; x) 2 P �i . It follows
that x =2 F PO (R), a contradiction. Hence, F PO satis�es ���(iv).

4.2 On partially-honest non-implementable SCCs by
s-mechanisms

The class of SCCs which are partially-honest implementable by s-mechanisms
is smaller than the class of SCCs which are partially-honest implementable.
The reason is that Condition ��� does not incorporate any kind of monotonic-
ity property, while Condition M�

s incorporates a weakening of the (Maskin)
monotonicity condition.
In what follows, we show the top-cycle SCC is not partially-honest im-

plementable by any s-mechanism, while it is partially-honest implementable.
Before proving this result, additional notation is needed. Let #X be �nite.
For x; y 2 X with x 6= y, let NR (x; y) be the set of agents with (x; y) 2 Ri
at state R 2 Pn, NR (x; y) � fi 2 N j (x; y) 2 Rig.18 Given x; y 2 X and
R 2 Pn, we say that x is majority preferred to y at the pro�le R, denoted
(x; y) 2 TR, if #NR (x; y) � #NR (x; y). For the sake of simplicity, suppose
that n is an odd number so as the majority relation TR on X is a tournament
for any R 2 Pn.19 The set of all top-cycle outcomes at state R is de�ned as
follows:

x 2 TC (R), 8y 2 Xn fxg , there are x0; x1; : : : ; xm 2 X, with m 2 Z++, such that�
xk; xk+1

�
2 TR for k = 0; : : : ;m� 1, with x0 = x & xm = y.

An SCC F TC on Pn is the top-cycle SCC if, for all R 2 Pn, F TC (R) =
TC (R).

Proposition 3. (i) F TC is partially-honest implementable; (ii) F TC is not
partially-honest implementable by any s-mechanism.

18Pn � Rn is the set of all available pro�les of linear orders.
19A relation T on X is a tournament if it is complete and asymmetric.
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Proof. Observe that Condition ���(i) is vacuously satis�ed by any SCC.
Then, to see that F TC is partially-honest implementable, it su¢ ces to observe
that F TC satis�es the requirement of no-veto power which, in turn, implies
Conditions ���(ii)-����(iv). This completes part (i) of the statement.
To show part (ii), assume, to the contrary, that F TC is partially-honest

implementable by an s-mechanism. Then, F TC satis�es Condition M�
s , and,

in particular, Condition M�
s (i). Let N = f1; 2; 3g with #N = 3, X =

fx; y; zg with #X = 3, and R3 = fR;R�g, where agents�preferences are as
follows:

R R�

1 2 3 1 2 3
x y z x y x
y z x y z z
z x y z x y

With abuse of notation, we write xTRy for (x; y) 2 TR. In terms of the tour-
nament relation, we have that xTRyTRzTRx, while xTR�a for all a 2 fy; zg
and yTR�z. Since y 2 TC (R) = X, there is a a pro�le of sets (C` (R`; y))`2N
such that y 2 C` (R`; y) � L (R`; y) \ X for all ` 2 N . Since (R`; R`+1) 6=�
R�` ; R

�
`+1

�
for ` 2 f2; 3g, it follows that Condition M�

s (i) is vacuously satis-
�ed if H \ f2; 3g 6= ?. The only case that we are left to verify is H = f1g.
As (R1; R2) = (R�1; R

�
2) and L (R`; y) = L (R�` ; y) for all ` 2 N , Condition

M�
s (i) implies that y 2 F (R�) 6= TC (R�) = fxg, a contradiction.
The egalitarian-equivalent solution (Pazner and Schmeidler, 1978), de-

�ned in the classical exchange economies, is another well-known example of
a non-monotonic SCC. This solution is not partially-honest implementable
by any s-mechanism either, though it is partially-honest implementable by
virtue of Theorem 2.
We close this section by noting that Tatamitani (2002) shows that in

standard one-to-one matching environments - where staying single is feasible
- the stable rule solution is not Nash implementable by any self-relevant
mechanism as it violates Condition �(i). It follows that this SCC is not
partially-honest implementable either.20 However, as the stable rule solution
equals the weak core SCC of the associated coalitional game environment and
the weak core solution is monotonic and satis�es Condition M��

s , it follows

20This solution, however, is implementable by a self-relevant mechanism under a di¤erent
notion of partial-honesty (Lombardi and Yoshihara, 2011).
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that the stable rule solution is partially-honest implementable by virtue of
Theorem 4.

5 Two-agent implementation problems

Seminal papers on two-agent Nash implementation are those of Moore and
Repullo (1990) and Dutta and Sen (1991) who independently re�nedMaskin�s
characterization result (Maskin, 1999) by providing necessary and su¢ cient
conditions for an SCC to be implementable.21 As Dutta and Sen�s Condition
� and Moore and Repullo�s Condition �2 coincide in substance, we state only
Condition �2.

Condition �2 (for short, �2): There is a set Y � X and, for all R 2 Rn

and all x 2 F (R), there is a pro�le of sets (C` (R; x))`2N such that x 2
C` (R; x) � L (R`; x) \ Y for all ` 2 N ; furthermore, Condition � holds;
�nally, for all R� 2 Rn, the following (iv) is satis�ed:
(iv) for each (x0; R0) 2 X �R2 with x0 2 F (R0),
(a) there is an e � e (x0; R0; x; R) 2 C1 (R0; x0)\C2 (R; x), with e (x;R; x;R) =
x;
(b) if C1 (R0; x0) � L (R�1; e) and C2 (R; x) � L (R�2; e), then e 2 F (R�).
Condition �2 is markedly stronger than Condition �, as it requires a

punishment condition (Condition �2(iv)). While the �rst part of Condition
�2(iv) guarantees the existence of a punishment outcome, the second part
requires that if the punishment outcome is an equilibrium outcome, it should
be F -optimal. Notable parts of Condition �2 are the monotonicity condition
(Condition �(i)) and the punishment condition.
The two-agent implementation problem with partially-honest agents has

recently been analyzed by Dutta and Sen (2009) on the assumption that
agents�preferences are linear orders. Their contribution is that, even in the
more problematic case of the two agents society, the scope of implementation
is enlarged as the stringent condition of monotonicity is no longer required.
This section extends their analysis to the domain of weak orders in view of
its potential applications to bargaining and negotiating.
In the next two sub-sections, we identify the class of partially-honest

implementable SCCs, not only in the case that the planner knows that exactly
one agent is partially-honest, but also in the more subtle case that she only

21See also Busetto and Codognato (2009).
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knows that there is at least one partially-honest agent. We present two
new conditions which are not only necessary and su¢ cient conditions for
SCCs to be partially-honest implementable but also markedly weaker than
Condition �2. In particular - and in line with earlier results and Theorem 2-,
our characterizations con�rm that even in a two-agent society the presence
of partially-honest agents drastically improves the scope, though limits still
remain. In particular, what still limits implementability is the punishment
condition.
Sub-section 5.3 reports brie�y the implications of our results.

5.1 Exactly one partially-honest agent

In this sub-section, we make the informational assumption that there is ex-
actly one partially-honest agent; the planner is aware of this fact but ignores
her identity. We begin by proving that if an SCC F is partially-honest im-
plementable, then it must satisfy Condition �2� below. Although such a
condition is quite complex, it is in fact very weak.

Condition �2� (for short, �2�): There is a set Y � X and, for all i 2 N , all
R 2 R2, and all x 2 F (R), there is a set C` (R; x) such that x 2 C` (R; x) �
L (R`; x)\ Y ; Conditions ��(i), ��(ii.a), and ��(iii) hold; �nally, for all R� 2
R2, the following condition (iv) is satis�ed:
(iv) for each (x0; R0) 2 X �R2 with x0 2 F (R0),
(a) there is an e � e (x0; R0; x; R) 2 C1 (R0; x0)\C2 (R; x), with e (x;R; x;R) =
x;
(b) if x0 6= x, R0 6= R, C1 (R0; x0) � L (R�1; e), C2 (R; x) � L (R�2; e), and
(b.1) if H = f1g and feg = maxR�1 C1 (R

0; x0), then e 2 F (R�);
(b.2) if H = f2g and feg = maxR�2 C2 (R; x), then e 2 F (R

�).

Theorem 7. Let Assumption 1 hold and H = ff1g ; f2gg. If an SCC F on
R2 is partially-honest implementable, then it satis�es Condition �2�.

Proof. Let Assumption 1 hold and let H = ff1g ; f2gg. Let h 2 N be
the unique partially-honest agent. Let  � (M; g) be a mechanism which
partially-honest implements F on R2. The proof that the set Y and the
pro�le (C` (R; x))`2N exist follows from Theorem 1. Moreover, from Theorem
1, it follows that F satis�es Conditions ��(i), ��(ii.a), and ��(iii), so we omit
them here. Finally, we show that F meets Condition �2�(iv). Take any
R� 2 R2.
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Pick any (x0; R0; x; R) 2 X�R2�X�R2 with x 2 F (R) and x0 2 F (R0).
Then, there is an equilibrium strategym � (m1;m2) 2 NE

�
;<R

�
such that

g (m) = x. Similarly, m0 � (m0
1;m

0
2) 2 NE

�
;<R0

�
and g (m0) = x0.

Let e � e (x0; R0; x; R) = g (m1;m
0
2). Then, e 2 C1 (R0; x0) = g (M1;m

0
2)

and e 2 C2 (R; x) = g (m1;M2). Thus, F satis�es �2�(iv.a). Finally, it is
also clear that F satis�es Condition �2�(iv.b) as, for instance, in the case
�2�(iv.b.1) if e =2 F (R�), the only deviator is the partially-honest agent 1
but her deviation to an m0

h 2 T

h (R

�; F ) results in the same outcome e as
feg = maxR�1 C1 (R

0; x0). We conclude that F satis�es �2�(iv).

Even though Condition �2� is a weak condition, it imposes non-trivial re-
strictions on partially-honest implementable SCCs. For instance, the Pareto
SCC F PO on R2 violates Condition �2�(iv.a).
The class of partially-honest implementable SCCs is fully identi�ed by

Condition �2�� (stated below) under the mild domain restrictions as in The-
orem 2.

Condition �2�� (for short, �2��): There is a set Y � X and, for all i 2 N , all
R 2 R2, and all x 2 F (R), there is a set C` (R; x) such that x 2 C` (R; x) �
L (R`; x) \ Y ; Condition ��� holds; �nally, for all R� 2 R2, the following
condition (v) is satis�ed:
(v) for each (x0; R0) 2 X �R2 with x0 2 F (R0),
(a) there is an e � e (x0; R0; x; R) 2 C1 (R0; x0)\C2 (R; x) with e (x;R; x;R) =
x, such that;
(b) if R = R0 = R�, x0 6= x, (e; x0) 2 I�1 , and (e; x) 2 I�2 , then e 2 F (R�);
(c) if x0 6= x, R0 6= R, C1 (R0; x0) � L (R�1; e), C2 (R; x) � L (R�2; e), and
e =2 F (R�), then;
(c.1) if R = R�, then H = f2g;
(c.2) if R0 = R�, then H = f1g.22

Theorem 8. Let Assumption 1, � = �SP , and RD hold, and H = ff1g ; f2gg.
An SCC F on R2 is partially-honest implementable if and only if it satis�es
Condition �2��.

Proof. Let Assumption 1 and RD hold and H = ff1g ; f2gg. Let h 2 N
denote a partially-honest agent.

1. The necessity of Condition �2��.
22We refer to the condition that requires only one of the conditions (i)�(iv) in Condition

�� as Conditions �2��(i)��2��(iv) each.
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Let F on R2 be an SCC which is partially-honest implementable by a
mechanism  � (M; g) 2 �SP . Let Y � g (M). Take any R 2 R2 and
any x 2 F (R). Then, there is an m (R; x) 2 NE

�
;<R

�
� M such that

g (m (R; x)) = x. Moreover, mh (R; x) 2 T h (R;F ) for every partially-honest
agent h 2 H. To see this, assume, to the contrary, thatmh (R; x) =2 T h (R;F )
for some h 2 H. As  2 �SP , we have that agent h can change mh (R; x)
to mh 2 T h (R;F ) and obtain g (m (R; x)) = g (mh;m�h (R; x)) = x, which
contradicts that m (R; x) 2 NE

�
;<R

�
. For all ` 2 N , let C` (R; x) �

g (M`;mi (R; x)) where i 2 Nn f`g. Then, C` (R; x) � g (M`;mi (R; x)) �
L (R`; x) \ Y for all ` 2 N . From Theorem 2, it follows that F satis�es
Conditions ���. Next, we show Condition �2��(v).
Pick any (x0; R0) 2 X � R2 with x0 2 F (R0), and take any R� 2 R2.

As x0 2 F (R0), it follows that there is an m (R0; x0) 2 NE
�
;<R0

�
and

g (m (R0; x0)) = x0, where mh (R
0; x0) 2 Th (R

0; F ) for all h 2 H. Let
e � e (x0; R0; x; R) = g (m1 (R; x) ;m2 (R

0; x0)). Then, e 2 C1 (R
0; x0) =

g (M1;m2 (R
0; x0)) and e 2 C2 (R; x) = g (m1 (R; x) ;M2). Thus, F satis�es

�2��(v.a).
It is also clear that F meets Condition �2��(v.b) as R = R0 = R� implies

that every agent is truthful and e is optimal at state R�.
Finally, we check �2��(v.c). Let e � e (x0; R0; x; R) = g (m1 (R; x) ;m2 (R

0; x0))
with x 6= x0 and R 6= R0. Let C1 (R0; x0) � L (R�1; e), C2 (R; x) � L (R�2; e),
and e (x0; R0; x; R) =2 NA

�
;<R�

�
= F (R�). Suppose that R = R�. As-

sume, to the contrary, that H = f1g. Then, m1 (R; x) 2 T 1 (R�; F ). Since
there cannot be any pro�table deviation, we have that e (x0; R0; x; R) 2
NA

�
;<R�

�
, a contradiction. Thus, H = f2g. Similarly, we obtain H = f1g

if R0 = R�. We conclude that F satis�es Condition �2��(v).

2. The su¢ ciency of Condition �2��.
Let  � (M; g) be a mechanism. For each ` 2 N , let the message space

of agent ` be de�ned as follows

M` �
�
m` =

�
R`; x`; y`; k`

�
2 R2 �X � Y � Z+ j x` 2 F

�
R`
�	
, (1)

where Z+ is the set of nonnegative integers.
De�ne the outcome function g :M ! X as follows: For all m 2M ,

Rule 1: If (R1; x1) = (R2; x2) and k1 = k2 = 0, then g (m) = x1.
Rule 2: If k1 > k2 = 0, then

g (m) =

�
y1 if y1 2 C1 (R2; x2)

e � e (x2; R2; x1; R1) otherwise.
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Rule 3: If k2 > k1 = 0, then

g (m) =

�
y2 if y2 2 C2 (R1; x1)

e � e (x2; R2; x1; R1) otherwise.

Rule 4: If (R1; x1) 6= (R2; x2) and k1 = k2 = 0, then

g (m) =

�
x1 if x1 = x2

e � e (x2; R2; x1; R1) otherwise.

Rule 5: If k1 � k2 > 0, then, g (m) = y1.
Rule 6: Otherwise, g (m) = y2.

By de�nition of g, we see that  2 �SP . We show that  partially-honest
implements F . Pick any R 2 R2.
Since F satis�es Condition �2��, F (R2) � Y . Thus, for any R 2 R2 and

any x 2 F (R), x 2 Y .
To show that F (R) � NA

�
;<R

�
, let x 2 F (R) and suppose that, for

all ` 2 N , m` (R; x) = (R; x; x; 0) 2 M`. Rule 1 implies that g (m) = x.
By the de�nition of g, any deviation of agent ` 2 N leads to an outcome
in C` (R; x), so that g (M`;mi (R; x)) � C` (R; x), where i 2 Nn f`g. Since
C` (R; x) � L (R`; x), such deviations are not pro�table. It follows that
x 2 NA

�
;<R

�
.

Conversely, to show that NA
�
;<R

�
� F (R), let m 2 NE

�
;<R

�
.

Consider the following cases.

Case 1: m corresponds to Rule 1.
Suppose that m falls into Rule 1. Then, g (m) = x1. By the de�nition

of g, it follows that mh 2 T h (R;F ) for h 2 H. Indeed, assume, to the
contrary, that mh =2 T h (R;F ) for h 2 H. Let h = 1. Then, by changing
mh to m0

h =
�
R; xh; x1; kh

�
2 T h (R;F ) with xh 2 F (R) and kh > 0, agent

h = 1 induces Rule 2 and obtains x1 = g (m0
h;m2) 2 Ch (R2; x2). There-

fore, ((m0
h;m2) ;m) 2�Rh which contradicts that m 2 NE

�
;<R

�
. Similar

reasoning applies if h = 2. We conclude that x1 = x2 2 F (R).
Case 2: m corresponds to Rule 2.
Then, g (m1;M2) = Y and C1 (R2; x2) � g (M1;m2). Moreover, since

m 2 NE
�
;<R

�
, it follows that g (m) 2 C1 (R2; x2) � L (R1; g (m)) and

Y � L (R2; g (m)). By the de�nition of g, mh 2 T h (R;F ) holds for h 2 H.
Suppose that H = f2g. Condition �2��(ii.c) implies that g (m) 2 F (R)
as R2 = R. Otherwise, let H = f1g. Take an R̂1 2 R1 (X) such that
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L
�
R̂1; g (m)

�
= L (R1; g (m)) with @L

�
R̂1; g (m)

�
= fg (m)g. As R2 sat-

is�es RD, we have that R̂ �
�
R̂1; R2

�
2 R2. Condition �2��(ii.a) im-

plies that g (m) 2 F
�
R̂
�
. Since F satis�es �2��, there is a pro�le of sets�

C`

�
R̂; g (m)

��
`2N

such that C`
�
R̂; g (m)

�
� L

�
R̂`; g (m)

�
\ Y for all

` 2 N . Since L
�
R̂1; g (m)

�
= L (R1; g (m)), R2 = R̂2, and H = f1g, Condi-

tion �2��(iv) implies that g (m) 2 F (R).
Case 3: m corresponds to Rule 3.
The proof can be obtained by simply readapting the proof of Case 2, so

we omit it here.

Case 4: m corresponds to Rule 4.
Then, m = (m1 (R

1; x1) ;m2 (R
2; x2)), C1 (R2; x2) � g (M1;m2 (R

2; x2)),
and C2 (R1; x1) � g (m1 (R

1; x1) ;M2). Then, g (m) 2 fx1; e (R2; x2; R1; x1)g.
Asm 2 NE

�
;<R

�
, it follows thatC1 (R2; x2) � L (R1; g (m)) andC2 (R1; x1) �

L (R2; g (m)). Notice that mh 2 T h (R;F ) for h 2 H. Suppose that x1 = x2,
so that g (m) = x1. Then, x1 2 F (R) as mh 2 T h (R;F ) for h 2 H. Other-
wise, let x1 6= x2. Then, g (m) = e (R2; x2; R1; x1) 2 C1 (R2; x2)\C2 (R1; x1).
Suppose that R1 = R2. Then, as F satis�es Condition �2��, it follows that
(e; x2) 2 I1 and (e; x1) 2 I2. Condition �2��(v.b) implies that g (m) 2 F (R).
Finally, let R1 6= R2. Suppose that H = f1g, so that R1 = R. Condi-
tion �2��(v.c.1) implies that e (R2; x2; R1; x1) 2 F (R) as H 6= f2g. Oth-
erwise, let H = f2g, and so R2 = R. Condition �2��(v.c.2) implies that
e (R2; x2; R1; x1) 2 F (R) as H 6= f1g.
Cases 5: m corresponds to Rule 5 or Rule 6.
Then, g (m1;M2) = Y and g (M1;m2) = Y . By de�nition of g and

m 2 NE
�
;<R

�
, we have that Y � L (R1; g (m)) and Y � L (R2; g (m)).

Moreover, mh 2 T h (R;F ) for h 2 H. Condition �2��(iii) implies that
g (m) 2 F (R).

5.2 There are partially-honest agents

In this sub-section, we make the informational assumption that the plan-
ner knows that agents are partially-honest but she ignores their identities.
This assumption is much weaker than the informational assumption made in
the previous sub-section, since the planner also ignores the exact number of
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partially-honest agents. We begin by proving that if an SCC F is partially-
honest implementable, then it must satisfy Condition �2� below, which is
stronger than Condition �2�.

Condition �2� (for short, �2�): There is a set Y � X and, for all i 2 N , all
R 2 R2, and all x 2 F (R), there is a set C` (R; x) such that x 2 C` (R; x) �
L (R`; x)\ Y ; furthermore, Condition �2� holds; �nally, for all R� 2 R2, the
following condition (v) is satis�ed:
(v) for all i 2 N and H 2 H, if H = N , R = R�, y 2 Ci (R; x) � L (R�i ; y)
and y 2 maxR�` Y for all ` 2 Nn fig, then y 2 F (R

�) if x = y.

Theorem 9. Let Assumption 1. If an SCC F on R2 is partially-honest
implementable, then it satis�es Condition �2�.

Proof. From Theorem 7, it follows that F satis�es Condition �2�. As it is
obvious that F satis�es Condition �2�(v), we omit it here.

Condition �2� does not su¢ ce to guarantee the partial-honest imple-
mentability of SCCs. A su¢ cient condition can be stated as follows.

Condition �2�� (for short, �2��): Condition �2�� holds; moreover, for all
R;R� 2 R2, the following condition (vi) is satis�ed:
(vi) x 2 F (R), for all i 2 N and H 2 H, if H = N , R = R�, y 2 Ci (R; x) �
L (R�i ; y) and y 2 maxR�` Y for all ` 2 Nn fig, then y 2 F (R

�).

The above condition becomes necessary and su¢ cient for the partially-
honest implementation if the admissible class � of mechanisms is restricted
by the following condition.

Strong Punishment (StP): For any R;R0 2 R2, any i 2 N , and any
m � (mi;m`) 2 M such that g (m) = x, there is an m0

i 2 T

i (R

0; F ) such
that g (m0

i;m`) = g (m).

The above condition has a similar �avor to SP. However, with condition
StP, the planner is required to design a mechanism where if x is an attain-
able outcome at state R -in the sense that there is a message pro�le leading
to it at this state-, then a partially-honest agent should be able to reach the
same outcome x by announcing a truthful message (while keeping constant
the messages of all others). Di¤erent from SP, this StP demands the ex-
istence of such a message pro�le for each attainable outcome, regardless of
whether it is an F -optimal outcome. In this sense, the above condition can
be considered as a strong punishment requirement. Similar to SP, the re-
quirement of StP is satis�ed by all classical mechanisms in the literature of

43



Nash implementation (see, for instance, Repullo, 1987; Moore and Repullo,
1990; Saijo, 1988; Dutta and Sen, 1991; Tatamitani, 2001).
Denote the class of mechanisms satisfying StP by �StP .

Theorem 10. Let Assumption 1, � = �StP , and RD hold. An SCC F
on R2 is partially-honest implementable if and only if it satis�es Condition
�2��.

Proof. Let Assumption 1 and RD hold. Let h 2 N denote a partially-
honest agent.

1. The necessity of Condition �2��.
Suppose that F is partially-honest implementable by  � (M; g) 2 �StP .

From Theorem 8, Condition �2�� is satis�ed. Finally, as it is clear that F
satis�es Condition �2��(vi), we thus omit the proof here.

2. The su¢ ciency of Condition �2��.
Let  � (M; g) be a mechanism. For each ` 2 N , let the message space

of agent ` be that de�ned in (1). De�ne the outcome function g : M ! X
as in Theorem 8. Note that  satis�es StP by the de�nition of g.
Pick any R 2 R2. The proof that F (R) � NA

�
;<R

�
follows from The-

orem 8. Conversely, to show that NA
�
;<R

�
� F (R), let m 2 NE

�
;<R

�
.

As in Theorem 8, we have to consider several Cases. However, all Cases but
Cases 2-3 follow from the same arguments used in Theorem 8, so we omit
them here. Next, we consider Case 2 and Case 3.

Case 2: m corresponds to Rule 2.
Then, g (m1;M2) = Y and C1 (R2; x2) � g (M1;m2). Moreover, since

m 2 NE
�
;<R

�
, it follows that g (m) 2 C1 (R2; x2) � L (R1; g (m)) and

Y � L (R2; g (m)). By the de�nition of g, we have that mh 2 T h (R;F )
for all h 2 H. Suppose that #H = 1. Then, g (m) 2 F (R) by Case 2 of
Theorem 8. Suppose that #H = 2. Then, Condition �2��(vi) implies that
g (m) 2 F (R), as sought.
Case 3: m corresponds to Rule 3.
The proof can be obtained by simply readapting the proof of Case 2, so

we omit it here.

Before closing this sub-section, it may be worth brie�y mentioning that
if the planner knows that both agents are partially-honest, the class of
partially-honest implementable SCCs becomes larger because neither Condi-
tion �2��(ii), Condition �2��(iv), nor Condition �2��(v.c) is required. This
result is readily obtained by Theorem 10.
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Corollary 3. Let Assumption 1 and H = fNg. An SCC F on R2 is
partially-honest implementable by a mechanism in �StP if and only if it
satis�es Condition �2�� without Condition �2��(ii), Condition �2��(iv) or
Condition �2��(v.c)

5.3 Implications

Condition �2�� - and so Condition �2�� - imposes non-trivial restrictions on
F . For example, the Pareto SCC is not partially-honest implementable by
virtue of Proposition 1, as this SCC violates Condition �2��(ii.a); moreover,
this SCC fails to meet Condition �2��(v.a). Despite this, our results are
quite permissive.23 In the following, we justify this assertion by providing
su¢ cient conditions which allow us to give a quick answer to the question of
implementability.
One avenue is to introduce a bad outcome b 2 X and make the following

assumption.

Assumption 2 (Moore and Repullo, 1990, p. 1093). There exists a bad
outcome b 2 X such that for all R 2 R2 and i 2 N , (x; b) 2 Pi for all
x 2 F (R2) � fy 2 Xjy 2 F (R0) for some R0 2 R2g.
There are economic environments in which it is easy to �nd a bad out-

come. Consider an exchange economy in which agents have strict monotonic
preferences and the SCC assigns only positive consumption bundles. Under
free disposal, one can de�ne the null consumption bundle as the bad outcome.
If there is a bad outcome, we can set e (x;R; x0; R0) = b for each (x;R; x0; R0) 2

X �R2 �X �R2 to satisfy Condition �2��(v) vacuously. Then, Condition
�2�� without Condition �2��(v) is su¢ cient for an SCC to be partially-honest
implementable. Even though these conditions can easily be checked by using
the algorithm provided by Sjöström (1991), the condition of restricted veto
power, when combined with Assumption 2, su¢ ces to ensure Condition �2��.

Restricted veto power: For all i 2 N , all R 2 R2, all x 2 X, and all
x0 2 F (R2) � fy 2 Xjy 2 F (R) for some R 2 R2g, if x 2 maxR` X for all
` 2 Nn fig and (x; x0) 2 Ri, then x 2 F (R) holds.
23For a non-dictatorial and weakly Pareto e¢ cient partially-honestly implementable

SCC de�ned on the domain of linear orders which rebuts the negative conclusion of Hurwicz
and Schmeidler (1978) we refer the reader to Dutta and Sen (2009).
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Restricted veto power is used by Moore and Repullo (1990, p. 1093)
to analyze the two-agent case under Assumption 2. We can now state the
following result.

Corollary 4. Let Assumption 1 and Assumption 2 hold. An SCC F on R2

is partially-honest implementable if it satis�es restricted veto power.

Proof. Let Assumption 1 and Assumption 2 hold. Suppose that F on
R2 satis�es restricted veto power. It su¢ ces to show that Assumption 2
and restricted veto power imply Condition �2��. Let Y = X; and for
all R 2 R2 and all x 2 F (R), let Ci (R; x) = L (Ri; x) for all i 2 N .
Since Assumption 2 holds, for each (x;R; x0; R0) 2 X � R2 � X � R2 with
x 2 F (R) and x0 2 F (R0), let e (x0; R0; x; R) = b if (x;R) 6= (x0; R0), oth-
erwise e (x;R; x0; R0) = x. Then, Condition �2��(v) is satis�ed. As restrict
veto power implies Conditions �(ii)-�(iii) which, in turn, imply Conditions
�2��(ii)-�2��(iv) and Condition �2��(vi), the statement follows.

By Corollary 3, we know that an SCC is partially-honest implementable
by Condition �2�� without Condition �2��(ii), Condition �2��(iv) or Con-
dition �2��(v.c) if the planner knows that both agents are partially-honest.
Under this informational assumption, we show that unanimity and a weak-
ening of restricted veto power, when combined with Assumption 2, su¢ ce to
guarantee partially-honest implementation.24 The condition can be stated as
follows.

Weak restricted veto power: For all i 2 N , all R 2 R2, and all
x 2 X, if x 2 maxR` X for all ` 2 Nn fig and (x; x0) 2 Ri for all x0 2 F (R),
then x 2 F (R) holds.
The above condition is new and considerably weaker than restricted veto

power. We can now state the following result.

Corollary 5. Let Assumption 1 and Assumption 2 hold, and let H = fNg.
An SCC F on R2 is partially-honest implementable if it satis�es weak re-
stricted veto power and unanimity.

Proof. Let Assumption 1 and Assumption 2 hold. Suppose that F on R2

satis�es weak restricted veto power and unanimity. As it it is clear that
weak restricted veto power implies Condition �2��(vi) and unanimity implies
Condition �2��(iii), the proof can be obtained by simply readapting the proof
of Corollary 4, so we omit it here.

24For the de�nition of unanimous SCCs, see section 2.
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For instance, suppose that two agents bargain over the division of one
unit of a perfectly divisible good. If they do not reach an agreement, they
both receive nothing. In this framework, non-monotonic strong individually
rational bargaining solutions25 de�ned on the class of utility possibility sets -
such as the Nash bargaining solution - are special examples of SCCs applied
to Corollary 4 and Corollary 5, setting the disagreement point d = (0; 0) as
a bad outcome.26

Another interesting weak domain restriction is Assumption 3 below. Be-
fore stating it, we need additional notation. Let SL (Ri; x) denote agent
i�s strict lower contour set at (Ri; x) 2 Ri � X, that is, SL (Ri; x) �
fy 2 Xj (x; y) 2 Pig.
Assumption 3 (Busetto and Codognato, 2009). R2 is such that for all
R� 2 R2, we have:
(i) maxR�i SL (Ri; x) \ maxR�j SL (Ri; x) = ? for all i; j 2 N with i 6= j, all
R 2 R2, and all x 2 X;
(ii) maxR�1 SL (R

0
1; x

0) \ maxR�2 SL (R2; x) = ? for each (x;R; x0; R0) 2 X �
R2 �X �R2 with (x;R) 6= (x0; R0).
This domain restriction is very mild and much weaker than Assumption

E imposed by Moore and Repullo (1990, p. 1095) and Assumptions 5.1-
5.2 imposed by Dutta and Sen (1991, p. 125) whenever X is a subset of a
�nite-dimensional Euclidean space.27 For example, this restriction is satis�ed
in environments with continuous and locally non-satiated preferences or in
environments in which the set of outcomes is a space of lotteries over a �nite
set of outcomes and agents�preferences over lotteries are represented by von
Neumann-Morgenstern utility functions. Given Assumption 3, we can de�ne
a condition that, when combined with others, su¢ ces to ensure Condition
�2��.

De�nition 7. An SCC F on R2 satis�es the non-empty lower intersection
if for all (x;R; x0; R0) 2 X �R2 �X �R2 with x 2 F (R) and x0 2 F (R0),
we have that SL (R01; x

0) \ SL (R2; x) 6= ?.
25A bargaining solution is strong individually rational if it provides agents with agree-

ments which give them utilities higher than those they derive from the disagreement point
d.
26For the Nash bargaining solution de�ned on the class of utility possibility sets, see

Vartiainen (2007).
27The formal arguments are provided in Busetto and Codognato (2009).
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This property appears in Moore and Repullo (1990) and Dutta and Sen
(1991) and holds in many environments. For example, it holds in an exchange
economy for which indi¤erence curves never touch the axes and for which
the SCC recommends only interior allocations. We can now state our next
results.

Corollary 6. Let Assumption 1 and Assumption 3 hold. An SCC F on R2

is partially-honest implementable if it satis�es non-empty lower intersection
and restricted veto power.

Proof. Let Assumption 1 and Assumption 3 hold. Suppose that F on
R2 satis�es non-empty lower intersection, weak restricted veto power and
unanimity. We show that F is partially-honest implementable. It su¢ ces to
show that Condition �2�� is implied by our suppositions.
For all i 2 N , (x;R) 2 X�R2, and x 2 F (R), let Ci (R; x) = SL (Ri; x)[

fxg and Y = X. It is easy to verify that Ci (R; x) � L (Ri; x) \ Y . For all
(x0; R0; x; R) 2 X � R2 � X � R2 with x 2 F (R) and x0 2 F (R0), let
e (x0; R0; x; R) 2 SL (R0i; x0) \ SL (R`; x) if (x;R) 6= (x0; R0), and otherwise,
e (x0; R0; x; R) = x. By de�nition of e (x0; R0; x; R) and non-empty lower inter-
section, it is easy to see that Condition �2��(v.a) is satis�ed, while Condition
�2��(v.b) and Condition �2��(v.c) are vacuously satis�ed as (x;R) 6= (x0; R0).
Pick any R;R� 2 R2; let x 2 F (R), y 2 Ci (R; x) � L (R�i ; y), and

y 2 maxR�` Y for i; ` 2 N with i 6= `. It cannot be that y 2 Ci (R; x) n fxg,
otherwise y 2 maxR�i SL (Ri; x) \ maxR�j SL (Ri; x), contradicting Assump-
tion 3(i). Let x = y. Condition �2��(vi) is satis�ed trivially. Moreover,
as restricted veto power implies that x 2 F (R�), it follows that Condition
�2��(ii) and Condition �2��(iv) are satis�ed. Clearly, restricted veto power
implies Condition �2��(iii). The statement follows by observing that Condi-
tion �2��(i) is satis�ed.

Corollary 7. Let Assumption 1 and Assumption 3 hold ; let H = fNg.
An SCC F on R2 is partially-honest implementable if it satis�es non-empty
lower intersection and unanimity.

Proof. The proof of this statement directly follows from the proof of Corol-
lary 6, and so it is omitted here.

Consider a two-agent exchange economy with ` � 2 divisible goods, in
which agents have continuous and strictly monotonic preferences, and in
which indi¤erence curves never touch the axes (for instance, Cobb-Douglas
preferences). Suppose that an SCC F selects only interior allocations of
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the feasible set. In this setting, restricted veto power, unanimity, and non-
empty lower intersection are satis�ed by this F . The egalitarian-equivalent
solution is an example of such an SCC.28 This implies that it is partially-
honest implementable, according to Corollary 6 and Corollary 7.
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6 Annex

Completion of the proof of Case 2 of Theorem 6 . In the following, we com-
plete the proof of Case 2 of Theorem 6 by showing that mh 2 T h (R;F ) for
all h 2 H. Assume, to the contrary, that mh =2 T h (R;F ) for some h 2 H.
Suppose that h = i. By changing his strategy mi to m0

i = (Ri; x
i; �) 2

T i (R;F ), agent i = h obtains g (m) = g (m0
i;m�i) via Rule 2 as i 2

D
�
�R�i; Ri

�
. It follows that agent h = i has a unilateral pro�table devia-

tion as ((m0
i;m�i) ;m) 2�Ri , which contradicts that m 2 NE

�
;<R

�
.

Otherwise, let h 6= i. We proceed according to whether #Y = 2 and
n = 3 or not.
Consider the case not[#Y = 2 and n = 3]. Suppose that #Y > 2. Then,

agent h can induce the modulo game by choosing any y 2 Y n fx; xig and
changing mh to m0

h =
�
Rh; y; k

h
�
2 T h (R;F ). As the outcome is deter-

mined by Rule 4, agent h can obtain g (m) = g (m0
h;m�h) by appropriately

choosing kh. It follows that ((m0
h;m�h) ;m) 2�Rh , which contradicts that

m 2 NE
�
;<R

�
. Suppose that #Y = 2 but n > 3. Then, agent h can

make #
�
` 2 N jx` = x

	
� 2 and #

�
` 2 N jx` 6= x

	
� 2 by changing mh

to m0
h =

�
Rh; x

i; kh
�
2 T h (R;F ). As the outcome is determined by Rule

4, agent h can obtain g (m) = g (m0
h;m�h) by appropriately choosing kh.

Again, ((m0
h;m�h) ;m) 2�Rh , which contradicts that m 2 NE

�
;<R

�
.

Let us consider the case that #Y = 2 and n = 3. Then, g (m) = x as
Ci
�
�R�i; x

�
6= Y . Suppose that agent h changes mh to m0

h =
�
Rh; x; k

h
�
2

T h (R;F ). Suppose that i 2 D
�
Rii; Rh; �R�fi;hg

�
. Then, g (m) = g (m0

h;m�h)
whenever Rule 2 applies to (m0

h;m�h). Otherwise, the modulo game is trig-
gered and agent h can obtain g (m) = g (m0

h;m�h) by choosing kh appro-
priately. Hence, if i 2 D

�
Rii; Rh;

�R�fi;hg
�
, agent h has a pro�table uni-

lateral deviation, which contradicts that m 2 NE
�
;<R

�
. Thus, let i =2

D
�
Rii; Rh;

�R�fi;hg
�
. It follows that, for all R0i 2 Ri, x =2 F

�
R0i; Rh;

�R�fi;hg
�
.

Then, (m0
h;m�h) falls intoRule 4 and agent h can obtain g (m) = g (m0

h;m�h)
by choosing kh appropriately. Agent h has a unilateral pro�table deviation
in the latter case too, which contradicts that m 2 NE

�
;<R

�
.

We conclude that mh 2 T h (R;F ) for all h 2 H.
Completion of the proof of Case 3 of Theorem 6 . In the following, we com-
plete the proof of Case 3 of Theorem 6 by showing that mh 2 T h (R;F ) for
all h 2 H. Assume, to the contrary, that mh =2 T h (R;F ) for some h 2 H.
We proceed according to whether h 2 D

�
�R; x

�
or not.
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Suppose that h =2 D
�
�R; x

�
. Then, for all R0h 2 Rh, x =2 F

�
R0h;

�R�h
�
.

By changing mh to m0
h =

�
Rh; x

h; kh
�
2 T h (R;F ), agent h can trigger the

modulo game with choosing xh appropriately. If p
�
�R; x

�
= x, by choosing

xh 2 Y n fxg, agent h can design agent `� (m0
h;m�h) 2 Nn fhg as the winner

of the modulo game with choosing kh appropriately. Otherwise, let p
�
�R; x

�
6=

x. Then, agent h by choosing p
�
�R; x

�
= xh can becomes the winner of the

modulo game with choosing kh appropriately. In either case, we have that
g (m) = g (m0

h;m�h), which contradicts that m 2 NE
�
;<R

�
.

Let us consider the case that h 2 D
�
�R; x

�
. Suppose that Ch

�
�R�h; x

�
=

Y . By changing mh to m0
h =

�
Rh; x

h; kh
�
2 T h (R;F ), agent h can trig-

ger the modulo game. By choosing the outcome announcement and the
integer index appropriately, agent h can obtain g (m) = g (m0

h;m�h), which
contradicts that m 2 NE

�
;<R

�
. Otherwise, let Ch

�
�R�h; x

�
6= Y . As

h 2 D
�
�R; x

�
, it follows that h 2 D

��
Rh; �R�h

�
; x
�
. By changing mh to

m0
h =

�
Rh; x

h; �
�
2 T h (R;F ), agent h can make the outcome determined

by Rule 2 with choosing xh appropriately. Suppose that p
�
�R; x

�
= x. By

announcing xh 2 Y nCh
�
�R�h; x

�
, agent h can obtain g (m) = g (m0

h;m�h),
and so ((m0

h;m�h) ;mh) 2�Rh , a contradiction. Finally, let p
�
�R; x

�
6= x.

Then, by announcing xh = p
�
�R; x

�
2 Ch

�
�R; x

�
, agent h can again obtain

g (m) = g (m0
h;m�h), and so ((m0

h;m�h) ;mh) 2�Rh , a contradiction. We
conclude that every partially-honest agent is reporting truthfully.
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