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Abstract

This paper studies implementation problems in the wake of a re-
cent new trend of implementation theory which incorporates a non-
consequentialist flavor of the evidence from experimental and behav-
ioral economics into the issues. Specifically, following the seminal
works by Matsushima (2008) and Dutta and Sen (2009), the paper
considers implementation problems with partially honest agents, which
presume that there exists at least one individual in the society who
concerns herself with not only outcomes but also honest behavior at
least in a limited manner. Given this setting, the paper provides a
general characterization of Nash implementation with partially-honest
individuals. It also provides the necessary and sufficient condition for
Nash implementation with partially-honest individuals by mechanisms
with some types of strategy-space reductions. As a consequence, it
shows that, in contrast to the case of the standard framework, the
equivalence between Nash implementation and Nash implementation
with strategy space reduction no longer holds.
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1 Introduction

The theory of (Nash) implementation aims to reach goals in situations in
which the planner does not have all the relevant necessary information, but
needs to elicit it from the agents.! To this end, she designs a mechanism or
game form in which agents will act strategically in accordance with the so-
lution concept of Nash equilibrium. When the (Nash) equilibrium outcomes
of the mechanism coincide with the goals set by the planner, these goals
are implementable. Seminal paper on implementation is Maskin (1999) who
proves that a social choice correspondence (SCC') - which summarizes the
planner’s goals - is (Maskin) monotonic if it is implementable; when there are
at least three agents, an SCC' is implementable if it is monotonic and satis-
fies an auxiliary condition called no-veto power. Moore and Repullo (1990),
Dutta and Sen (1991), Danilov (1992), Sjostrom (1991) and Yamato (1992)
refined Maskin’s characterization result by providing necessary and sufficient
conditions for an SCC' to be implementable.?

A fundamental tenet of implementation theory is the consequentialism
axiom. Its core idea is that the ranking of outcomes of agents should be
independent of the process that generates these outcomes. An immediate
implication of this axiom for implementation theory is that agents should be
indifferent between a lie and a truthful statement if they result in the same
material payoffs. This axiom, however, is inconsistent with the well docu-
mented behavior that agents may display concern for procedures; that is, they
may care about how outcomes are generated and, therefore, their ranking of
outcomes may be structurally dependent on the outcome-generating process
(Camerer, 2003; Sen, 1997). Remarkably, a considerable amount of exper-
imental data suggests that agents may display preferences for truth-telling;
that is, an agent lies only when she prefers the outcome obtained from false-
telling over the outcome obtained from truth-telling (Gneezy, 2005; Hurkens
and Kartik, 2009). This paper aims at narrowing the gap between these
two strands. It follows the non-consequentialist approach by accommodat-
ing concerns for truthful revelation of agents; but like mainstream theory,
it keeps the idea that even these agents respond primarily to material in-
centives.> The paper refers to agents having preferences for truth-telling as

'Henceforth, by implementation we mean Nash implementation.

2For excellent introductions to the theory of implementation, see, for instance, Jackson
(2001) and Maskin and Sjostrom (2002).

31n its turn, the impressive body of evidence accumulated by psychologists over the past
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being partially-honest.

Its general thrust goes as follows. Assume, as an example, that the mes-
sage conveyed by each agent to the planner involves the announcement of
a preference profile (i.e., agents’ preferences over outcomes). A message is
truthful if it involves the announcement of the true preference profile. A
partially-honest agent is an agent who strictly prefers to announce a truth-
ful message rather than a lie when the former (given a message announced
by other agents) produces an outcome which is at least as good as the one
that would be achieved if the agent lied (keeping constant the other agents’
messages). Suppose that agent h is a partially-honest agent, who believes
that the other agents will send the message m_;, and let m;, be the truthful
message of agent h and mj, be not truthful. Moreover, let both the message
profile (my, m_;) and the message profile (mj,,m_;) result in the same out-
come z. Then, unlike an agent who is concerned solely with outcomes, the
partially-honest agent h strictly prefers (myp, m_p) to (m}, m_p). Put differ-
ently, the agent at issue has preferences over message profiles in which she
cares about two dimensions in lexicographic order: primarily to her outcome,
secondarily to her truth-telling behavior.

Seminal works on the role of honesty in implementation theory are Mat-
sushima (2008) and Dutta and Sen (2009), which show that the assump-
tion that the planner is aware of the existence of partially-honest agents
but ignores their identities drastically improves the scope of implementation.
Yet, the significant impact of the presence of partially-honest agents upon
implementation theory has not been fully appreciated - as described below.
In the line with these works, this paper also investigates implementation
problems with partially-honest agents, where an SCC' is partially-honestly
implementable if there is a mechanism whose equilibrium outcomes are de-
termined with each profile of preferences over message profiles, and coincide
with the optimal outcomes set by this SC'C.

Given this setting, the paper provides, in section 3.1, a minimal set of
necessary conditions for partially-honest implementation, though the above

two decades has caused scholars to study the implications of weakening other fundamental
assumptions in a variety of ways, and has already turned in a number of alternatives
back to the standard implementation model (for instance, Eliaz, 2002; Renou and Schlag,
2009; Bergemann et al., 2010; Cabrales and Serrano, 2010). Noteworthy, the first paper
on ‘behavioral implementation theory’ goes back to 1986, in which Hurwicz solves the
implementation problem without positing the completeness and the transitivity of agents’
preferences (Hurwicz, 1986).



seminal works solely study sufficienct conditions. Due to this result in the pa-
per, it is possible to examine which of the SC'C's cannot be partially-honestly
implemented. For instance, as shown in section 4, the (strong) Pareto SCC
defined in abstract social choice environments is not partially-honestly im-
plementable. Furthermore, under mild and reasonable domain restrictions
of preferences and mechanisms, the paper shows that a slight strengthening
of these conditions is necessary and sufficient for partially-honest implemen-
tation in more than two person societies. The set of conditions is much
weaker than the necessary and sufficient condition given by Moore and Re-
pullo (1990) for the standard Nash implementation, and in particular it con-
tains no variant of the Maskin monotonicity-like condition. For instance, in
rationing problems when agents have single-plateaued preferences, it can be
shown from this characterization that the Pareto SCC' is partially-honestly
implementable, though this SCC' violates the Moore and Repullo (1990)
condition, and also satisfies neither monotonicity nor no-veto power.

Note that the aforementioned theorem of this paper applies a canonical
mechanism to show the sufficiency part. This type of mechanism requests
agents to announce a feasible social outcome, an agent index, and moreover a
profile of agents’ preferences on outcomes, which is not an attractive feature,
given that an important role of the mechanism is to economize on commu-
nication. Facing this issue, the paper pays attention to informational decen-
tralization of mechanisms by considering mechanisms with strategy space re-
ductions. While sub-section 3.2 assumes s-mechanism (Saijo, 1988) in which
the message conveyed by each agent to the planner involves the announce-
ment of only her own and her neighbor’s preferences - in addition to an
outcome and an agent index, sub-section 3.3 assumes self-relevant mecha-
nisms (Tatamitani, 2001) in which each agent announces - inter alia - only
her own preference. Then, the paper identifies a minimal set of necessary
conditions for partially-honest implementation by s-mechanisms (resp., self-
relevant mechanisms); moreover, it shows that a slight strengthening of these
conditions fully identifies the class of partially-honest implementable SCC's
by s-mechanisms (resp., self-relevant mechanisms). Notably, these conditions
respectively contain the weaker variants of (Maskin) monotonicity-type con-
ditions, each of which respectively restricts the class of partially-honestly im-
plementable SCC's by s-mechanisms and by self-relevant mechanisms. These
findings have at least two immediate consequences. First, there is a trade-
off between what the planner can achieve when there are partially-honest
agents in the society and the strengthening of informational decentralization

4



in mechanisms. Second, this conflict breaks down the equivalence between
implementation and implementation by s-mechanism which holds in the stan-
dard framework (Lombardi and Yoshihara, 2010).

Finally, the paper turns to study partially-honest implementation prob-
lems in two-agent societies. This issue has recently been analyzed by Dutta
and Sen (2009) on the assumption that agents’ preferences are linear orders.
Their contribution is that, even in the more problematic case of two agents,
the stringent condition of monotonicity is no longer required. The paper
extends their analysis to the domain of weak orders in view of its potential
applications to bargaining and negotiating. The paper identifies the class of
partially-honest implementable SC'C's, not only in the case that the planner
knows that exactly one agent is partially-honest, but also in the more subtle
case that she only knows that there are partially-honest agents.

The paper is organized as follows. Section 2 describes the formal envi-
ronment. Section 3 reports the analysis for the many-person case, whereas
Section 4 briefly discusses its implications. Section 5 reports the analysis for
the two-agent case and its implications.

2 The implementation problem

The set of outcomes is denoted by X and the set of agents is N = {1, ...,n}.
Unless otherwise specified, we assume that the cardinality of X is #X > 2,
while the cardinality of N is n > 3. Let R (X)) be the set of all possible weak
orders on X.* Let Ry C R (X) be the (non-empty) set of all admissible weak
orders for agent £ € N.° Let R® C Ry X ... X R, be the set of all admissible
profiles of weak orders (or states). A generic element of R" is denoted by R,
where its /th component is Ry € Ry, ¢ € N.5 The symmetric and asymmetric
factors of any R, € R, are, in turn, denoted P, and I,, respectively.” For
any R € R" and any ¢ € N, let R_;, be the list of elements of R for all
agents except ¢, i.e., R_y = (Ry,..., Ry_1, Re11, ..., Ry). Given a list R, and

4A weak order is a complete and transitive binary relation. A relation R on X is
complete if, for all z,2’ € X, (z,2’) € R or (2/,z) € R; transitive if, for all z,z’ 2" € X,
if (z,2") € R and (2/,2") € R, then (z,2”) € R.

®The weak set inclusion is denoted by C, while the strict set inclusion is denoted by C.

b(x,y) € Ry stands for “z is at least as good as y”.

"(z,y) € Py if and only if (x,y) € Ry and (y,z) ¢ Ry and P, stands for “strictly better
than”. On the other hand, (z,y) € I, if and only if (z,y) € Ry and (y,z) € Ry and I,
stands for “indifferent to”.



R, € Ry, we denote by (R_y, Ry) the preference profile consisting of these
Ry and R_y. For any preference profile R € R"™ and any @ # S C N,
let R_g be the list of elements of R for all agents in N\S. Given a list
R_s and a list Rg € XyecsRy, we denote by (R_g, Rg) the preference profile
consisting of these Rg and R_g. Let P C R" be the set of all admissible
profiles of linear orders.® Let L (R,, z) denote agent i’s lower contour set at
(R, x) € Rex X, that is, L (R, z) = {y € X|(z,y) € R¢}. For any R, € Ry
and Y C X, let maxp, Y be the set of optimal outcomes in ¥ according to
Ry, that is, maxg, Y = {x € Y| (x,y) € R, for all y € Y}. For any R, € Ry,
OL (Ry,x) = {x} means {z} = maxg, L (R, x).

A social choice correspondence (SCC) F on R™ is a correspondence F :
R" - X with @ # F(R) C X for all R € R™. Denote the class of such
correspondences by F. An SCC F on R" is (Maskin) monotonic if, for all
R, R € R" withax € F(R), v € F(R') if L(Ry,z) C L(R),z) forall £ € N.
An SCC F on R™ satisfies i) no-veto power if, for all R € R", x € F (R)
if + € maxp, X for at least n — 1 agents; ii) unanimity if, for all R € R",
x € F(R) if v € maxg, X for all / € N.

A mechanism is a pair v = (M, g), where M = M; x ... x M,, with
each M; being a (non-empty) set, and g : M — X. It consists of a message
space M, where M, is the message space for agent ¢/ € N, and an outcome
function g. Denote the admissible class of mechanisms by I'. Let m, € M,
denote a generic message (or strategy) for agent /. A message profile is
denoted m = (my,...,m,) € M. For any m € M and { € N, let m_, =
(MA, ooy Mp—1, Mgy, ...y my). Let My = Xien\ gy M;. Given an m_, € M_,
and an m, € M,, denote by (m,, m_;) the message profile consisting of these
my and m_,. For any m € M and @ # S C N, let m_g = (mg)éeN\S. Let
M_g = XpenmsM,. Given m_g € M_g and mg € Mg, denote by (mg, m_g)
the message profile consisting of these mg and m_g.

A mechanism v induces a class of (non-cooperative) games {(~, R) |R € R"}.
Given a game (v, R), we say that m* € M is a (pure strategy) Nash equilib-
rium at R if and only if, for all € N, (m*, (mg, mig)) € R, for all my, € M,.
Given a game (v, R), let NE (v, R) denote the set of Nash equilibria mes-
sage profiles of (v, R), whereas N A (y, R) represents the corresponding set of
Nash equilibrium outcomes.

A mechanism v implements F' in Nash equilibria, or simply implements

8 A linear order is a complete, transitive, and antisymmetric binary relation. A binary
relation R on X is antisymmetric if, for all z,2’ € X, x = 2’ if (x,2’) € R and (2, z) € R.



F, if and only if FF'(R) = NA(v,R) for all R € R". If such mechanism
exists, then F' is (Nash)-implementable.

Given a mechanism +, for each ¢/ € N, let us define truth-telling cor-
respondence T, : R™ x F — M, such that for each (R,F) € R" x F,
@ # T, (R,F) C M, An interpretation of the set T,/ (R, F') is that, given
the mechanism ~ and the current state (R, F'), agent ¢ behaves truthfully at
the message profile m € M if and only if my, € T, (R, F'). In other words,
T, (R, F) is the set of truthful message of ¢ under the mechanism +, when
the current social state is R € R"™ and the social goal is given by F. Note
that the type of elements of M, constituting 7, (R, F') depends on the type
of mechanism ~ that one may consider. For example, if the message conveyed
by each agent to the planner involves the announcement of a preference pro-
file, a feasible social outcome and an agent integer index, and sending the
truthful preference profile constitutes the relevant truthful message for each
(R, F) € R™ x F, then M, may be defined by M, = M} x M?, where there
is a bijection oy : R™ — M} such that T, (R, F) = {0, (R)} x M} for each
(R, F) e R" x F.

For any ¢ € N and R € R", let = be agent ’s (weak) order over M
under the state R. The asymmetric factor of =1 is denoted =}, while the
symmetric part is denoted ~f. For any R € R", let ' denote the profile of

(weak) orders over M under the state R, that is, == (3=F) ven

Definition 1. Given a mechanism 7, an agent h € N is a partially-honest
agent if, for any R € R", and any m = (my,m_p,),m’ = (m},m_,) € M,
the following properties hold:

(i) if mp, € T) (R, F), mj, ¢ T,)(R,F), and (g(m),g(m')) € Ry, then
(m,m’) e=E;

(ii) otherwise, (m,m’) €= if and only if (g (m), g (m')) € Ry.

If agent ¢ € N is not a partially-honest agent, then for each game (v, R), for
all m,m’ € M: (m,m’) €= if and only if (g (m), g (m)) € Ry.

Unless otherwise specified, the following informational assumption holds
throughout the paper.

Assumption 1. There are partially-honest agents in N. The planner is
aware of it but ignores the identity of these agents.

Let H C {H C N | H # @} be the class of subsets in N. Note that H
is considered as the potential class of partially-honest agents’ groups. That
is, if H € 'H, this H is a potential group of partially-honest agents in N. By



Assumption 1, the planner knows that H is non-empty, and perhaps, she may
know what subsets of N belong to H, but she never knows which element of
‘H is the true set of partially-honest agents in the society.

A mechanism 7 induces a class of (non-cooperative) games with partially-
honest agents {(7, ?R) R € R”} Given a game (7, ?R), we say that m* €
M is a (pure strategy) Nash equilibrium with partially-honest agents at R
if and only if, for all £ € N, (m*, (mg,m’ie)) ex=f for all my € M,. Given
a game (’y, ?R), let NE (% %R) denote the set of Nash equilibria message
profiles of (fy, &R), whereas VA (fy, %R) represents the corresponding set of
Nash equilibrium outcomes. Then:

Definition 2. An SCC F on R" is partially-honest (Nash) implementable if
there exists a mechanism v = (M, g) € T such that F (R) = NA (v, =%) for
all R € R".

To conclude, let us introduce two mild conditions imposed on the models
of this paper. One is a condition on the domain of agents’ preferences, while
the other is a condition on the domain of mechanisms admissible in the soci-
ety. The first condition basically requires that the class of available profiles
of preferences is sufficiently rich. Examples of preference domains satisfying
such a condition would be the set of all profiles of weak orders, linear orders,
and single peaked preferences on X. Moreover, it is vacuously satisfied in the
classical economic environments. Hence, our models are applicable to those
environments. The condition can be stated as follows.

Rich Domain (RD): For any ¢ € N, any R € R", and any =z € X, if
R, € R;(X) is such that L (R.,z) = L(R;,x) with 0L (R}, x) = {z}, then
(R, R_;) € R™ holds.

Next, our informational assumption is that the planner knows that there
are partially-honest agents but ignores their identities. The partially-honest
agent is an agent who prefers to be truthful if a lie is not beneficial for
her. Given this structure, the existence of truthful messages is presumed,
since, otherwise, the issue reduces to the standard implementation problem.
Moreover, the admissible class of mechanisms should be constituted by those
which involve a simple scheme to punish such a partially-honest agent if she
takes a false message. As such one, let us consider a type of mechanism in
which, if an outcome z is F-optimal at the state R and the outcome function
g selects x as the resulting outcome of the messages announced by agents, a
partially-honest agent can find a truthful message which results in the same



outcome x - keeping constant the messages of all other agents. In such a
mechanism, any false statement by a partially-honest agent can be punished
independently of the detailed information about the real state of the society.
This condition on the class of admissible mechanisms I' can be stated as
follows.

Simple Punishment (SP): For any R, R’ € R", any z € F (R), any i € N,
and any m € M such that g (m) = z, there is m, € T, (R, F) such that
g (mj,m_;) = g(m).
A mechanism v is a mechanism with simple punishment if it satisfies SP.
Denote the class of mechanisms with SP by I'gp.

Before closing this section, it may be worth noting that the simple pun-
ishment property is satisfied by all classical mechanisms in the literature of

Nash implementation (see, for instance, Repullo, 1987; Moore and Repullo,
1990; Saijo, 1988; Dutta and Sen, 1991; Tatamitani, 2001).

3 Characterization results

In this section, we analyze partially-honest implementation of SCCs in the
many-person case.

Sub-section 3.1 basically imposes no restriction on the types of admissible
mechanisms except for I' = I'gp. Under this setting, we begin by showing
a minimal set of necessary conditions for partially-honest implementation
with no restriction on I'. Then, given I' = ['gp, we prove that a slight
strengthening of this minimal set of necessary conditions fully characterizes
partially-honest implementation when the message conveyed by each agent
involves the announcement of a preference profile, an outcome and an agent
integer index - canonical mechanism.

Canonical mechanisms are not so attractive in most economic settings,
where an important feature of the mechanism is to economize on communica-
tion. We then pay attention to informational decentralization in mechanisms.
While sub-section 3.2 assumes that the message conveyed by each agent to the
planner involves the announcement of only her own and her neighbor’s prefer-
ences - in addition to a feasible social outcome and an integer - s-mechanism,
sub-section 3.3 assumes that each agent announces - inter alia - only her own
preferences, self-relevant mechanisms. We identify a minimal set of neces-
sary conditions for partially-honest implementation by s-mechanisms (resp.,



self-relevant mechanisms); finally, given I' = I'sp, we report that a slight
strengthening of these necessary conditions for s-mechanisms (resp., self-
relevant mechanisms) fully characterizes partially-honest implementation by
s-mechanisms (resp., self-relevant mechanisms).

The sets of conditions that are necessary and sufficient for partially-honest
implementation are more complex than those obtained by Moore and Repullo
(1990), Tatamitani (2001), and Lombardi and Yoshihara (2010), but they are
remarkably weaker and do provide additional insights; we refer the reader to
Section 4 for more details.

3.1 Partially-honest implementation: A general char-
acterization

In implementation theory, it is Maskin’s Theorem (Maskin, 1999) which
shows that an SCC F' is implementable if it satisfies monotonicity and no-
veto power in the many-person case; conversely, any implementable SCC is
monotonic. Since Maskin’s Theorem, there have been impressive advances
in the implementation theory. Specifically, in societies with at least three
agents, Moore and Repullo (1990) established that an SCC F is imple-
mentable if and only if it satisfies Condition p defined below.

CoNDITION p (for short, u): There is a set Y C X and, for all R € R
and all x € F(R), there is a profile of sets (Cy (R, %)),y such that = €
Cy(R,z) C L(Ry,z)NY for all £ € N; finally, for all R* € R", the following
(1)-(iii) are satisfied:

(i) if Cy (R,x) C L(R;,x) for all £ € N, then = € F (R*);

(ii) for all i € N, if y € C;(R,z) C L(R;,y) and y € maxg; Y for all
¢ € N\ {i}, then y € F (R");

(iii) if y € maxp, Y for all £ € N, then y € F (R*).

Condition pu(i) is equivalent to monotonicity, while Conditions s (ii)-u(iii) are
weaker versions of no-veto power.

In this sub-section, we begin by taking an arbitrary SCC that can be
partially-honest implemented, and showing that it must satisfy Condition j*
below. We then prove that a slight strengthening of Condition p* - Condition

9We refer to the condition that requires only one of the conditions (i)—(iii) in Condition
p as Conditions p(i)—pu(iil) each. Note that Condition p implies Conditions p(i)—p(iii),
but the converse is not true. We use similar conventions below.
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w**- fully identifies the class of partially-honest implementable SCCs under
mild conditions on agents’ preferences and mechanisms.

CoNDITION p* (for short, p*): There is a set Y C X and, for all R € R”
and all z € F(R), there is a profile of sets (C;(R,x)),.y such that z €
Cy(R,z) C L(Ry,z)NY for all £ € N; finally, for all R* € R", the following
(1)-(iii) are satisfied:

(i) if Cy (R,z) C L (R}, x) for all £ € N and x ¢ F (R*), then (z,2’) € I} for
some z' € C}, (R, x) and some h € H C H;

(ii) foralli € N, ify € C; (R, z) C L(R;,y), y € maxg: Y for all £ € N\ {i},
and y ¢ F (R*), then there is an H € H such that:

(a) if H = {i}, then (y,y) € I} for some 3 € C; (R, x)\ {y};

(b) if i € H and #H > 1, then R* # R or (y,y) € If for some 3y €
Ci (R, z)\ {y};

(iii) if y € maxp: YV for all £ € N and y ¢ F (R*), then there is an £ € N
such that (y,y') € I} for some ' € Y\ {y}.

We are now ready to present our first main result, which shows that
Condition p* is a minimal set of necessary conditions for the partially-honest
implementation.

Theorem 1. Let Assumption 1 hold. If an SCC F on R" is partially-honest
implementable, then it satisfies Condition p*.

Proof. Let Assumption 1 hold. Let h € N be a partially-honest agent.
Let v = (M, g) be a mechanism which partially-honest implements F'. Let
Y =g (M). Take any R € R" and x € F'(R). Then, there is a strategy m €
NE (v, =%) such that g (m) = . Then, {z} C g(M;,m_;) C L(Re,z)NY
for all £ € N. This is true even for h. In fact, if m, ¢ T)) (R, F), m €
NE (v,) implies that (g (m), g (mj},,m_)) € P, for all mj, € T} (R, F).
Let Cy (R, x) = g (My,m_,) for all ¢ € N. We show that F' satisfies Condi-
tions p*(i)-p*(iii). Take any R* € R".

Suppose that Cy(R,z) C L(R;,z) for all £ € N and =z ¢ F(R*) =
NA (’y, ?R*). Since g (My,m_y) C L(R;,x) and m ¢ NE (’y, #R*) it fol-
lows that there is an H € H such that, for some h € H, my, ¢ T, (R*, F')
and (g (mj,m-p),g(m)) € R} for some m) € T, (R*,F). Moreover, as
Ch(R,x) = g(Mp,m_,) C L(R},z), (9g(m),,m_p),g(m)) € I}. Thus, F
satisfies Condition p*(i).

Let i € N and suppose that y € C; (R,z) C L(R;,y) and y € maxg; Y
for all ¢ € N\ {i}. Asy € C; (R, x) = g (M;,m_;), it follows that there is an
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m;, € M, such that g (m},m_;) =y. Thus, g (M;,;m_;) C L(R},y). Let m =
(mf,m_;). Let y ¢ F (R*) = NA(v,=""). Then, as g (M, m_,) C L (R}, y)
and m ¢ NE (7, =), it follows from the same reasoning as the case of 11*(i)
that there is an H € H such that, for some h € H, my, ¢ T} (R*, F) and
(g (my,m_p),g(m)) € I for some mj € T,) (R*, F).

Let H = {i}, and assume, to the contrary, that {y} = maxz: C; (R, 7),
so that g (mf,m_;) = g (") =y for all m € T, (R*, F'). Since there cannot
be any further deviation by g (M) =Y, we have that y € NA (y,=%), a
contradiction. Thus, F' satisfies p*(ii.a).

Let #H > 1 and ¢ € H. Suppose R* = R. Then, C; (R,z) C L(R;,x)
and C; (R,z) C L (R}, y) imply that (x,y) € I}. Fromz € F (R),y ¢ F(RY),
and R* = R, it follows that x # y. Moreover, suppose {y} = maxp: C; (R,
This immediately implies that R* # R as (y,xz) € P’ and (z, ) Rl
Therefore, F' satisfies p*(ii.b).

Let y € maxp: Y for all £ € N. Suppose y ¢ F(R*) = NA(y,=").
Since y € Y = g (M), there is an m € M such that g () = y. Therefore,
y € maxg; g (M) for all £ € N. Assume, to the contrary, that {y} = maxg; Y
for all ¢ € N. Asy ¢ NA(y,="), it follows that m ¢ NE (v, =%").
Then, there is an H € H such that, for some h € H, my, ¢ T, (R*, F) and
(g (mji,m_p),g(m)) € I for some mj € T, (R*, F). Let H' be the set of all
such h € H. Take any hy € H'. Then, there is anm; € T, (R*, F') such that
(9 (mh,,mny) y) € I, As {y} = maxg; g (M), g (mj,,1m_p,) = y. Let
m!* = (m},,m_y,). Sincey ¢ F (R*) = NA (v,>%) andm! ¢ NE (v, =%"),
there should exist an hy € H'\ {h1} and an mj, € T, (R* F) such that
(g (mi,,m',),y) € I;,. As {y} = max gy g(M), g(m3, ,mt, ) =y. Let
m? = (mi_,m!,. ). Again, as m*> ¢ NE (v, "), there should exist an hs €
H'\ {h1,ho} and an mj € T, (R*,F) such that (g (mj,,m2,.),y) € I,
As #H' = s < n, the above reasoning will stop after at most s iterations. Let
m® be the strategy profile corresponding to the iteration s and g (m®) = y.
Then, y € NA (% >;R*), a contradiction. Therefore, F' satisfies p*(iii). ®

v

We also introduce another new condition, Condition p**, which lies strictly
between Condition u* and Condition . It can be stated as follows.

CONDITION p** (for short, p**): There is a set Y C X and, for all R € R”
and all x € F(R), there is a profile of sets (Cy (R, %)),y such that = €
Cy(R,z) C L(Ry,z)NY for all £ € N; finally, for all R* € R", the following
(i)-(iv) are satisfied:
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(i) if Cy (R,z) C L (R}, x) for all £ € N and x ¢ F (R*), then (z,2) € I} for
some z' € C, (R, z) and some h € H C H.

(ii) foralli € N,ify € C; (R,z) C L(R;,y), y € maxg: Y for all £ € N\ {i},
and y ¢ F (R*), then there is an H € H such that:

(a) if H = {i}, then (y,vy) € I} for some 3 € C; (R, x)\ {y};

(b) if i € H and #H > 1, then R* # R or (y,y) € If for some ¢y €
Ci (R, )\ {y}:

(c)ifi ¢ H, then R # R*;

(i) if y € maxg: Y for all £ € N, then y € F' (R").

(iv) for all i € N, if L(R;,x) = L(R;,x), v € maxg: Y for all £ € N\ {i},
R*,=R_;, and z ¢ F (R*), then there is an H € H such that H # {i}.

Our second main result is given by applying Condition p** as follows.

Theorem 2. Let Assumption 1 and I' = I'sp hold, and suppose that R™
satisfies RD. An SCC F on R" is partially-honest implementable if and
only if it satisfies Condition p**.

Proof. Let Assumption 1 hold and let R" satisfy RD. Let h € N denote a
partially-honest agent.

1. The necessity of Condition p**.

Let F on R™ be an SCC which is partially-honest implementable by a
mechanism v = (M,g) € I'sp. Let Y = g(M). Take any R € R" and
any & € F (R). The, there is an m (R,z) € NE (v,=%) C M such that
g(m(R,x)) = z. Moreover, my, (R, z) € T)) (R, F) for every partially-honest
agent h € H. For, assume, to the contrary, that m, (R,z) ¢ T)) (R, F) for
some h € H. As v € I'gp, we have that agent h can change my, (R, x) to
an my, € T (R, F') and obtain g (m (R,z)) = g (mpn, m_, (R, z)) = x, which
contradicts from m (R,z) € NE (7, >;R). For all £ € N, let Cy(R,x) =
g (My,m_y(R,z)). Then, Cy(R,z) = g(My,m_y(R,x)) C L(Ry,z)NY for
all £ € N. Take any R* € R".

By similar argument used in Theorem 1 it follows that F' satisfies Condi-
tion p*. Thus, we only show that F' satisfies p** (ii.c)-p**(iv).

Let i € N; suppose that y € C;(R,z) C L(R},y), y € maxg; Y for
all ¢ € N\{i}, and y ¢ F (R*). Since y € C;(R,z) = g(M;,m_; (R,x)),
it follows that g (m;,m_; (R,x)) = y for some m; € M,;. Assume, to the
contrary, that R = R*andi ¢ H for all H € H. Since m, (R, x) € T} (R*, F)
for all h € H and there cannot be any profitable deviation, we have that
(mi,m_; (R,z)) € NE (v, =), a contradiction.
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Suppose that y € maxp; Y for all £ € N. Then there is an m € M such
that g (m) = y. Consider R = (Rg)geN € R" such that L (R, y) = L (R}, y)
with L (Re,y) = {y} for all £ € N. As R" satisfies RD, such a profile
is admissible. Then, since F' satisfies Condition p*(iii) by Theorem 1, it
follows that y € F (R) Suppose that there is an @ # S C N such that
me ¢ T, (R*, F') for all £ € S, otherwise g (m) € F (R*), as sought. Then, by
SP, for each ¢ € S, there is an m) € T, (R*, F') such that g (m}, m_,) = y.
By repeatedly applying SP from ¢; € S to s € S, where S = {{1,..., 4},
it follows that g (m%,m_s) = y. Thus, (M, m_s) € NE (7,=%") and so
y € NA (v, =) = F(R*), as we sought. Therefore, F' satisfies Condition
1 (i)

Suppose that L (R;,z) = L(R;,z), * € maxg:Y for all £ € N\ {i},
R_;=R*,,and z ¢ F (R"). Since x € F'(R) and R*, = R_;, Rf # R, holds.
By = ¢ F(R*) = NA(y,=%), m(R,z) ¢ NE (v,>"") holds. However,
as ¥ € maxgs g (M) for all £ € N\ {i} and g (M;,;m_;(R,z)) C L (R}, z) =
L(R;,z), m(R,x) ¢ NE (v,="") implies that there is an H € H such that,
forsome h € H, my, (R,x) ¢ T,) (R*, F) and (g (mp, m—p (R, x)), g (m (R, x))) €
I} for some my, € T} (R*, F'). Assume, to the contrary that, H = {i}. Then,
it follows that the unique deviator is agent ¢. Since 7 satisfies SP, there is
an m; € T, (R*, F) such that g (m},m_; (R,z)) = g(m(R,z)) = z. This
implies (m],m_; (R,z)) € NE (v,%"") so that z € NA (7, %) = F (R*),
a contradiction. Therefore, F' satisfies Condition p**(iv).

2. The sufficiency of Condition pu**.

Conversely, suppose that F' satisfies Condition p**. Let ¢ € N be an
arbitrary agent index. Let v = (M, g) be a mechanism having M, = R" X
Y x N with a generic element m, = (Rg,xf, kf) for each ¢ € N, where R’
is the preference profile announced by agent ¢ € N, while ¢ and k‘ are the
outcome and the integer announced by the agent at issue, respectively.

Define the outcome function g : M — X as follows:

Rule 1: If m € M is such that for some (R, :1:) eER" XY withz € F (R),
(R{ﬁ) = (R, a:) for all ¢, then g (m) = x;

Rule 2: If m € M is such that there is a unique agent ¢ € N such that for
some (R, 93) €ER" XY withzx € F (R), (R, ZB) = (Re,xe) for all ¢ # ¢, and
(R',2") # (R, x) with R # R, then

g(m):{ xt ifxiEC’i(R,a:),

r otherwise;
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Rule 3: If m € M is such that there is a unique agent ¢ € N such that for
some (R, x) €ER" XY withx € F (R), (R,x) = (Rz,xz) for all ¢ # 4, and
(R',2") # (R, z) with R = R, then g (m) = x;
Rule 4: Otherwise, g (m) = 2 (™ where ¢* (m) = Y k' (mod n).!°

1€EN

By the definition of g, it follows that any v = (M, g) satisfies SP, that
is, v € I'sp. Moreover, for each ¢ € N, the truth-telling correspondence
T) : R"x F — M, is given by: T, (R, F) = {R} xY x N for each (R, F) €
R"™ x F, where Y may change according to F'.

Let us show that v partially-honest implements F'. Take any R € R".
Since F satisfies ™, F (R") C Y.

To show that F' (R) C NA (v, =), let # € F (R) and suppose that, for all
¢ e N, my=(R,x,0) € M. Notice that m, € T,/ (R, F') for all { € N. Rule
1 implies that g (m) = x. Suppose that £ € N deviates from m, to m; =
(R€7a:£,<>) € M,. It follows from Rules 1-8 that g (M, m_4) C Cy(R,x).
Since F satisfies p**, it follows that g (My,m_s) C L (Ry, x). As it holds for
any { € N, it follows that m € NE (v, %) and so z € NA (v, =%).

Conversely, to show that NA (v,=") C F(R), let m € NE (v, =").
Consider the following cases.

Case 1: m corresponds to Rule 1.

Then, for some R € R" and v € F (R), (R,x) = (Rf,xf) for all ¢ €
N and g (m) = x. Suppose that R # R. Then, my, ¢ T, (R, F) for all
{ € N. Take any mj € T, (R, F) such that 2" = z. Rule 2 implies that
g (mj,,m_p) = x so that ((m},m_;),m) €~ a contradiction. Otherwise,
R=Randsor€ F(R).

Case 2: m corresponds to Rule 2.

Then, there exists an i € N such that (R,z) = (R, 2") # (R',2") for
all £ € N\ {i}, where (R,z) € R" x Y with z € F (R) and RZ # R. By
the definition of g, g (M;,m_¢) = Y for all £ € N\ {i} and C; (R,z) C
g(M;,m_;). Thus, m € NE (v,=") implies that Y C L (Ry, g (m)) for all

¢ € N\ {i} and C; (R,a:) C L(R;,g(m)).

Suppose that m, ¢ T} (R, F) for some h € H\{i}. Then, agent h €
H\ {i} can induce Rule 4 by deviating to a suitable mj € T, (R, F') so as
to obtain g (mj},m_,) = g (m), which contradicts that m € NFE ('y, &R).
Therefore, my, € 7)) (R, F') for all h € H\ {i}.

10Tf the remainder is zero, the winner of the game is agent n.
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Suppose that #H > 1 and ¢ € H. We show that this case contradicts
that m € NE (fy, #R). As #H > 1, we have that m; € T, (R, F) for all
h € H\{i}; moreover, R = R and = € F (R). Since m falls into Rule 2,
it follows that R' # R, so m; ¢ T, (R, F). It follows from z € C; (R,z) C
L(R;,g(m)) and g(m) € C; (R,z) C L(R;,x) that (z,g(m)) € I;. Agent
i can deviate to m, = (R,z,k') € T, (R, F) so that she induces Rule 1
and obtains g (m}, m_;) = z, which contradicts that m € NFE (% %R). We
conclude that #H ¥ lori ¢ H.

Suppose that #H > 1 and ¢ ¢ H. Condition p**(ii.c) implies that
g(m) € F(R). Otherwise, let H = {i}. Observe that R # R, otherwise
a contradiction that m € NFE (7, >,—R) can be obtained by the same rea-
soning used in the case that i« € H and #H > 1. Therefore, let R # R.
Notice that m; € T, (R, F), otherwise agent i can induce Rule 2 by de-
viating to an m, = (R,g(m),k") € T, (R,F) and obtain g (m},m_;) =

A

g (m), which contradicts that m € NE (v,="). Take an R; € R;(X)

such that L(]%i,y> = L(R;,g(m)), with 9L (]:Zi,g(m)) = {g(m)}. As

R" satisfies RD, we have that R = (f%i,R,z) € R". Then, p*(ii.a) im-

plies that g(m) € F (]:2) Since F' satisfies p**, there exists a profile
, . C ,

<Cg (R,g(m)))é@v such that C <R,g(m)) C L (Rg,g(m)) NY for all

e N. As L <}?Z,g(m)> = L(R;,g(m)), R_; = R_;, and H = {i}, Condi-
tion p**(iv) implies that g (m) € F (R).

Case 3: m corresponds to Rule 3.

Then, there exists an i € N such that (R,z) = (R, z") # (R,2") for
any ¢ € N\{i}, where (R,z) € R" x Y, with z € F(R), R" = R and
g (m) = x. By the definition of g, g (M;,,m_,) =Y for all £ € N\ {i} and
Ci (R,x) C g(M;;m_;). Thus, m € NE (v, =) implies that Y C L (Ry, x)
for all £ € N\{i} and C; (R,z) C L(R;,z). Suppose that R # R. Then,
mp ¢ T,) (R, F) for all h € H. Suppose that h # i. Agent h can in-
duce Rule 4 by unilaterally deviating to mj) = (R,x, kh) € T) (R, F). By
choosing k" so as h = ¢* (m_p, m}), she obtains g(m_j,m}) = x. Then,
((m_n,m}),m) €=F which contradicts m € NE (v,%). Otherwise, let
h = i. As agent h can induce Rule 2 by deviating to mj = (R,z,0) €
T (R, F), we have that g (m_p, m}) = =, which again leads to a contradic-
tion. Therefore, R = R and so = € F (R).
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Case 4: m corresponds to Rule 4.

From the definition of g and the supposition that m € NE (% #R), it
follows that g (m) € maxg: g (M) for all £ € N. Thus, by p**(iii), g (m) €
F(R).m

3.2 Partially-honest implementation by s-mechanisms

In this sub-section, we pay attention to informational decentralization and
efficiency of admissible mechanisms and consider implementation by mecha-
nisms with a smaller strategy space - s-mechanisms: each agent announces,
in addition to a feasible social outcome and an integer, her own and her
neighbor’s preferences (Saijo, 1988). We will find below that the class of
SCCs partially-honest implementable by such mechanisms is dwindled down
with respect to the class of SCCs identified by Theorem 2.
We define partially-honest implementation by s-mechanisms as follows.

Definition 3. A mechanism v = (M, g) is an s-mechanism if, for any ¢ € N,
My =Ry X Rpp1 XY X N, with {+1=1if { =n, where Y C X.

Note that, if v is an s-mechanism, then T, (R, F) = {(R¢, Re41)} XY X N
for any (R, F) € R" x F.

Definition 4. An SCC F on R" is partially-honest implementable by an
s-mechanism if there exists an s-mechanism v = (M, g) such that:

(i) for all R € R", F(R) = NA (v, =%); and

(i) for all R € R"™ and all z € F (R), if m¢ = (R, Res1, 2, k") € M, for all
teN,with{+1=1if¢=n, thenmENE(fy,kR) and g (m) = z.

In Definition 4, it is required not only that all F-optimal outcomes co-
incide with partially-honest Nash equilibrium outcomes of the game (fy, %R)
defined by an s-mechanism - for any state R € R" -, but also that such
an s-mechanism satisfies forthrightness. Forthrightness requires that if the
outcome z is F-optimal at the state R and each agent announces truthfully
her pr