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Abstract—The central goal in multiagent systems is to design
local control laws for the individual agents to ensure that the
emergent global behavior is desirable with respect to a given
system level objective. Ideally, a system designer seeks to satisfy
this goal while conditioning each agent’s control law on the
least amount of information possible. Unfortunately, there are
no existing methodologies for addressing this design challenge.
The goal of this paper is to address this challenge using the field
of game theory. Utilizing game theory for the design and control
of multiagent systems requires two steps: (i) defining a local
objective function for each decision maker and (ii) specifying
a distributed learning algorithm to reach a desirable operating
point. One of the core advantages of this game theoretic approach
is that this two step process can be decoupled by utilizing specific
classes of games. For example, if the designed objective functions
result in a potential game then the system designer can utilize
distributed learning algorithms for potential games to complete
step (ii) of the design process. Unfortunately, designing agent ob-
jective functions to meet objectives such as locality of information
and efficiency of resulting equilibria within the framework of
potential games is fundamentally challenging and in many case
impossible. In this paper we develop a systematic methodology
for meeting these objectives using a broader framework of games
termed state based potential games. State based potential games is
an extension of potential games where an additional state variable
is introduced into the game environment hence permitting more
flexibility in our design space. Furthermore, state based potential
games possess an underlying structure that can be exploited by
distributed learning algorithms in a similar fashion to potential
games hence providing a new baseline for our decomposition.

I. INTRODUCTION

The central goal in multiagent systems is to design local
control laws for the individual agents to ensure that the emer-
gent global behavior is desirable with respect to a given system
level objective, e.g., [1]–[6]. These control laws provide the
groundwork for a decision making architecture that possess
several desirable attributes including real-time adaptation and
robustness to dynamic uncertainties. However, realizing these
benefits requires addressing the underlying complexity asso-
ciated with a potentially large number of interacting agents
and the analytical difficulties of dealing with overlapping and
partial information. Furthermore, the design of such control
laws is further complicated by restrictions placed on the
set of admissible controllers which limit informational and
computational capabilities.

Game theory is begining to emerge as a powerful tool for
the design and control of multiagent systems [5]–[9]. Utilizing
game theory for this purpose requires two steps. The first step
is to model the agent as self-interested decision makers in a
game theoretic environment. This step involves defining a set
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of choices and a local objective function for each decision
maker. The second step involves specifying a distributed
learning algorithm that enables the agents to reach a desirable
operating point, e.g., a Nash equilibrium of the designed
game. One of the core advantages of game theory is that it
provides a hierarchical decomposition between the distribution
of the optimization problem (game design) and the specific
local decision rules (distributed learning algorithms) [10]. For
example, if the game is designed as a potential game [11] then
there is an inherent robustness to decision making rules as
a wide class of distributed learning algorithms can achieve
convergence to a pure Nash equilibrium under a variety
of informational dependencies [12]–[15], e.g., gradient play,
fictitious play, and joint strategy fictitious play. Several recent
papers focus on utilizing this decomposition in distributed
control by developing methodologies for designing games, or
more specifically agent utility functions, that adhere to this
potential game structure [5], [8], [10], [16]. However, these
methodologies typically provide no guarantees on the locality
of the agent utility functions or the efficiency of the resulting
pure Nash equilibria. Furthermore, the theoretical limits of
what such approaches can achieve are poorly understood.

The goal of this paper is to establish a methodology for the
design of local agent objective functions. We define the locality
of an objective function by the underlying interdependence,
i.e., the set of agents that impact this objective function. For
convention, we refer to this set of agents as the neighbor set.
Accordingly, an objective function (A) is more local than an
objective function (B) if the neighbor set of (A) is strictly
smaller than the neighbor set of (B). The existing utility design
methodologies, i.e., the wonderful life utility [5], [8] and
the Shapley value utility [17], [18], prescribe procedures for
deriving agent objective functions from a given system level
objective function. While both procedures guarantee that the
resulting game is a potential game, the degree of locality in
the agent objective functions is an artifact of the methodology
and underlying structure of the system level objective. Hence,
these methodologies do not necessarily yield agent objective
functions with the desired locality.

The main contribution of this paper is the development of
a systematic methodology for the design of agent objective
functions that satisfy virtually any degree of locality while
ensuring the desirability of the resulting Nash equilibria. The
key enabler for this result is the addition of local state variables
to the game environment, i.e., moving towards state based
games [16], [19]. Our design utilizes these state variables as a
coordinating entity to decouple the system level objective into
agent specific objectives of the desired interdependence. This
work is complimentary to our previous work in [20] where we
utilized a similar state based formulation to localize coupled
constraints on agents’ available actions. However, in [20] we
restricted attention to a special class of system level objec-
tives that naturally decouples while this work considers more



general system level objective functions. Both approaches to
game design guarantee that the resulting game is a state
based potential game. State based potential games possess
an underlying structure that can be exploited by distributed
learning algorithms much like potential games [16], [19].

The design of multiagent systems parallels the theme of
distributed optimization which can be thought of as a con-
catenation between a designed game and a distributed learning
algorithm. One of the core differences between these two
domains is the fact that multiagent systems frequently place
restrictions on the set of admissible controllers. In terms of
distributed optimization, this places a restriction on the set
of admissible distributed algorithms. Accordingly, the appli-
cability of some of the common approaches to distributed
optimization, e.g, subgradient methods [21]–[26], consensus
based methods [1], [2], [27], [28], or two-step consensus
based approaches [9], [29], [30], is predicated on the structure
of the system level objective. There are similarities between
our contributions and the algorithmic structure of existing
distributed algorithms [25], [30] where an underlying state
space is introduced to estimate parameters relevant to the
gradients. However, a core difference is that our focus is
on the decomposition as opposed to a particular algorithm.
Exploiting this decomposition could lead to rich set of tools
for both game design and learning design that permits a broad
class of distributed learning algorithms within an admissible
set. For example, if the designed game is of the desired
interdependence then an admissible distributed algorithm can
be realized by using gradient play on this game. Furthermore,
if the designed game is a potential game then this algorithm
also guarantees convergence to a Nash equilibrium.

II. PROBLEM SETUP AND BACKGROUND

We consider a multiagent system consisting of n agents
denoted by the set N := {1, · · · , n}. Each agent i ∈ N
is endowed with a set of possible decisions (or values)
denoted by Vi which is a nonempty convex subset of Rpi ,
i.e. Vi ⊆ Rpi .1 We denote a joint decision by the tuple
(v1, · · · , vn) ∈ V :=

∏
i Vi where V is referred to as the

set of joint decisions. There is a global cost function of the
form φ : V → R that a system designer seeks to minimize.
More formally, the optimization problem takes the form:2

minvi φ(v1, v2, . . . , vn)
s.t. vi ∈ Vi,∀i ∈ N.

(1)

Throughout the paper we assume that φ is continuously
differentiable and that a solution is guaranteed to exist.

The focus of this paper is to establish an interaction frame-
work where each decision maker i ∈ N makes its decision
independently in response to local information. The informa-
tion available to each agent is represented by an undirected and
connected communication (or interaction) graph G = {N, E}
with nodes N and edges E .3 Define the neighbors of agent i
as Ni := {j ∈ N : (i, j) ∈ E}. This interaction framework

1For ease of exposition we let pi = 1 for all i ∈ N . The results in this
paper also hold for cases where pi > 1.

2Due to the space considerations we focus on optimization problems with
decoupled constraints, i.e., vi ∈ Vi. The forthcoming methodologies can also
incorporate coupled constraints using the approach demonstrated in [20].

3By convention, we let (i, i) ∈ E for all i ∈ N

produces a sequence of decision v(0), v(1), v(2), . . . where at
each iteration t ∈ {0, 1, . . .} each agent i makes a decision
independently according to a local control law of the form:

vi(t) = Fi

(
{Information about agent j}j∈Ni

)
(2)

which designates how each agent processes available infor-
mation to formulate a decision at each iteration. The goal
in this setting is to design the local controllers {Fi(·)}i∈N
such that the collective behavior converges to a joint decision
v∗ that solves the optimization problem in (1). We focus on
game theory as a tool for obtaining distributed solutions to the
optimization problem (1).

A. Strategic Form Games
The cornerstone of game theory is the notion of a strategic

form game. A strategic form game consists of a set of players
(or agents) N := {1, 2, · · · , n} where each player i ∈ N
has an action set Ai and a cost function Ji : A → R
where A :=

∏
i∈N Ai is referred to as the set of joint action

profiles.4 For an action profile a = (a1, a2, . . . , an), let a−i
denotes the action profile of players other than player i, i.e.,
a−i = (a1, . . . , ai−1, ai+1, . . . , an). An action profile a∗ ∈ A
is called a pure Nash equilibrium if for all players i ∈ N ,

Ji(a
∗
i , a
∗
−i) = min

ai∈Ai

Ji(ai, a
∗
−i).

We will consider the class of games known as potential games,
defined as follows:

Definition 1. (Potential Game) A strategic game with players
N , action set A, and cost functions {Ji}i∈N is a potential
game if for some function φ : A → R,

Ji(a
′
i, a−i)− Ji(a′′i , a−i) = φ(a′i, a−i)− φ(a′′i , a−i)

for every i ∈ N , a−i ∈
∏
j 6=iAi, a′i, a′′i ∈ Ai. φ is called as

potential function.

Any action profile that minimizes the potential function in
a potential game is a Nash equilibrium. Moreover, there are
several distributed learning algorithm that converge to Nash
equilibria in potential games, e.g., [12]–[15].

B. State Based Games
In this paper we consider an extension to the framework

of strategic form games, termed state based games [8], [16],
which introduces an underlying state space to the game theo-
retic framework.5 In the proposed state based games we focus
on myopic players and “static” equilibrium concepts similar
to that of pure Nash equilibrium. The state is introduced as a
coordinating entity used to improve system level behavior and
can take on a variety of interpretations ranging from dynamics
for equilibrium selection to the addition of “dummy” players
in a strategic form game that are preprogrammed to behave in
a set fashion.

4We use the terms players and agents interchangeably. Furthermore, we use
the term cost functions instead of utility functions as this is the convention
for cost minimization systems.

5State based games can be interpreted as a simplification of Markov games
[31]. We avoid formally defining the framework of state based games within
the context of Markov games as the inherent complexity of Markov games is
unwarranted in our proposed research directions.



A state based games consists of a player set N and an
underlying finite state space X . Each agent i ∈ N has a state
invariant action set Ai and a state dependent cost function Ji :
X × A → R.6 Lastly, there is a deterministic state transition
function f : X × A → X . We denote a state based game G
by the tuple G = {N,X, {Ai}, {Ji}, f}.

Repeated play of a state based game produces a sequence
of action profiles a(0), a(1), ..., and a sequence of states x(0),
x(1), ... where a(t) ∈ A is referred to as the action profile
at time t and x(t) ∈ X is referred to as the state at time t.
The sequence of actions and states is generated according to
the following process. At any time t ≥ 0, each player i ∈ N
myopically selects an action ai(t) ∈ Ai according to some
specified decision rule. For example, if a player used a myopic
Cournot adjustment process then

ai(t) ∈ arg max
ai∈Ai

Ui(ai, a−i(t− 1);x(t)). (3)

The state x(t) and the action profile a(t) := (a1(t), . . . , an(t))
together determine each player’s one-stage cost Ji(x(t), a(t))
at time t. After all players select their respective action, the
ensuing state x(t+1) is chosen according to the deterministic
state transition function x(t + 1) = f(x(t), a(t)) and the
process is repeated.

Before defining our notion of equilibrium for state based
games, we introduce the notion of reachable states. For a state-
action pair [x0, a0], the set of reachable states by an action
invariant state trajectory is defined as

X̄(x0, a0; f) := {x0, x1, x2, ...}

where xk+1 = f(xk, a0) for all k ∈ {0, 1, ...}. Notice that
a fixed action choice a0 actually defines a state trajectory.
Thus we can mimic the concepts for strategic form games and
Markov process to extends the definition of Nash equilibria to
state based games.

Definition 2. (Single state equilibrium) A state action pair
[x∗, a∗] is called a single state equilibrium if Ji(x∗, a∗) =
minai Ji(x

∗, (ai, a
∗
−i)) for every i ∈ N .

Definition 3. (Recurrent state equilibrium) A state action pair
[x∗, a∗] is a recurrent state equilibrium if
(1) [x∗, a∗] is a single state equilibrium;
(2) and x∗ ∈ X̄(x∗, a∗; f).

Similarly, we will consider the class of games known as
state based potential games, defined as follows:

Definition 4. (State Based Potential Game) A (deterministic)
state based game G = {N, {Ai} , {Ji} , X, f} is a (deter-
ministic) state based potential game if there exists a potential
function Φ : A × X → R that satisfies the following two
properties for every state x ∈ X ,a ∈ A:

1) For any player i ∈ N , actions a′i ∈ Ai,

Ji(x, a
′
i, a−i)− Ji(x, a) = Φ(x, a′i, a−i)− Φ(x, a)

2) For any state based action pair [x, a], Φ(x, a) = Φ(x̃, 0)
where x̃ = f(x, a).

6One could also permit state dependent action sets where the set of
available actions for player i given the state x is Ax

i ⊆ Ai. However, such
developments are not needed for the results in this paper.

From the definition, we can derive the following proposi-
tion.

Proposition 1. Given a (deterministic) state based game
G = {N, {Ai} , {Ji} , X, f}, if a state action pair [x∗, a∗]
satisfies for a∗ = argmaxaΦ(x∗, a), then it is a single
state equilibrium; additionally if [x∗, a∗] also satisfies for
x∗ = f(x∗, a∗), then [x∗, a∗] is a recurrent state equilibrium.

III. STATE BASED GAME DESIGN

In this section we introduce a state based game design for
the distributing optimization problem in (1). The goal of our
design is to establish a state based game formulation that
satisfies the following four properties:

(i) The state represents a compilation of local state variables,
i.e., the state x can be represented as x := (x1, . . . , xn)
where each xi represents the state of agent i. Fur-
thermore, the state transitions also rely only on local
information.

(ii) The objective function of each agent i is local and of the
form

Ji :
∏
j∈Ni

(Xj ×Aj)→ R

(iii) The resulting game is a state based potential game.
The significance of this is the availability of distributed
learning algorithm which guarantees convergence to a
recurrent state equilibrium.

(iv) The recurrent state equilibria are optimal in the sense
that they represent solutions to the optimization problem
in (1), i.e., vi = v∗

A. A state based game design for distributed optimization
State Space: The starting point of our design is an underlying
state space X where each state x ∈ X is defined as a tuple x =
(v, e), where v = (v1, . . . , vn) ∈ Rn is the profile of values
and e = (e1, . . . , en) is the profile of estimation terms where
ei = (e1

i , · · · , eni ) ∈ Rn is player i’s estimation for the joint
action profile v. The term eki captures player i’s estimate of
player k’s actual value vk. The estimation terms are introduced
as a means to relax the degree of information available to
each agent. More specifically, each agent is aware of it’s own
estimation as opposed to the true value profile which may in
fact be different, i.e., eki need not equal vk.

Action Sets: Each agent i is assigned an action set Ai that per-
mits agents to change their value and change their estimation
through communication with neighboring agents. Specifically,
an action for agent i is defined as a tuple ai = (v̂i, êi)
where v̂i ∈ R indicates a change in the agent’s value vi and
êi := (ê1

i , · · · , êni ) indicates a change in the agent’s estimation
terms ei. We represent each of the estimation terms êki by
the tuple êki := {êki→j}j∈Ni where êki→j ∈ R represents the
estimation value that player i passes to player j regarding to
the value of player k.

State Dynamics: We now describe how the state evolves as
a function of the action profiles a(0), a(1), ..., where a(k) is
the action profile at stage k. Let v(0) = (v1(0), ..., vn(0)) be
the initial values of the agents. Define the initial estimation
terms e(0) to satisfy∑

i∈N
eki (0) = n · vk(0) (4)



for each agent k ∈ N ; hence, the initial estimation values are
contingent on the initial values. Note that satisfying condition
(4) is trivial as we can set eii(0) = n · vi(0) and eji (0) = 0
for all agents i, j ∈ N where i 6= j. Define the initial state as
x(0) = [v(0), e(0)]. Before specifying the state dynamics we
introduce the following notation. Define êki←in :=

∑
j∈Ni

êkj→i
and êki→out :=

∑
j∈Ni

êki→j denote the total estimation passed
to and from agent i regarding the value of the k-th agent
respectively. We represent the state transition function f(x, a)
by a set of local state transition functions {fvi (x, a)}i∈N and{
fei,k(x, a)

}
i,k∈N

. For a state x = (v, e) and an action a =

(v̂, ê) we have

fvi (x, a) = vi + v̂i

fei,k(x, a) = eki + nδki v̂i + êki←in − êki→out (5)

where δki is an indicator function, i.e., δii = 1 and δki = 0 for
all k 6= i. Since the optimization problem in (1) imposes the
requirement that vi ∈ Vi, we condition the available actions
to an agent on the current state. That is, the available action
set for agent i given state x = (v, e) is defined as7

Ai(x) := {(v̂, ê) : vi + v̂i ∈ Vi} (6)

It is straightforward to show that for any action trajec-
tory a(0), a(1), · · · , the resulting state trajectory x(t) =
(v(t), e(t)) = f(x(t − 1), a(t − 1)) satisfies the following
equalities for all times t ≥ 1 and agents k ∈ N :

n∑
i=1

eki (t) = n · vk(t) (7)

Agent Cost Functions: The last part of our design is the cost
functions of the agents. The introduced cost functions possess
two distinct components and takes on the form

Ji(x, a) = Jφi (x, a) + α · Jei (x, a) (8)

where Jφi (·) represents the component centered on the ob-
jective function φ; Jei (·) represents the component centered
on the disagreement of estimation based terms e; and α
is a positive constant representing the tradeoff between the
two components.8 We define each of these components as
follows: for any state x ∈ X and admissible action profile
a ∈

∏
i∈N Ai(x) we define

Jφi (x, a) =
∑
j∈Ni

φ(ẽ1
j , ẽ

2
j , ..., ẽ

n
j )

Jei (x, a) =
∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (9)

where x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state. Let
0 represent the null action, that is where v̂i = 0 and êki→j = 0
for all agents i, j, k ∈ N . Given our state dynamics we know
that x = f(x,0). Accordingly, our designed cost functions
possess the following simplifications:

Ji(x, a) = Ji(x̃,0)

= Jφi (x̃,0) + α · Jei (x̃,0)
(10)

7Here we introduce state based action set. All the definitions and proposi-
tions depicted in section II-B still hold here by replacing a ∈ A by a ∈ A(x)
correspondingly.

8We will show that as long as α is positive, all the results demonstrated in
this paper holds. However, choosing the right α is important for the learning
algorithm implementation, e.g., the convergence rate of the learning algorithm.

B. Analytical properties of designed game
In this section we derive two analytical properties of the

designed state based game. The first property demonstrates
that the designed game is in fact a state based potential game.
This property is of fundamental importance by ensuring that
the resulting game possesses an underlying structure that can
be exploited by distributed learning algorithms.

Theorem 2. Model the optimization problem in (1) as a state
based game G as depicted in Section III-A with any positive
constant α. The state based games is a state based potential
game with potential function

Φ(x, a) = Φφ(x, a) + α · Φe(x, a) (11)

where

Φφ(x, a) =
∑
i∈N φ(ẽ1

i , ẽ
2
i , ..., ẽ

n
i )

Φe(x, a) = 1
2

∑
i∈N

∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (12)

and x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state.

Proof: It is straightforward to verify that the properties of
state based potential games in Definition 4 are satisfied using
the state based potential function in (11).

Theorem 2 establishes that our state based game design
possesses an underlying structure that guarantees the existence
of an equilibrium while at the same time facilitating the
use of distributed algorithms to reach such equilibria. The
following theorem demonstrates that all equilibria of our
designed game are solutions to the optimization problem in
(1). The following theorem references the previously defined
communication graph G which we assume is undirected and
connected.

Theorem 3. Model the optimization problem in (1) as a state
based game G as depicted in Section III-A with any positive
constant α. Suppose the objective φ(·) and the designed
communication graph G = {N, E} satisfies at least one of
the following conditions

(i) The objective φ(·) is convex over the set V ⊂ Rn and
the communication graph G is non-bipartite.9

(ii) The objective φ(·) is convex over the set V ⊂ Rn and
the communication graph G contains an odd number of
nodes, i.e., the number of players is odd;

(iii) The objective φ(·) is convex over the set Rn and the
communication graph G contains at least two players
which have a different number of neighbors, i.e., |Ni| 6=
|Nj | for some players i, j ∈ N ;

Then the state action pair [x, a] = [(v, e), (v̂, ê)] is a recurrent
state equilibrium in game G if and only if the following
conditions are satisfied:
(a) The estimation profile e satisfies that eki = vk, ∀i, k ∈ N ;
(b) The value profile v is an optimal solution for problem (1);
(c) The change in value profile satisfies v̂ = 0;
(d) The change in estimation profile satisfies the following for

all agents i, k ∈ N , êki←in = êki→out.

The above theorem demonstrates that the resulting equilibria
of our state based game coincide with the optimal solutions

9A bipartite graph is a graph that does not contain any odd-length cycles.



to the optimization problem in (1) under relatively minor
conditions on the communication graph. Hence, our design
provides a systematic methodology for distributing an opti-
mization problem under virtually any desired degree of locality
in agent objective functions.

C. Proof of Theorem 3

It is straightforward to prove the sufficient condition of
the theorem by utilizing the fact that the state based game
we designed is a state based potential game with potential
function as defined in (11). Applying Proposition 1, we can
conclude that if a state action pair [x, a] satisfies the conditions
(a)-(d) listed in the theorem, then [x, a] is a recurrent state
equilibrium.

We prove the necessary condition of Theorem 3 by a series
of lemmas. Notice that a recurrent state equilibrium is a single
state equilibrium by Definition 3. The main part of the proof is
to establish necessary conditions for a single state equilibrium
firstly. Essentially the proof employs the following idea. If
[x, a]=[(v, e), (v̂, ê)] is a single state equilibrium then a player
should not have an incentive to unilaterally deviate from a =
(v̂, ê) given the state x = (v, e), i.e.,

Ji((v, e), (v̂, ê)) ≤ Ji ((v, e), ((v̂′i, v̂−i), (ê
′
i, ê−i))) (13)

for any v̂′i 6= v̂i, and ê′i 6= êi. Rather than focus on the set of all
possible deviations, we focus on particular types of deviations.
We demonstrate that if an agent does not have an incentive to
deviate in any of these directions then we have a single state
equilibrium that satisfies the following conditions:

1) Estimation alignment: An equilibrium must exhibit an
alignment between the estimation terms and the value
profile, i.e., for all agents i, k ∈ N we have ẽki = ṽk
where (ṽ, ẽ) is the ensuing state. (Lemma 4 for case (i)–
(ii) and Lemma 5 for case (iii).)

2) Optimality alignment: An equilibrium must be optimal.
That is, the ensuing value profile ṽ is an optimal solution
to (1). (Lemma 6 for cases (i)–(iii))

Conclusion the proof completes the proof by establishing more
thorough conditions on the resulting recurrent state equilibria.

In the subsequent claims we express the ensuing state for a
state action pair [x, a] = [(v, e), (v̂, ê)] as (ṽ, ẽ) := f(x, a).

Lemma 4. If [x, a] = [(v, e), (v̂, ê)] is a single state equi-
librium and the communication graph G = {N, E} satisfies
either condition (i) or (ii) of Theorem 3, then all agent have
correct estimates of the value profile. That is, for all agents
i, k ∈ N we have ẽki = ṽk.

Proof: If [x, a] is a single state equilibrium then we know
that for any player i ∈ N we have Ji(x, a) ≤ Ji(x, a

′) for
any action profile a′ = (a′i, a−i) where a′i ∈ Ai(x). We focus
on one particular class of deviations, i.e., a specific choice
of a′i, where an agent solely changes his estimate of another
agent’s value. We demonstrate that if the agent does not have
an incentive to change the action in this direction then this
implies that the agent’s estimates are aligned with the true
value profile hence proving the lemma.

Consider the following class of deviations where for any
player i ∈ N where the new action a′i is of the following

form: for any agents k ∈ N and l ∈ Ni let a′i = [v̂′i, ê
′
i] be

defined as

(v̂i)
′

= v̂i(
êki→j

)′
=

{
êki→j + δ if j = l
êki→j if j ∈ Ni\ {l}

for any δ ∈ R. Define ẽ = fe(x, a) and the difference in the
cost function for player i as ∆Ji = Ji(x, a

′) − Ji(x, a). We
can express ∆Ji in terms of ẽ and δ as follows:

∆Ji = φ(ẽ1
i , ..., ẽ

k
i − δ, ..., ẽni )− φ(ẽ1

i , ..., ẽ
k
i , ..., ẽ

n
i ) +

φ(ẽ1
l , ..., ẽ

k
l + δ, ..., ẽnl )− φ(ẽ1

l , ..., ẽ
k
l , ..., ẽ

n
l ) +

α ·
[
ẽki − δ −

(
ẽkl + δ

)]2 − α · [ẽki − ẽkl ]2 +

α ·
∑

j∈Ni\{l}

[(
ẽki − δ − ẽkj

)2 − (ẽki − ẽkj )2]
When the deviation δ → 0, this difference simplifies to(
− φk|ẽi + φk|ẽl−2α(ẽki − ẽkl )−2α

∑
j∈Ni

(ẽki − ẽkj )
)
δ+O(δ2)

(14)
where φk|ẽi represents the derivative of φ relative to ẽki for
the profile ẽi, i.e.,

φk|ẽi =
∂φ(ẽi)

∂ẽki
.

If [x, a] is a single state equilibrium, then we know that ∆Ji ≥
0 for any δ. Since δ can be positive or negative, (14) implies
that for any agents i, k ∈ N and l ∈ Ni we have

φk|ẽi + 2α
∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽl − 2α

(
ẽki − ẽkl

)
(15)

Consider any two connected players i, j ∈ N , i.e., j ∈ Ni and
i ∈ Nj . The equality in (15) translates to

φk|ẽi + 2α
∑
l∈Ni

(
ẽki − ẽkl

)
= φk|ẽj − 2α

(
ẽki − ẽkj

)
φk|ẽj + 2α

∑
l∈Nj

(
ẽkj − ẽkl

)
= φk|ẽi − 2α

(
ẽkj − ẽki

)
.

Adding these two equality constraints gives us∑
l∈Ni

(ẽki − ẽkl ) = −
∑
l∈Nj

(ẽkj − ẽkl ) (16)

for all agents i, j, k ∈ N such that j ∈ Ni and i ∈ Nj . Since
our communication graph is connected, the equality condition
in (16) tells us that the possible values for the summation
terms

∑
l∈Ni

(ẽki − ẽkl ) for each player i ∈ N can be at most
one of two possible values that differ purely with respect to
sign, i.e., for any player i ∈ N we have∑

l∈Ni
(ẽki − ẽkl ) ∈

{
ekdiff,−ekdiff

}
(17)

where ekdiff ∈ R is a constant. We can utilize the underlying
topology of the communication graph coupled with (17) to
demonstrate that ekdiff = 0.

1) Since the communication graph is undirected we know
that

∑
i∈N

∑
l∈Ni

(ẽki − ẽkl ) = 0. If the number of agents
n is odd, condition (17) tells us that

∑
i∈N

∑
l∈Ni

(ẽki −
ẽkl ) = h · ekdiff where h is a nonzero integer. Hence ekdiff =
0.

2) If there exists a cycle in the communication graph with
an odd number of nodes, say 2m + 1, without loss of



generalities denote the players on the cycle as player
1, 2, · · · , 2m + 1 where {(i, i+ 1)}2mi=1 and (2m + 1, 1)
are connected. Suppose

∑
l∈N1

(ẽk1 − ẽkl ) = ekdiff. By
(16) we know that

∑
l∈N2i+1

(ẽk2i+1 − ẽkl ) = ekdiff for all
i = 1, · · · ,m. Since player 2m+1 and player 1 are con-
nected, we aslo have

∑
l∈N2m+1

(ẽk2m+1 − ẽkl ) = −ekdiff.
Therefore, we can get that ekdiff = −ekdiff, which tells us
that ekdiff = 0.

In summary, if the total number of agents is odd or there exists
a cycle in the communication graph with odd number of nodes
we have that for all i, k ∈ N∑

l∈Ni

(ẽki − ẽkl ) = 0. (18)

Since the communication graph is connected and undirected,
it is straightforward to show that for all agents i, j ∈ N ,
ẽki = ẽkj ,∀k ∈ N where the proof is the same as the proof of
Theorem 1 in [32].10 Combining with the equality (7), we get
that for all agents i, k ∈ N , ẽki = vk.

Remark 1. We have two remarks regarding the results in
Lemma 4 . First, the stated result holds even when the system
level objective φ is not convex. Second, while we identify
two graph structures that lead to our result this is by no
means exhaustive as there are alternative graph structures
that provide the same guarantees. However, the identified
structures are quite mild especially when considering that the
communication graph can also be designed.

Lemma 5. If [x, a] = [(v, e), (v̂, ê)] is a single state equilib-
rium and the communication graph satisfies condition (iii) of
Theorem 3, then all agent have correct estimates of the value
profile. That is, for all agents i, k ∈ N we have ẽki = ṽk.

Proof: Consider the following class of deviations where
for any player i ∈ N the new action a′i is of the following
form: for any agent k ∈ N and pair of agents j1, j2 ∈ Ni let
a′i = [v̂′i, ê

′
i] be defined as

(v̂i)
′

= v̂i(
êki→j

)′
=


êki→j + δ if j = j1
êki→j − δ if j = j2
êki→j if j ∈ Ni\ {j1, j2}

for any δ ∈ R. Define ẽ = fe(x, a). As with (14), when δ → 0
we can express ∆Ji = Ji(x, a

′)− Ji(x, a) as(
φk|ẽj1 − φk|ẽj2 − 2α

(
ẽkj2 − ẽ

k
j1

))
δ +O(δ2) (19)

If [x, a] is a single state equilibrium, then we know that ∆Ji ≥
0 for any δ. Since δ can be positive or negative, (19) translates
to φk|ẽj1 − φk|ẽj2 − 2α

(
ẽkj2 − ẽ

k
j1

)
= 0. Note that players j1

and j2 are not necessarily connected but are rather siblings as
both players are connected to player i. Therefore, the above
analysis can be repeated to show that for any players j1, j2 ∈
N that are siblings we have the equality

φk|ẽj1 − φk|ẽj2 = 2α
(
ẽkj2 − ẽ

k
j1

)
. (20)

10The main idea of this proof is to write (18) in matrix form for each
k ∈ N . The rank of this matrix is n − 1 resulting from the fact that the
communication graph is connected and undirected hence proving the result.

for all players k ∈ N . Applying Lemma 8 in the appendix,
condition (20) coupled with the fact that φ is a convex function
implies that for any siblings j1, j2 ∈ N

ẽj1 = ẽj2 . (21)

Since the communication graph is connected and undirected,
(21) guarantees that there exist at most two different esti-
mation values which we denote by x := (x1, . . . , xn) and
y; = (y1, . . . , yn), i.e., ẽi ∈ {x, y} for any player i ∈ N .
Now applying equality (17), for each i ∈ N , we have that
either ekdiff = 2ni(xk − yk) or ekdiff = −2ni(xk − yk), where
ni = |Ni| − 1 > 0. If there exist two players having
different number of neighbors, we can derive that x = y, i.e.
ẽi = ẽj ,∀i, j ∈ N . Following the same argument as previous
proof, we have that ẽki = vk,∀i, k ∈ N .

Lemma 4 and Lemma 5 identified analytical properties of
the estimation terms for single state equilibrium. The following
lemma shifts attention to the value terms for such equilibria.

Lemma 6. If [x, a] = [(v, e), (v̂, ê)] is a single state equilib-
rium and the communication graph satisfies any of conditions
(i)–(iii) of Theorem 3, then ṽ is an optimal solution to (1).

Proof: We have shown in Lemma 4 and Lemma 5 that
if [x, a] = [(v, e), (v̂, ê)] is a single state equilibrium, then
ẽki = vk,∀i, k ∈ N . Consider the following class of deviations
where for any player k ∈ N the new action a′k is of the
following form:

(v̂k)
′

= v̂k + δ

(êk)
′

= êk

where δ ∈ ∆ , {δ : vk + v̂k + δ ∈ Vk} = {δ : ṽk + δ ∈ Vk}.
Accordingly, we have

Jk(x, a′k, a−k) = φ(ṽ1, . . . , ṽk + nδ, . . . , ṽn) + nkα(nδ)2 (22)

If [x, a] is a single state equilibrium, then we have that δ = 0
is an optimal solution of minδ∈∆ φ(ṽ1, . . . , ṽk+nδ, . . . , ṽn)+
nkα(nδ)2. Since φ is a convex function over V := Πi∈NVi
and each Vi is a convex set this is equivalent to

n φk|(ṽ) · δ ≥ 0,∀δ ∈ ∆ (23)

which is equivalent to

φk|(ṽ) · (ṽ
′
k − ṽk) ≥ 0,∀ṽ′k ∈ Vk. (24)

This implies that ṽ is an optimal profile for the optimization
problem (1) given that φ is convex over V .

Conclusion the proof Lemma 4-6 has demonstrated that
if [x, a] is a single state equilibrium, then the ensuing state
x̃ = (ṽ, ẽ) = f(x, a) has accurate estimation ẽ and optimal
value ṽ. Since a recurrent state equilibrium [x, a] is a single
state equilibrium, the ensuing state x̃ = (ṽ, ẽ) satisfies the
same conditions. Moreover, the action profile a of a recur-
rent state equilibrium [x, a] should satisfy that v̂ = 0 and
êi←in = êi→out for all i ∈ N . Otherwise, we can check that
x = (v, e) /∈ X̄(x, a; f), which violates Condition (2) of Defi-
nition 3. Combining those facts about the ensuing state profile
x̃ and the action profile a for a recurrent state equilibrium
[x, a], we can show that a recurrent state equilibrium [x, a]
should satisfy Conditions (a)-(d) listed in Theorem 3. This
completes the proof.



IV. GRADIENT PLAY

We will develop a distributed learning algorithm for the state
based game depicted in section III. The proposed gradient play
algorithm extends the convergence results for the algorithm
gradient play [7], [33], [34] to state based potential games. In
this section, we assume that Vi is a closed convex set for all
i ∈ N . Consider the following algorithm: at each time t ≥ 0,
given the state x(t) = (v(t), e(t)), each agent i selects an
action ai , (v̂i, êi) according to:

v̂i(t) =

[
−εvi ·

∂Ji (x(t), a)

∂v̂i

∣∣∣∣
a=0

]+

(25)

=

−εvi (n φi|ei(t) + 2nα
∑
j∈Ni

(eii(t)− eij(t)))

+

êki→j(t) = −εk,ei→j ·
∂Ji (x(t), a)

∂êki→j

∣∣∣∣∣
a=0

= εk,ei,j ·
(
φk|ei(t) − φk|ej(t) + 2α

(
eki (t)− ekj (t)

)
+2α

∑
l∈Ni

·
(
eki (t)− ekl (t)

) )
(26)

where [·]+ represents the projection onto the closed convex set
Av̂i (x) := {v̂i : vi + v̂i ∈ Vi}; and εvi and

{
εk,ei→j

}
j∈Ni

are the

stepsizes which are positive constants. The following theorem
establishes the convergences of the gradient play.

Theorem 7. Suppose each agent selects an action accord-
ing to the gradient play algorithm in (25,26) at each time
t ≥ 0. If the stepsizes are sufficiently small, and the se-
quence x(1), x(2), · · · produced by the algorithm is con-
tained in a compact subset of R2n, then [x(t), a(t)] :=
[((v(t), e(t)) , a(t))] asymptotically converges to the recurrent
state equilibrium [(v∗,v∗) ,0].

Proof: The main idea is to explore the properties of the
state based potential function Φ(x, a) = Φ(x̃,0) and show
that the potential function keeps decreasing during the gradient
play process as long as the stepsize is small enough. Because
of space consideration, we omit the detailed proof. See [20]
for a similar proof.

V. ILLUSTRATIONS

For illustration we focus on a simple distributed routing
problem with a single source, a single destination, and a
disjoint set of routes R = {r1, ..., rm}. There exists a set of
agents N = {1, ..., n} each seeking to send an amount traffic,
represented by Qi ≥ 0, from the source to the destination.
The action set Vi for each agent is defined as:{

vi , (vr1i , ..., v
rm
i ) : 0 ≤ vri ≤ 1,∀r ∈ R;

∑
r∈R

vri = 1

}
(27)

where vri represents that percentage of traffic that agent i
designates to route r. Alternatively, the amount of traffic that
agent i designates to route r is vriQi. Lastly, for each route
r ∈ R, there is an associated “congestion function” of the
form: cr : [0,+∞) → R that reflects the cost of using the

route as a function of the amount of traffic on that route.11

For a given routing decision v ∈ V , the total congestion in the
network takes on the form

φ(v) =
∑
r∈R

fr · cr(fr)

where fr =
∑
i∈N v

r
iQi. The goal is to establish a local con-

trol law for each agent that converges to the allocation which
minimizes the total congestion, i.e., v∗ ∈ arg minv∈V φ(v).
One possibility for a distributed algorithm is to utilize a
gradient decent algorithm where each agent adjust traffic flows
according to

∂φ

∂vri
= Qi ·

(
c′r

(∑
i∈N

Qiv
r
i

)
+ cr

(∑
i∈N

Qiv
r
i

))
where c′r(·) represents the gradient of the congestion function.
Note that implementing this algorithm requires each agent to
have complete information regarding the decision of all other
agents. In the case of non-anonymous congestion functions this
informational restriction would be even more pronounced.

Using the theory developed in this paper, we can localize
the information available to each agent by allowing them only
to have estimates of other agents flow patterns. Consider the
above routing problem with 10 players and the following
communication graph

1↔ 2↔ 3↔ · · · ↔ 10

Now, each agent is only aware of the traffic patterns for at most
two of the other agents and maintaining and responding to
estimates of the other agents’ traffic patterns. Suppose we have
5 routes where each route r ∈ R has a quadratic congestion
function of the form cr(k) = ark

2 − brk + cr where k ≥ 0
is the amount of traffic, and ar, br, and cr are positive and
randomly chosen coefficients. Set the tradeoff parameter α
to be 900. Figure 1 illustrates the results of the algorithm
proposed in Section IV coupled with our game design in
Section III. Note that our algorithm does not perform as well
in transient as the true gradient descent algorithm. This is
expected since the informational availability to the agents is
much lower. However, the convergence time is comparable
which is surprising.

VI. CONCLUSION

We utilize the framework of state based potential games
to develop a systematic methodology for the design of local
agent objective functions that satisfy virtually any degree of
locality while ensuring the optimality of the resulting Nash
equilibria. This work, along with previous work, demonstrates
the framework of state based potential games leads to a value
hierarchical decomposition that can be an extremely powerful
for the design and control of multiagent systems. An important
future direction is to enrich the tool set for both game design
and learning design in state based potential games. Examples
include (i) developing alternative learning algorithms to gra-
dient play and characterizing their convergence rates and (ii)

11This type of congestion function is referred to an anonymous in the
sense that all agents contribute equally to traffic. Non-anonymous congestion
function could also be used for this example.



Fig. 1. Simulation results: The upper figure shows the evolution of the system
cost using the true gradient decent algorithm (red) and our proposed algorithm
(black). The bottom figure shows the evolution of one agent’s estimation error,
i.e., ek,ri − vrk for each route r ∈ R and each agent k ∈ N . Note that the
error converges to 0 illustrating that the agent’s estimate converge to the right
values as proved in Lemmas 4 and 5.

extend the analysis of the approach in this paper to a dynamical
changing communication topology.
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APPENDIX

Lemma 8. Given a convex function φ(x1, x2, . . . , xn) and two
vectors x := (x1, . . . , xn) and y := (y1, . . . , yn), if for any
k = 1, 2, . . . n, we have φk|x − φk|y = αk(yk − xk) where
αk > 0, then x = y.

Proof: Applying the mean value theorem on the vector
function ∇φ, we have

∇φ|x − ∇φ|y = H(φ)|ξx+(1−ξ)y · (x− y) (28)

where H(φ) is the hessian matrix of φ and ξ ∈ [0, 1]. Multiply
(x−y)T left to the both side of the equation (28) and subsitute
the equatilities φk|x − φk|y = αk(yk − xk),∀k = 1, . . . , n,
we have:

0 ≥ −
∑
k αk(yk − xk)2

= (x− y)T ·
(
∇φ|x − ∇φ|y

)
= (x− y)T · H(φ)|ξx+(1−ξ)y · (x− y) ≥ 0

where the last inequality comes from that φ is convex function.
Therefore x = y.


