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Abstract

In many two-sided matching markets, agents on one side are matched to a

large number of agents on the other side (e.g. college admissions). Yet little

is known about the structure of stable matchings when there are many agents

on one side. To approach this question we propose a variation of the Gale and

Shapley (1962) college admissions model where a �nite number of colleges is

matched to a continuum of students. It is shown that, generically (though not

always) (i) there is a unique stable matching, (ii) this stable matching varies

continuously with the underlying economy, and (iii) it is the limit of the set of

stable matchings of approximating large discrete economies.
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1 Introduction

In several two-sided matching markets, agents on one side are matched to a large

number of agents on the other side. For example, Princeton, Harvard, Yale, Stan-

ford, and MIT all have incoming classes with over 1,000 freshmen. Even CalTech,

which has a relatively small entering class accepts around 250 freshmen yearly.1 In

some of these markets matching is decentralized.2 One example is college admissions

in the US. Another is the market for junior associates at top law �rms. Most of

the top American law �rms hire around 50-150 associates from each cohort, mostly

from the nation's most prestigious law schools.3 Other markets also have a larger

number of agents on one side, but are organized around a centralized clearinghouse,

where agents report their preferences, and receive a match based on a mechanism.

This is the case of public schools in several American cities, in Hungary, and of col-

lege admissions in Hungary and Turkey.4 These markets are usually modeled using

the Gale and Shapley (1962) college admissions model. Moreover, the centralized

clearinghouses often employ variations of their deferred acceptance mechanism. An

extensive literature considers the design and properties of these markets.5 However,

there is little work understanding matching markets with a large number of agents

on one side, although this is the case in many applications.6

1Forbes ranking of �America's Best Colleges 2008�.
2For models of two-sided matching in decentralized markets, see Adachi (2003); Niederle and

Yariv (n.d.). These papers outline conditions under which decentralized matching process lead to
stable allocations.

3See Avery et al. (2004) for details on the college admission market, and (Ginsburg and Wolf,
2003) for a description of the American and Canadian markets for junior law associates.

4A discussion of school choice mechanisms used in various cities is given in the seminal work
of Abdulkadiroglu and Sonmez (2003), which introduced the problem of designing school choice
mechanisms in the literature. Accounts of the redesign of the matching systems in Boston and NYC
are given by Abdulkadiroglu et al. (2005a,b). College admissions in Turkey are described by Balinski
and Sonmez (1999). Biró (2007) describes the centralized clearinghouses in Hungary.

5See Roth (2008) for a survey.
6Some interesting papers have investigated strategic properties of stable mechanisms in markets

where the number of agents on both sides grows. The conclusion typically is that, as agents become
insigni�cant, stable mechanisms become approximately strategy-proof (Roth and Peranson (1999);
Immorlica and Mahdian (2005); Kojima and Pathak (2009)). This is di�erent from the direction
we pursue, in which the number of colleges is �xed, and its the number of students and the quotas
of each college that grow. Our model is more similar in spirit with a literature on asymptotics
of the assignment problem where the number of object types remains constant and the market
grows (Che and Kojima (Forthcoming); Kojima and Manea (2009); Manea (2009)), and on large
markets in the course allocation problem, where the number of courses is �xed (Budish and Cantillon
(Forthcoming); Budish (2008)).
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In this paper, we propose a variation of the Gale and Shapley (1962) college admis-

sions model, where a �nite number of colleges is matched to a continuum of students.

Although we use the colleges and students terminology, the model can represent other

matching markets, and we extend it to allow for matching with contracts. Our model

allows for tractable analysis of markets where agents on one side are matched to a

large number of agents on the other side. Our main results are as follows. Generically

(though not always), (i) the continuum model admits a unique stable matching, (ii)

this stable matching varies continuously with the underlying economy, and (iii) it is

the limit of the set of stable matchings of approximating discrete economies. These

results provide foundations to continuum matching models considered in the litera-

ture ((Abdulkadiroglu et al., 2008; Miralles, 2008)), imply new results on the size of

the set of stable matchings in discrete models (complementing those in (Roth and

Peranson, 1999; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009)), and gen-

eralizes characterizations of the asymptotic behavior of commonly used mechanisms

((Che and Kojima, Forthcoming)). Besides contributing to understand markets with

a large number of agents in one side, the tractability of the model makes it useful in

exploring problems which are too complex in the discrete setting.

To �x ideas, say colleges preferences rank students according a number, which we

term the score. Di�erent colleges may rank students di�erently. A unifying idea in

our analysis is considering the score of the marginal student accepted to each college,

in a given stable matching. We denote the score of a marginal student accepted as

the cuto� 7 at each college. This means students with scores above the cuto� are

accepted, and those with lower scores are rejected. We o�er a new lemma, in both

the discrete and continuum models, that shows that stable matchings are associated

with cuto�s that clear the market.8 That is, such that when each student points to

her favorite college that would accept her, demand for colleges equals supply.9 Since

cuto�s characterize stable matchings in both the continuum and discrete model, this

Lemma is the key idea linking continuum and discrete economies. This gives, �rst, a

7This term was introduced by Abdulkadiroglu et al. (2008), who consider the case where all
colleges have the same preferences.

8As we detail below, this was observed by Biró (2007). Yet, the particular bijection between
market clearing cuto�s and stable matchings given in our lemma was is new, as are the version with
a continuum of students and of matching with contracts. As discussed below, this is also related to
an important result by (Roth and Sotomayor, 1989), although the results are independent.

9More precisely, a set of cuto�s clears the market if the demand for each school does not exceed
its quota, and equals the quota if the cuto� is strictly positive.
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tractable characterization of stable matchings in the continuum model. And, second,

allows us to prove convergence results without relying on combinatorial arguments.

Therefore the arguments used to establish our limit results di�er markedly from those

used in other papers that considered large markets in matching and the assignment

problem (Immorlica and Mahdian (2005); Che and Kojima (Forthcoming); Manea

(2009); Kojima and Manea (2009); Kojima and Pathak (2009)).

Albeit very simple, the Lemmas relating stable matchings to cuto�s are of inde-

pendent interest, and among our main results. In the discrete case, the cuto� Lemma

can be described informally as follows. Given a stable matching, we can de�ne ad-

mission thresholds at each college such that, if each student points to her favorite

college that would accept her, the result is the original stable matching. Moreover,

the lemma implies that any vector of thresholds that clears the market induces a

stable matching.

The model has implications to several strands of the matching literature. We show

that a generic continuum economy has a unique stable matching, which is the limit

of the sets of stable matchings of any sequence of approximating discrete economies.

Therefore, large discrete economies with many agents on one side may have several

stable matchings, but they will often be very similar. This complements results by

(Immorlica and Mahdian, 2005; Kojima and Pathak, 2009) who give conditions under

which the set of stable matchings of large discrete economies is small, and seems to be

consistent with data from the redesign of the National Resident Matching Program

(NRMP) (Roth and Peranson (1999)).10

Another important implication for empirical work and simulations is that we

should expect the set of stable matchings in actual markets to be robust with re-

spect to small perturbations of the economy. This is important, in light of examples

we give in the text where the set of stable matchings can change discontinuously with

respect to small perturbations of the economy. Even though such cases do exist, they

only arise for a measure 0 set of economies, and therefore are not likely to arise in em-

pirical settings. This is important if data and simulations are to be used to evaluate

the impact of alternative mechanisms.11 If stable matching mechanisms were very sen-

sitive with respect to the underlying economy, these exercises would have little value.

10While this is interesting, the number of doctors hired by each hospital is small, rendering the
continuum model a very coarse approximation.

11Budish and Cantillon (Forthcoming) for example use data from the Harvard Business School
course allocation mechanism to evaluate di�erent mechanisms.
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The continuity result is consistent with empirical results reported by Abdulkadiroglu

et al. (2009). They consider preference data from the New York City school choice

mechanism. Students are given priorities to schools based on some criteria, such as

the area where they live and where their siblings go to school, and ties are broken

using a lottery. Seats are then assigned according to the student-proposing deferred

acceptance mechanism. Interestingly, in several di�erent runs of the algorithm, many

aggregate statistics of the match do not vary much. For example, on average 32,105.3

students receive their �rst choice, with a standard deviation of only 62.2. The average

number of students receiving their 7th choice is 1,732.7 with a standard deviation of

26.0. It seems remarkable at �rst that aggregate statistics of the match are so stable,

as the allocation depends on the results of a lottery. However, this is consistent with

the fact that, for a typical draw, the economy after tie-breaking does not vary too

much, and the result that stable matchings generically depend continuously on the

primitives.

The convergence results give foundations to some interesting recent work that

applies continuum models to school choice problems (Abdulkadiroglu et al. (2008);

Miralles (2008)). These papers have considered the particular case of our model

where all colleges have the same preferences over students. Miralles (2008) uses the

continuum model to compare deferred acceptance with the Boston Mechanism. Ab-

dulkadiroglu et al. (2008) evaluate mechanisms where agents can express the intensity

of their preferences. Our results show that, generically, the stable matchings in these

continuum models correspond to limits of discrete economies. In addition, we gener-

alize the models to encompass the case where school preferences are not the same.

Our results also imply a characterization of the limit of deferred acceptance mech-

anisms. In particular, it includes as a special case the state of the art mechanism

used in school choice, which is deferred acceptance where ties are broken according

to a single lottery (DA-STB). In a related paper, Che and Kojima (Forthcoming)

consider the limit of the widely used random serial dictatorship mechanism. They

show that, in the limit, it corresponds to the probabilistic serial mechanism proposed

by Bogomolnaia and Moulin (2001). Because serial dictatorship is equivalent to de-

ferred acceptance in the particular case where all colleges have the same preferences,

their result is also a particular case of ours. Therefore, our model gives a uni�ed

description of the limit behavior or random serial dictatorship, deferred acceptance,

and the probabilistic serial mechanism.
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Finally, we pursue additional applications of the model in two companion papers.

Azevedo and Leshno (2010) evaluate the equilibrium performance of the stable im-

provement cycles mechanism, proposed by Erdil and Ergin (2008). Azevedo (2010)

investigates strategic behavior of �rms in matching markets.12

Section 2 presents the model, some preliminary results, and gives an example il-

lustrating the results. Section 3 describes the main results, and Section 4 concludes.

The appendix provides all omitted proofs, and also covers additional results on match-

ing with a continuum of students, asymptotics of commonly used mechanisms, and

extends the continuum model to matching with contracts.

2 Model

2.1 College admissions with a continuum of students

The model follows closely the Gale and Shapley (1962) college admissions problem.

The main departure is that a �nite number of colleges C = {1, 2, . . . , n} is matched

to a continuum mass of students. A student is described by θ = (�θ, eθ). �θ is the
student's strict preference ordering over colleges. The vector eθ ∈ [0, 1]n describes

the colleges' ordinal preferences for the student. We refer to eθs as student θ's score

or rank at college s. Colleges prefer students with higher scores. That is, college c

prefers13 student θ over θ′ if eθc > eθ
′
c . To simplify notation we assume that all students

and colleges are acceptable. Let S be the set of all strict preference orderings over

colleges. We denote the set of all student types by Θ = S × [0, 1]n.

A continuum economy is given by E = [η, q], where η is a probability measure14

12Since Roth (1985) it has been known that no stable matching mechanism is strategyproof for
the colleges in the college admissions model. This is in contrast to the marriage model, where the
men have no incentives to manipulate the men-optimal stable mechanism. Sonmez (1997) has shown
that they may always gain by manipulating reported capacity. Konishi and Unver (2006) have then
introduced games of capacity manipulation, which were also studied by Ehlers (2010); Kesten (2008);
Kojima (2006); Mumcu and Saglam (2009); Romero-Medina and Triossi (2007). Azevedo (2010) also
focuses on quantity manipulations, and uses the continuum model to derive equilibrium predictions
in matching markets, with �rms acting strategically.

13We take college's preferences over students as primitives, rather than preferences over sets of
students. It would have been equivalent to start with preferences over sets of students that were
responsive to the preferences over students, as in Roth (1985).

14We must also specify a σ-algebra where η is de�ned. The set Θ is the product of [0, 1]n and the
�nite set of all possible orderings. We take the Borel σ-algebra of the product topology (the normal
topology for Rn times the discrete topology for the set of orderings) .
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over Θ and q = (q1, q2, . . . , qn) is a vector of strictly positive capacities for each college.

We make the following assumption on η, which corresponds to colleges having strict

preferences over students in the discrete model.

Assumption 1. (Strict Preferences) Every college's indi�erence curves have η-

measure 0.15

The set of all economies satisfying Assumption 1 is denoted by E .
Amatching for a continuum economy E = [η, q] is a function µ : C∪Θ→ 2Θ∪C,

such that16

1. Each student is matched to a college or to herself.

2. Each college c is matched to a subset of students of measure of at most qc.

3. A college is matched to a student i� the student is matched to the college.

4. The matching is right-continuous.17

This is the standard de�nition, with the addition of the last technical requirement,

which eliminates multiplicities of matchings that coincide in a measure 0 set. A

student-college pair (θ, c) blocks a matching µ at economy E if the student θ prefers

c to her match and either (i) college c does not �ll its quota or (ii) college c is matched

to another student that has a stricly lower score than θ.18

De�nition 1. A matching µ for a continuum economy E is stable if it is not blocked

by any student-college pair.

15That is, for any college c and real number x we have η({θ|eθc = x}) = 0.
16Mathematically, these properties are:

1. For all θ ∈ Θ: µ(θ) ∈ C ∪ {θ}.

2. For all c ∈ C: µ(c) ⊂ Θ, and η(µ(c)) ≤ qc.

3. c = µ(θ) i� θ ∈ µ(c).

4. For any sequence of students θk = (�, ek), with ek converging to e, and all ek ≥ e (in every
coordinate), we can �nd some large K so that µ(θk) = µ(θ) for k > K.

17See the previous footnote for a precise de�nition.
18That is, (θ, c) blocks µ if c �θ µ(θ) and either (i) η(µ(c)) < qc or (ii) there exists θ

′ ∈ µ(c) with
eθ

′

c < eθc .
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We will refer to the stable matching correspondence as the correspondence as-

sociating each economy in E with its set of stable matchings. In some sections in

the paper the economy is kept �xed. Whenever there is no risk of confusion we

will omit dependence of certain variables on the economy, to make the notation less

cumbersome.

2.1.1 Cuto�s

Scores of marginal accepted students in each college will play a large role in the

analysis. This subsection shows that the score of the marginal accepted student at

a college, which we term the college's cuto� following Abdulkadiroglu et al. (2008),

parametrizes the set of stable matchings. This idea is closely related to a result by

Roth and Sotomayor (1989). They show that the entering classes a college receives

in any two stable matchings are ordered by �rst order stochastic dominance. This

suggests the possibility of parametrizing the set of stable matchings using the score

of the worst student in each college's entering class.

Throughout this subsection, we �x an economy E, and abuse notation by omitting

dependence on E when there is no risk of confusion. A cuto� is a minimal score

pc ∈ [0, 1] required for admission at a college c. We say that a student θ can a�ord

college c if pc ≤ eθc , that is c would accept θ. A student's demand given a vector of

cuto�s is her favorite college among those that would accept her. That is,

Dθ(p) = arg max
�θ
{c|pc ≤ eθc}. (1)

Aggregate demand for college c is the mass of students that demand it,

Dc(p) = η({Dθ(p) = c}).

A market clearing cuto�, is a vector of cuto�s that clears supply and demand for

colleges.

De�nition 2. A vector of cuto�s p is a market clearing cuto� if satis�es the

market clearing equations: for all c

Dc(p) ≤ qc

8



and Dc(p) = qc if pc > 0.

Market clearing cuto�s can be used to parametrize stable matchings. To describe

this parametrization, we de�ne two operators. Given a market clearing cuto� p, we

de�ne the associated matching µ =Mp using the demand function:

µ(θ) = Dθ(p).

Conversely, for a stable matching µ, we de�ne the associated cuto� p = Pµ by:

pc = inf
θ∈µ(c)

eθc . (2)

The operators M and P give a bijection between stable matchings and market

clearing cuto�s.

Lemma 1. (Cuto� Lemma)19 If µ is stable matching, then Pµ is a market clearing

cuto�. If p is a market clearing cuto�, then Mp is a stable matching. In addition,

the operators P andM are inverses of each other.20

Intuitively, the Lemma says that stable matchings can be described by cuto�

scores at each college. Given a stable matching, de�ne its corresponding cuto�s for

each college as the lowest score of all students matched to the college. We then

have that if each student points to her favorite a�ordable college, the result is the

stable matching. This means we could have de�ned stability directly in terms of

19To our knowledge, the discrete and continuum versions of the cuto� lemma are new, but they
have some precursors in the literature. Abdulkadiroglu et al. (2008) use cuto�s extensively, in a
model where all colleges rank students in the same order, and introduced the term cuto�. Biró
(2007) describes the algorithm used for college admissions in Hungary. In the algorithm, colleges
start with a low cuto� score. At each step, students apply to their favorite college that would accept
them, and each college increase the cuto� score up to the point where its quota is �lled exactly.
With strict preferences, the outcome is the same as student proposing deferred acceptance. Biró
(2007) terms this a �score limit algorithm�, and remarks that a de�nition of stability similar to
market clearing cuto�s is equivalent to the standard de�nition, although he does not o�er a proof.
Cuto�s are also related, but di�erent, to a very interesting characterization of stable matchings due
to Adachi (2000), in terms of what he calls pre-matchings. The main di�erence is that pre-matchings
assign a �cuto�� to each man and each woman, while cuto�s only have to be assigned for one side of
the market. Similar ideas have been successfully applied to a series of matching problems (Adachi
(2003); Hat�eld and Milgrom (2005); Echenique and Oviedo (2004, 2006); Ostrovsky (2008)).

20This lemma relates to the results by Roth and Sotomayor (1989), they prove that the entering
classes a college may receive, in any stable matching, are always ordered by �rst order stochastic
dominance.
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cuto�s. That is, a matching µ is stable if and only if for some market clearing cuto�

p we have µ = Mp. In addition, it implies that the structure of stable matchings

is simple, and stable matchings can be described by a vector of one real number

per school. Moreover, the Lemma guarantees that any cuto� that clears supply and

demand corresponds to a stable matching. We defer the proof to the Appendix, but

for the reader interested in the intuition of the proof the next section gives a proof

of the counterpart of this result in the discrete model, which is simpler and contains

similar ideas.

The lemma shows that we could have equivalently de�ned stability by using cut-

o�s, instead of the standard de�nition, given in section 2.1. That is, a matching µ is

stable if and only if for some market clearing cuto� p we have µ =Mp. In addition,

the Lemma speci�es a natural bijection between stable matchings and market clearing

cuto�s. If one could compute the cuto�s related to a stable matching, and have each

student points to her favorite college that would accept her, the result would be the

stable matching.

Note that demand functions depend on the economy E. When there is no risk

of confusion, we will omit this dependence, as above. However, when we consider

di�erent economies, we will write D(p|E)or D(p|η).

2.2 College admissions with a �nite number of students

We use the standard de�nition of the college admissions model with a �nite number

of students. The set of colleges is again C. A �nite economy F = [Θ̃, q̃] speci�es a

�nite set of students Θ̃ ⊂ Θ, and a vector of integer quotas qc > 0 for each college.

We assume that no college is indi�erent between two students in Θ̃. A matching for

�nite economy F is a function µ̃ : Θ̃ ∪ C → C ∪ 2Θ̃ such that21

1. Each student is matched to a college or to herself.

2. Each college is matched to a at most q̃c students.

21Formally, these conditions are:

1. For all θ in Θ̃ we have µ(θ) ∈ {θ} ∪ C.

2. For all c ∈ C we have that µ(c) ∈ 2Θ̃ and #µ(c) ≤ qc.

3. For all θ ∈ Θ̃, c ∈ C, we have µ(θ) = c i� θ ∈ µ(c).
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3. A college is matched to a student i� the student is matched to the college.

The de�nition of a blocking pair is the same as in section 2.1.1. A matching µ̃ is

said to be stable for �nite economy F if it has no blocking pairs.

2.2.1 Cuto�s

In this section we �x a �nite economy F , and will omit dependence on F in the

notation. A cuto� is a number p̃i in [0, 1] specifying an admission threshold for

college i. Given a vector of cuto�s p, a student's demand is de�ned as in section

2.1.1. Demand for a college c is de�ned as

D̃c(p̃) = #{θ ∈ Θ̃ : Dθ(p̃) = c}.

p̃ is a market clearing cuto� for economy F if for all colleges

D̃c(p̃) ≤ q̃c,

with equality if p̃c > 0.

In the discrete model, we de�ne the operators M̃ and P̃ , which have essentially

the same de�nitions asM and P ; we only adjust the de�nition of P̃ in that if a school

has empty spots we assign it a cuto� of 0. In the discrete case, we have an analogue

of the cuto� lemma. The only di�erence is that, in the discrete model, each matching

can have many corresponding market clearing cuto�s, so we don't get a bijection.

Lemma 2. (Discrete Cuto� Lemma) In a discrete economy, the operators M̃
and P̃ take stable matchings into market clearing cuto�s, and vice versa. Moreover,

M̃P̃ is the identity.

Proof. Consider a stable matching µ̃, and let p̃ = P̃µ̃. Any student θ can a�ord

c = µ̃(θ), as eθc ≥ p̃c. It also can't a�ord any other college c′ �θ c: if it could, then
there would be another student θ′ matched to c′ with eθ

′

c′ < eθc′ , which would contradict

µ̃ being stable. Consequently, we must have Dθ(p̃) = µ̃(θ). This proves both that

M̃P̃ is the identity, and that p is a market clearing cuto�.

In the other direction, let p be a market clearing cuto�, and µ̃ = M̃p̃. By the

de�nition of the operator and the market clearing conditions it is a matching, so we

only have to show there are no blocking pairs. Assume by contradiction that (θ, c) is
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a blocking pair. If c has empty slots, then p̃c = 0 ≤ eθc . If c is matched to a student

θ′ that it likes less than θ, then p̃c ≤ eθ
′
c ≤ eθc . Hence, we must have p̃c ≤ eθc . But

then by the de�nition of µ we have c ≺θ µ̃(θ), so it can't be a blocking pair, reaching

a contradiction.

Intuitively, the Lemma says that given a stable matching we can �nd cuto�s at

each college, such that the matching is given by all students pointing to their favorite

college that would accept them. This means that, even in the discrete model, stable

matchings have a very simple structure. This was previously pointed out by Biró

(2007),22 although he does not provide a proof. He points out that in Hungary college

admissions are made through a clearinghouse, that uses an algorithm similar to the

Gale and Shapley deferred acceptance algorithm but that uses cuto�s. In addition,

Lemma 2 guarantees that any set of cuto�s that clears the market corresponds to

a stable matching. The only respect in which the discrete cuto� Lemma is weaker

than the continuum version, is that each stable matching can correspond to several

di�erent market clearing cuto�s, while in the continuum model we have a bijection.

2.3 Convergence notions

To describe our convergence results, we must de�ne notions of convergence for economies

and stable matchings. On the set of continuum economies E we take the product

topology given by the weak-* topology over measures and the Euclidean topology

over vectors of capacities. We take the distance between stable matchings to be the

distance between their associated cuto�s in the supremum norm in Rn. That is, the
distance between two stable matchings µ and µ′ is

d(µ, µ′) = ‖Pµ− Pµ′‖∞.

There is a natural way to de�ne what it means for a sequence of discrete economies

to converge to a continuum economy. Consider a discrete economy F = [Θ̃, q̃], with

m students. An equivalent notation to describe it is using a measure η[F ] that gives

weight 1/m to each point in Θ̃, and a vector of quotas q[F ] = q̃/m. Note that the

22The model and de�nitions used by Biró (2007) are slightly di�erent. However, he states without
proof that the usual de�nition of stability is equivalent to a de�nition very similar to a matching
being associated with market clearing cuto�s. More substantially, our result di�ers from his in that
we outline speci�c operators associating stable matchings to equilibrium cuto�s.
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measure η[F ] gives positive weight to some points in Θ, so that this pair could not

be a continuum economy as de�ned before, as it violates assumption 1. But it is

normalized so that η[F ](Θ) = 1, as in the de�nition of a continuum economy.

De�nition 3. A sequence of �nite economies F k converges to a limit economy E =

[η, q] if η[F k] converges to η in the weak-* topology and q[F k] converges to q in Rn.

Given a stable matching of a continuum economy µ, and a stable matching of a

�nite economy µ̃, we de�ne

d(µ̃, µ) = sup
p̃
||p̃− Pµ||∞

over all vectors p̃ with M̃p̃ = µ̃.

De�nition 4. The sequence of stable matchings µ̃k with respect to �nite economies

F converges to stable matching µ of continuum economy E if d(µ̃k, µ) converges to 0.

Finally, given a �nite economy F , we de�ne the radius of the set of stable match-

ings of F as

sup{‖p− p′‖∞ : p and p′ are market clearing cuto�s of F}.

2.4 A simple example

This simple example illustrates the main results. There are two colleges c = 1, 2, and

the distribution of students η is uniform. That is, there is a mass 1/2 of students with

each preference list 1, 2 or 2, 1, and each mass has scores distributed uniformly over

[0, 1]2 (�gure 1). If both colleges had capacity 1/2, the unique stable matching would

have each student matched to her favorite school. To make the example interesting,

assume q1 = 1/4, q2 = 1/2.

A familiar way of �nding stable matchings is using the student-proposing deferred

acceptance algorithm. At each step, unassigned students propose to their favorite

college out of the ones that still haven't rejected them. If a college has more students

than its capacity assigned to it, it rejects the lower ranked students it has assigned

to it, to stay below its capacity. Figure 1 displays the trace of the algorithm in

our example. In the �rst step, all students apply to their favorite school. Because

school 1 only has capacity 1/4, and each square has mass 1/2, it then rejects half of the
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Figure 1: In the example types are uniformly distributed in the two squares on the top
panel. The lower panels show the �rst 10 steps of the Gale-Shapley student-proposing
algorithm.
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Figure 2: The outcome of the GS algorithm.

students who applied. The rejected students then apply to their second choice, college

2. But this leaves college 2 with 1/2 + 1/4 = 3/4 students assigned to it, which is

more than its quota. College 2 then rejects its worse ranked students. Those who had

already been rejected stay unmatched. But those who hadn't been rejected by college

1 apply to it, leaving it with more students than capacity, and the process continues.

Although the algorithm does not �nish, it always converges, and the outcome (�gure

2) is a stable matching (see Appendix A). Figure 1 hints at this, as the measure of

students getting rejected in each round is becoming smaller and smaller.

However, �gures 1 and 2 give much more information than simply convergence of

the deferred acceptance mechanism. We can see that cuto�s yield a simpler decen-

tralized way to compute the matching. Note that all students accepted to college 1

are those with a score above a cuto� of p1 ≈ .640. And those accepted to college 2 are

those with a score above some cuto� p2 ≈ .390. Hence, had we known these numbers

in advance, it would not be necessary to run the deferred acceptance algorithm. All

we would have to do is assign each student to her favorite college such that her score

is above the cuto�, eθc ≥ pc (Cuto� Lemma 1).

Indeed, solving for market clearing cuto�s is much simpler than running the de-
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Figure 3: Cuto�s of a stable matching in a discrete economy, approximating the
continuum economy in the example. There are 2 colleges, with capacities q1 = 250,
q2 = 500. 500 students have preferences �θ= 1, 2, ∅ and 500 students have preferences
2, 1, ∅. Scores eθ were drawn independently according to the uniform distribution
in [0, 1]2. The �gure depicts the student-optimal stable matching. Balls represent
students matched to college 1, squares to college 2, and Xs represent unmatched
students.

ferred acceptance algorithm. For example, the fraction of students in the left square

of �gure 2 demanding college 1 is 1 − p1. And in the right square it is p2(1 − p1).

Market clearing cuto�s must satisfy the pair of equations

q1 = 1/4 = (1 + p2)(1− p1)/2

q2 = 1/2 = (1 + p1)(1− p2)/2.

Solving this system, we get p1 = (
√

17+1)/8 and p2 = (
√

17−1)/8. In particular,

because the market clearing equations have a unique solution, the economy has a

unique stable matching (Theorem 1 shows this is a more general phenomenon).

Note that the cuto� lemma is also valid in the discrete college admissions model,

save for the fact that in discrete models each stable matching may correspond to more

than one market clearing cuto� (Discrete Cuto� Lemma 2). Figure 3 illustrates cuto�s

for a stable matching in a discrete economy with 1, 000 students, analogous to the

continuum economy in the example. Note that the cuto�s in the discrete economy are

approximately the same as the cuto�s in the continuum economy. Theorem 2 shows

that, generically, the market clearing cuto�s of approximating discrete economies

approach market clearing cuto�s of the limit economy.
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3 Results

We are now ready to state the main results in the paper. The �rst result shows that,

typically, continuum economies have a unique stable matching.

De�nition 5. Measure η is regular if the closure of the set of points

{p ∈ [0, 1]n : D(·|η) is not continuosuly di�erentiable at p}

and its image under D(·|η) have Lebesgue measure 0.

In particular, if D(·|η) is continuously di�erentiable then η is regular.We then

have:

Theorem 1. The economy E = [η, q] has a unique stable matching:

i) For any η with full support.

ii) For any regular measure η and almost every q such that
∑

i qi < 1.

This result shows that, for typical parameter values, the continuum model has a

unique stable matching. This is important because the convergence results depend on

uniqueness, and Theorem 1 guarantees that these results apply broadly. It also shows

that typically the notion of stability is enough to uniquely determine the market's

allocation in the continuum model.

Proof. (Proof sketch) Here we outline the main ideas in the proof, which is deferred

to Appendix B. The proof depends crucially on two results which we develop in Ap-

pendix A, which extend classic results of matching theory to the continuum model.

The �rst is the Lattice Theorem, which guarantees that for any economy E the set

of market clearing cuto�s is a complete lattice. In particular, this implies that there

exist smallest and largest vectors of market clearing cuto�s. In the proof we will de-

note these cuto�s p− and p+. The other result is the Rural Hospitals Theorem, which

guarantees that the measure of unmatched students in any two stable matchings is

the same.

Part (i).

Note that the set of unmatched students at p+ contains the set of unmatched

students at p−, and their di�erence is

{θ ∈ Θ : eθ < p+, eθ ≮ p−}.
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By the Rural Hospitals Theorem, this set must have η measure 0. Since η has full

support, this implies that p− = p+, and therefore there is a unique stable matching.

Part (ii).

For simplicity, consider the case where for all c we have p−c < p+
c , and where

the function D(p|η) is continuously di�erentiable. The general case is covered in

Appendix B.

We begin by applying Sard's Theorem.23 The Theorem states that, given a contin-

uously di�erentiable function f : Rn → Rn we have that for almost every q0 ∈ Rn the
derivative ∂f(p0) is nonsingular at every solution p0 of f(p0)− q0 = 0. The intuition

for this result is easy to see in one dimension. It says that if we randomly perturb the

graph of a function with a small vertical translation, all roots will have a non-zero

derivative with probability 1.

Given q, as we assumed that there is excess demand for colleges, the market

clearing cuto�s are the set of roots p of the equation

D(p|η) = q.

By Sard's Theorem, we have that for almost every q, the derivative ∂pD(·|η) is invert-

ible at every market clearing cuto� associated with [η, q]. Henceforth, we will restrict

attention to an economy E = [η, q] where this is the case.

To reach a contradiction assume that E = [η, q] has more than one market clearing

cuto�. By the Lattice Theorem we can write p− 6= p+ for the smallest and largest

cuto�s. For any p in the cube [p−, p+], the measure of unmatched students

1−
∑
c

Dc(p|η) (3)

must be higher than the measure of unmatched students at p− but lower than the

measure at p+. However, by the Rural Hospitals Theorem, this measure must be the

same at p− and p+. Therefore, the expression in equation 3 must be constant in the

cube [p−, p+]. This implies that the derivative of D at p− must satisfy∑
c

∂pcD(p−|η) = 0.

23See (Guillemin and Pollack, 1974).
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However this implies that this derivative is not invertible, contradicting Sard's The-

orem.

The next result shows that in the case where uniqueness holds, stable matchings

of the continuum model correspond to limits of stable matchings of approximating

�nite economies.

Theorem 2. Assume that the continuum economy E admits a unique stable matching

µ. We then have

i) The stable matching correspondence is continuous at E.

ii) For any sequence of stable matchings µ̃k of �nite economies F k converging to

E, we have that µ̃k converges to µ.

iii) Moreover the diameter of the set of stable matchings of F k converges to 0.

Taken together, Theorems 1 and 2 Part (ii) imply that typically the continuum

model admits a unique stable matching. In addition any sequence of stable match-

ings of approximating �nite economies is converging to this stable matching. This

shows that the continuum model has an intimate link to the discrete model, and

justi�es using the continuum model, under appropriate circumstances, as a simpli-

�ed market model. By Part (iii), it is also the case that the set of stable matchings

of the economies F k is shrinking. This is a form of core convergence result, which

says that all stable matchings of large economies become very similar as the econ-

omy grows. Roth and Peranson (1999); Immorlica and Mahdian (2005); Kojima and

Pathak (2009) had shown results in this line, in markets where both the number of

doctors and hospitals goes to in�nity. However, their results depend on very speci�c

stochastic processes generating preferences, and on agents having short preference

lists.

Theorem 2 part (i) guarantees that the stable matchings of the limit economy vary

continuously with respect to fundamentals. This validates using empirical data and

simulations to study matching markets, as it shows that small measurement errors

do not radically alter the set of stable matchings.

An immediate implication of Theorem 2 is that the stable matchings of an economy

of agents randomly drawn according to η converge almost surely to a stable matching

of the continuum model.

Corollary 1. Assume that the continuum economy E = [η, q] admits a unique stable

matching µ. Let F k = [Θ̃k, q̃k] be a randomly drawn �nite economy, with k students
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drawn independently according to η and the vector of capacity per student q̃k/k con-

verging almost surely to q. Let µ̃k be a stable matching of F k. Then almost surely we

have that F k converges to F , and µ̃k converges to µ.

This corollary follows from a direct application of the Glivenko�Cantelli theorem.

Its importance is twofold. First, for a general class of random processes generating

large �nite economies, all sequences of stable matchings will converge to the unique

stable matching given by the continuum model. Second, this can be used to char-

acterize the asymptotics of mechanisms used in practice. One particular case is the

random serial dictatorship (RSD) mechanism, which is used to allocate a number of

objects (the colleges in our model correspond to object types) among agents (which

correspond to the students). Agents are randomly ordered in a queue, and take turns

selecting their favorite object. In a recent paper, Che and Kojima Forthcoming show

that the RSD mechanism is asymptotically equivalent to the probabilistic serial mech-

anism proposed by Bogomolnaia and Moulin 2001. Because RSD is a particular case

of the deferred acceptance mechanism when all colleges have the same preference or-

dering over students, their result is a particular case of ours, where the measure η has

all its weight on the diagonal {θ ∈ Θ : eθ1 = · · · = eθn}. In addition, Corollary 1 can

be used to characterize the asymptotics of other mechanisms used in school choice,

such as deferred acceptance with single tie-breaking. Appendix C provides details of

these constructions.

3.1 Multiple stable matchings and robustness

Section 3 shows that most continuum economies have a unique stable matching, and

that there is a close connection between the stable matchings of the continuum and

discrete model in that case. The reason why uniqueness is an important requirement

is that, when the continuum economy admits more than one stable matching, these

matchings may not be robust with respect to small perturbations in the economy.

The following example illustrates this point.

Example 1. (School Choice)

This example is based on a school choice problem. In Boston and New York City,

academic economists have redesigned the centralized clearinghouse that matches stu-

dents to public schools. The algorithm chosen was to start by breaking ties between

20



students using a single lottery, and then run the student-proposing deferred accep-

tance algorithm.24

A city has two schools, c = 1, 2, with a quota of q1 = q2 = 1. Students have

priorities to schools according to the walk zones where they live in. A mass 1 of

students lives in the walk zone of each school. To break ties, the city gives each

student a single lottery number l uniformly distributed in [0, 1]. The student's score

is

l + I(θ is in c's walk zone).

First note that market clearing cuto�s must be in [0, 1], as the mass of students

with priority to each school is only large enough to exactly �ll each school. Conse-

quently, the market clearing equations can be written

1 = q1 = (1− p1) + p2

1 = q2 = (1− p2) + p1.

The �rst equation describes demand for school 1. 1− p1 students in the walk zone of

2 are able to a�ord it, and that is the �rst term. Also, p2 students in the walk zone

of 1 would rather go to 2, but don't have high enough lottery number, so they have

to stay in school 1. The market clearing equation for school 2 is the same.

Note that these equations are equivalent to

p1 = p2.

Hence any point in the line {p = (x, x)|x ∈ [0, 1]} is a market clearing cuto� - the

lattice of stable matchings has in�nite points, ranging from a student optimal stable

matching, p = (0, 0) to a school optimal stable matching p = (1, 1).

Now modify the economy by adding a small mass of agents that have no priority,

so that the new mass has eθ uniformly distributed in [(0, 0), (1, 1)]. It's easy to see

that in that case the unique stable matching is p = (1, 1). Therefore adding this

small mass unravels all stable matchings except for p = (1, 1). In addition it is also

possible to �nd perturbations that undo the school optimal stable matching p = (1, 1).

24The example is a continuum version of an example used by Erdil and Ergin (2008) to show a
shortcoming of deferred acceptance with single tie-breaking: it may produce matchings which are ex
post ine�cient with respect to the true preferences, before the tie-breaking. That is, the algorithm
often produces allocations which are Pareto dominated by other stable allocations.
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If we add a small amount ε of capacity to school 1, the unique stable matching is

p = (0, 0). And if we reduce the capacity of school 1 by ε, the unique stable matching

is p = (1 + ε, 1), which is close to p = (1, 1).

The following Proposition generalizes the example. It shows that, when the set

of stable matchings is large, then none of the stable matchings are robust to small

perturbations. The statement uses the fact, proven in Appendix A, that for any

economy E there exists a smaller and a largest market clearing cuto�, in the sense of

the usual partial ordering of Rn.

Proposition 1. (Instability) Consider an economy E with more than one stable

matching and
∑

c qc < 1. Let p be one of its market clearing cuto�s. Assume p is

either strictly larger than the smallest market clearing cuto� p−, or strictly smaller

than the largest p+. Let N be a su�ciently small neighborhood of p. Then there exists

a sequence of economies Ek converging to E without any market clearing cuto�s in

N .

Proof. Suppose p > p−; the case p < p+ is analogous. Assume N is small enough

such that all points p′ ∈ N satisfy p′ > p−. Denote E = [η, q], and let Ek = (η, qk),

where qkc = qc + 1/nk. Consider a sequence pk of market clearing cuto�s of Ek. Then

∑
c∈C

Dc(p
k|η) =

1

k
+
∑

qc.

However, for all points p′ in N ,∑
c∈C

Dc(p
′|η) ≤

∑
c∈C

Dc(p
−|η) =

∑
qc <

∑
qkc .

However, for large enough k,
∑
qkc < 1, which means that for any market clearing

cuto� pk of Ek we must have D(pk|η) = qkc , and therefore there are no market clearing

cuto�s in N .

4 Conclusion

As market design tackles ever more sophisticated problems, it becomes increasingly

common that exact analytic results in discrete models are not available. Several recent
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contributions have focused on obtaining results that are valid only asymptotically,

as markets become large in some sense (Roth and Peranson (1999); Immorlica and

Mahdian (2005); Budish (2008); Che and Kojima (Forthcoming); Kojima and Pathak

(2009); Kojima and Manea (2009); Manea (2009)). In this paper we consider the case,

ubiquitous in practice, of matching markets where agents on one side are matched

to several agents on the other side. We propose a variation of the Gale and Shapley

(1962) college admissions problem, where a �nite number of colleges is matched to a

continuum of students that captures this setting.

The main results are, �rst, the convergence results outlining the close connection

between stable matchings of the continuum model and of approximating discrete

economies. This lays foundations for continuum models that have been used in the

case of perfectly correlated college preferences, and permits extending their analysis

to more complex settings (Abdulkadiroglu et al. (2008); Miralles (2008)). Second,

we �nd that generically the set of stable matchings depends continuously on the

underlying economy. This justi�es the use of empirical data and simulations in the

study and design of matching markets (Roth and Peranson (1999); Abdulkadiroglu

et al. (2009); Budish and Cantillon (Forthcoming)). Third, our model implies that

generically the continuum model has a unique stable matching. Coupled with the

convergence results, this implies that large discrete economies close to a given generic

limit tend to have stable matchings which are all very similar. This complements

previous results showing that large economies have few stable matchings (Roth and

Peranson (1999); Immorlica and Mahdian (2005)). Fourth, we use the framework to

derive new results on the asymptotics of commonly used mechanisms, generalizing

previous �ndings (Che and Kojima (Forthcoming)).

Another innovation is the use of the score of marginal accepted students (cuto�s)

as a centerpiece of our analysis. One of our contributions is the cuto� lemma, which

characterizes stable matchings in terms of market clearing cuto�s, and describes a

natural relationship between the two. The fact that this relationship holds both in

the discrete and continuum setting is the driving force behind our convergence results,

and allows us to sidestep the more conventional combinatorial arguments.

The usefulness of the continuum model will depend on whether it can be fruitfully

applied to new problems in matching theory and market design. In two companion

papers, we use the model to tackle open questions. In Azevedo and Leshno (2010),

we apply the continuum framework to study how deferred acceptance mechanisms
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compare with student-optimal stable mechanisms, in equilibrium. Azevedo (2010)

applies the framework to understand equilibrium behavior in stable mechanisms, and

the equilibrium of imperfectly competitive matching markets. In future research, it

would be interesting to explore further applications of the model, and use it to derive

results which, although not feasible in the discrete model, help us understand real-life

matching markets.
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Appendix

Guide to the appendix

This appendix includes proofs of the results in the text, as well as additional

results. The Appendix is organized as follows. Appendix A extends some classic

results of classic matching theory to the continuum model. It provides a proof of the

continuum cuto� lemma 1, and of Theorem 1. Appendix B derives results on the

continuity of the stable matching correspondence, and on the convergence of stable

matchings of discrete economies. It provides proofs of Theorem 2 and Corollary 1.

Appendix C then discusses how to use the model to obtain results on the asymptotics

of the RSD mechanism, and of some school choice mechanisms. Appendix D extends

the model to matching with contracts.

A Basic Results

We begin the analysis by deriving some basic properties of the set of stable matchings

in the continuum model. Besides being of independent interest, they will be useful in

the derivation of the convergence results. Throughout this section we �x a continuum

economy E = [η, q], and omit dependence on E, η, and q in the notation.

First we will prove the continuum cuto� Lemma 1.

Proof. (Lemma 1) Let µ be a stable matching, and p = Pµ. Consider a student θ

with µ(θ) = c. By de�nition, pc ≤ eθc . Consider a college c′ that θ prefers over c. By

right continuity, there is a student θ+ with slightly higher rank that is matched to c

and prefers c′. By stability of µ all the students that are matched to c′ have higher

rank than θ+, so pc′ ≥ e
θ+
c′ > eθc′ . This means that c is better than any other college

that θ can demand, so Dθ(p) = µ(θ). This shows that no school is over-demanded

given p, and thatMPµ = µ. To conclude that p is a market clearing cuto� we are

observe that if η(µ(c)) < qc stability implies that a student that most prefers c and

has rank zero is matched to c, so pc = 0.

Let p be a market clearing cuto�, and µ = Mp. First, by the de�nition of

Dθ(p), µ is right-continuous. Because p is a market clearing cuto�, µ respects quota

constraints. To show that µ is stable, consider any potential blocking pair (θ, c) with

µ(θ) ≺θ c. Since θ could not demand c it must be that pc > eθc , so pc > 0 and c has no
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empty slots. If θ′ ∈ µ(c) we have eθ
′
c ≥ pc > eθc , so (θ, c) is not a blocking pair. Thus

µ is stable. Let p′ = Pµ. If µ(θ) = c, then eθc ≥ pc. This implies that p′c ≥ pc. But

if θ is a student with eθc = pc that most prefers c, then µ(θ) = c. Therefore p′c ≤ pc.

Together p′ = p, showing that PMp = p.

Now consider the sup (∨) and inf (∧) operators on Rn as lattice operators on

cut�s. That is, given two vectors of cuto�s

(p ∨ p′)c = sup{pc, p′c}.

We then have that the set of market clearing cuto�s forms a complete lattice with

respect to these operators.

Theorem 3. (Lattice Theorem) The set of market clearing cuto�s is a complete25

lattice under ∨,∧.

Proof. Consider two market clearing cuto�s p and p′, and let p+ = p ∨ p′. Take a

college c, and assume without loss of generality that pc ≤ p′c. By the de�nition of

demand, we must have that Dc(p
+) ≥ Dc(p

′), as p+
c = p′c and the cuto�s of other

colleges are higher under p+. Also, if p′c > 0, then Dc(p
+) ≥ qc ≥ Dc(p). And if

p′c = 0, then pc = p′c, and Dc(p
+) ≥ Dc(p). Either way, we have that

Dc(p
+) ≥ max{Dc(p), Dc(p

′)}.

Moreover, the demand for staying unmatched must be higher under p+ than under

p or p′. Because demand for staying unmatched plus for all colleges always sums to 1,

we have that for all colleges Dc(p
+) = Dc(p) = Dc(p

′) . In particular p+ is a market

clearing cuto�. The proof for the inf operator is analogous.

This Theorem imposes a strict of structure in the set of stable matchings. It di�ers

from the Conway lattice Theorem in the discrete setting (Knuth (1976)), as the set

of stable matchings forms a lattice with respect to the operation of taking the sup of

25In a complete lattice, the operators must be de�ned and closed over any subset. In our case,
the operators are de�ned over arbitrary sets of cuto�s as these are subsets of Rn. For notational
simplicity the proof only considers the sup of two elements, the proof for arbitrary sets is essentially
the same.
A complete lattice also cannot be empty. The fact that at least one market clearing cuto� exists

is proved in Corollary 2.
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the associated cuto� vectors. In the discrete model, where the sup of two matchings

is de�ned as the matching where each student gets her favorite college in each of the

matchings. This statement is not valid in the continuum model.

As a direct corollary of the proof we have the following.

Theorem 4. (Rural Hospitals Theorem) The measure of students matched to a

given school is the same in any stable matching.

Furthermore, if a college does not �ll its capacity, it is matched to the same set of

students in every stable matching, except for a set of students with η measure 0.

Proof. The �rst part was proved in the proof of Theorem 3. Let µ =Mp, µ′ =Mp′,

and µ′′ = M(p ∧ p′). Now consider a college c such that η(µ(c)) < qc. Therefore

pc = p′c = min{pc, p′c} = 0. By the gross substitutes property of demand we have

that µ(c) ⊆ µ′′(c). By the �rst part of the Theorem we have that η(µ′′(c)\µ(c)) = 0.

Therefore η(µ(c)\µ′(c)) ≤ η(µ′′(c)\µ′(c)) = 0. Using the same argument we get that

η(µ′(c)\µ(c)) = 0.

This result implies that a hospital that does not �ll its quota in one stable match-

ing does not �ll its quota in any other stable matching. Moreover, the measure of

unmatched students is the same in every stable matching, an observation that will be

very useful when we prove results on uniqueness of a stable matching.

We now de�ne the continuum version of the student-proposing deferred acceptance

algorithm. The algorithm starts with all students unassigned and follows these two

steps:

• Step 1: Each student that is unassigned is tentatively assigned to her favorite

college that hasn't rejected her yet, if there are any.

• Step 2: If no college has more students assigned than its capacity, �nish, and

let the matching be for each student her currently assigned college. Otherwise,

each college rejects all students strictly below a minimum threshold score such

that the measure of students assigned to it is exactly qc, and it is above its

threshold score in the previous periods.

We have that, although the algorithm does not necessarily �nish in a �nite number

of steps, the tentative assignments always converges to a stable matching.
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Proposition 2. (Deferred Acceptance Convergence) The student-proposing de-

ferred acceptance algorithm converges pointwise to a stable matching.

Proof. To see that the algorithm converges, note that each student can only be re-

jected at most n times. Consequently, for every student there exists k high enough

such that in all rounds of the algorithm past k she is assigned the same college or

matched to herself, so the pointwise limit exists. To see that the limit is a matching,

we only have to prove that the measure of students assigned to each college is no

more than its capacity. At each round k of the algorithm, let Rk be the measure of

rejected students. Again, because no student can be rejected more than n times, we

have Rk → 0. But at round k, the excess of students assigned to each college has to

be at most Rk, so in the limit each school is assigned at most its quota. Also, if the

measure is less than the quota, then we know the school hasn't rejected any students

throughout the algorithm.

Right continuity follows from the fact that sets of rejected students are always of

the form eθc < k.

The proof that the outcome is stable is identical to the discrete case examined in

Gale and Shapley (1962). Assume by contradiction that (θ, c) is a blocking pair. If

η(µ(c)) < qc, by the argument above c does not reject anyone during the algorithm,

which contradicts (θ, c) being a blocking pair. This implies that there is θ′ in µ(c)

with eθ
′
c < eθc . At some step k of the algorithm, both agents are already matched to

their �nal outcomes. But because θ was rejected by c in an earlier step, all agents

matched to c at step k must have higher priority than eθc , which is a contradiction.

This shows that the traditional way of �nding stable matchings also works in the

continuum model, although the algorithm converges, without necessarily �nishing in

a �nite number of steps. An immediate corollary of this Proposition is that stable

matchings always exist26.

Corollary 2. (Existence) There exists at least one stable matching.

We can now prove Theorem 1.We denote the excess demand given a vector of

26Notice that our existence proof uses the deferred acceptance algorithm, following Gale and
Shapley (1962). When we consider matching with contracts, we will give an alternative existence
proof, using Tarski's �xed point Theorem. It is also possible to prove existence using the existence
Theorem for �nite economies, and our convergence results below.
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cuto�s p and an economy E = [η, q] by

z(p|E) = D(p|η)− q.

Proof. (Theorem 1) Part 1:

Assume by contradiction that there is more than one stable matching. By the

lattice Theorem, there is a smallest p− and highest p+ equilibrium cuto�s. The set

of students that are unmatched in p+ but not in p− is

{θ|eθ < p+}\{θ|eθ < p−}.

This contains an open set, and so has positive measure. Therefore the measure of

unmatched students is higher under p+, contradicting the rural hospitals Theorem.

Part 2:

The proof is based on Sard's Theorem, from di�erential topology.27 By Sard's

Theorem, for generic q, every market clearing cuto� is a regular point of z(·|E).28

That is, the derivative of z at that cuto� is invertible. We will reach a contradiction

by showing that if E has multiple stable matchings, then at least one of them is not

a regular point.

Formally, consider a capacity vector q such that market clearing cuto�s are regular

points of z. By Sard's Theorem, this is the case for almost every q. To reach a

contradiction, assume that the economy [η, q] has more than one stable matching.

Let p− 6= p+ be the minimum and maximum market clearing cuto�s. We will show

p− is not a regular point of z, contradicting Sard's Theorem.

First we consider the case p−c < p+
c for all c = 1, . . . , n. Consider the cube

{x ∈ [0, 1]n|p− ≤ x ≤ p+}. For any p in the cube, we have p− ≤ p ≤ p+. Therefore

0 =
∑

c zc(p
−) ≥

∑
c zc(p) ≥

∑
c zc(p

+) = 0. This implies that the sum
∑

c zc(p) is

constant on the cube. Therefore the derivative of p− satis�es ∂pz(p−) ·~1 = 0, and p−

27See Guillemin and Pollack (1974); Milnor (1997). Consider a C1 function f : Rn → Rn. Sard's
Theorem says that, for generic q, all the roots of f(x) = q have an invertible derivative. That is, if
x0 is a root, then ∂xf(x0) is nonsingular.

28Here is a detailed argument. We have z(p|E) = D(p|η)− q. Consequently the roots of z are the
points where D(p|η) = q. Denote by P0 the set of points p where D is not continuously di�erentiable.
P0 is closed, because the set of points where a function is continuously di�erentiable is open. By
our smoothness assumption, D(P0|η) has measure 0. Let P1 be the set of critical points of D in
[0, 1]n\P0. By Sard's Theorem, its image D(P1|η) has measure 0. Therefore, almost every q is not
in the image of either P0 nor P1, and so it is a regular value of D(p|η). Because D and z di�er by a
constant, 0 is a regular value of z for generic q.
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is not a regular point.

We now turn to the case when p−c < p+
c for c = 1, . . . , l and p−d = p+

d for d =

l+1, . . . , n. Let F be the subspace of <n that spans dimensions 1 to l. Let us consider

z(·|E) on the cube {x ∈ [0, 1]n| p− ≤ x ≤ p+}. By the de�nition of demand ∂zc(·|E)
∂pc′

≥ 0

for c 6= c′, so zl+1(·|E), . . . zn(·|E) are weakly increasing in all positive directions in the

cube. As all those function are equal to 0 at both ends of the cube, p−, p+, they must

be identically zero on the cube. Therefore the derivative ∂pz(p−|E) must take the

subspace F into itself. However, by argument in the previous paragraph,
∑

c zc(·|E)

is constant and equal to 0 in the cube. Therefore
∑

c=1,...,l zc(·|E) is constant, and

∂pz(p−|E) is singular.

B Continuity and convergence

B.1 Continuity

In this section we ask when the stable matching correspondence is continuous.

Note that, by our de�nition of convergence, we have that if the sequence of con-

tinuum economies Ek converges to a continuum economy E, then we have that the

functions z(·|Ek) converge pointwise to z(·|E). Moreover, using the assumption that

�rms' indi�erence curves have measure 0 at E, we have the following.

Lemma 3. Consider a continuum economy E = [η, q], a vector of cuto�s p and a

sequence of cuto�s pk converging to p. If ηk converges to η in the weak-* sense and

qk converges to q then

z(pk|[ηk, qk]) = D(pk|ηk)− qk

converges to z(p|E).

Proof. Let Gk be the set

∪i{θ ∈ Θ : |eθi − pi| ≤ sup
k′≥k
|pk′i − pi|}.

The set

∩kGk = ∪i{θ ∈ Θ : eθi = pi},

has η-measure 0 by the strict preferences assumption 1. Since the Gk are nested, we

have that η(Gk) converges to 0.

33



Now take ε > 0. There exists k0 such that for all k ≥ k0 we have η(Gk) < ε/4.

Since the measures ηk converge to η in the weak sense, we may assume also that

ηk(Gk0) < ε/2. Since the Gk are nested, this implies ηk(Gk) < ε/2 for all k ≥ k0.

Note that Dθ(p) and Dθ(p
k) may only di�er in Gk. We have that

|D(p|η)−D(pk|ηk)| = |D(p|η)−D(p|ηk)|+ |D(p|ηk)−D(pk|ηk)|.

As ηk converges to η, we may take k0 large enough so that the �rst term is less

than ε/2. Moreover, since the measure η(Gk) < ε/2, we have that for all k > k0 the

above di�erence is less than ε, completing the proof.

Note that this Lemma immediately implies the following:

Lemma 4. Consider a continuum economy E = [η, q], a vector of cuto�s p a sequence

of cuto�s pk converging to p, and a sequence of continuum economies Ek converging

to E. We have that z(pk|Ek) converges to z(p|E).

Upper continuity is easy to guarantee in general.

Proposition 3. (Upper Hemicontinuity) The stable matching correspondence is

upper hemicontinuous

Proof. Consider a sequence (Ek, pk) of continuum economies and associated market

clearing cuto�s, with Ek → E and pk → p, for some continuum economy E and vector

of cuto�s p. We have z(p|E) = limk→∞ z(pk, Ek) ≤ 0. If pc > 0, for high enough k

we must have pkc > 0 so that zc(p|E) = limk→∞ zc(p
k, Ek) = 0.

With uniqueness, continuity also follows easily.

Lemma 5. (Continuity) Let E be a continuum economy with a unique stable match-

ing. Then the stable matching correspondence is continuous at E.

Proof. Let p be the unique market clearing cuto� of E. Consider a sequence (Ek, pk)

of economies and associated market clearing cuto�s, with Ek → E. Assume, by

contradiction that pk does not converge to p. Then pk has a convergent subsequence

that converges to another point p′ ∈ [0, 1]n. By the previous Proposition, this must

be a market clearing cuto� of E, reaching a contradiction.
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B.2 Convergence

We now consider the relationships between the stable matchings of a continuum

economy, and stable matchings of a sequence of discrete economies that converge to

it. First, we de�ne the normalized demand function for a �nite economy F = [Θ̃, q]

as

D(p̃|F ) = D̃(p̃|F )/#Θ̃,

which we also denote D(p̃|η[F ]). We will extend the notation of excess demand

functions to include �nite economies, denoting

z(p̃|F ) = D(p̃|η[F ])− q[F ].

Note that with this de�nition, p̃ is a market clearing cuto� for �nite economy F

i� z(p̃|F ) ≤ q, with zc(p̃|F ) = 0 whenever p̃c > 0.

We make note of an useful particular case of Lemma 3 as the following Lemma.

Lemma 6. Consider a limit economy E, sequence of cuto�s p̃k converging to p,

and sequence of �nite economies F k converging to E. We then have that z(p̃k|F k)

converges to z(p|E).

Proposition 4. (Convergence) Let E be a continuum economy, and (F k, p̃k) a

sequence of discrete economies and associated market clearing cuto�s, with F k → E

and p̃k → p. Then p is a market clearing cuto� of E.

Proof. (Proposition 4) We have z(p|E) = limk→∞ z(p̃k|F k) ≤ 0. If pc > 0, then

p̃kc > 0 for large enough k, and we have zc(p|E) = limk→∞ zc(p̃
k|F k) = 0.

When the continuum economy has a unique stable matching, we can prove the

stronger result below.

Lemma 7. (Convergence with uniqueness) Let E be a continuum economy with

an unique market clearing cuto� p, and (F k, p̃k) a sequence of discrete economies and

associated market clearing cuto�s, with F k → E. Then p̃k → p.

Proof. (Proposition 7) Assume, by contradiction that p̃k does not converge to p.

Then p̃k has a convergent subsequence that converges to another point p′ ∈ [0, 1]n.

Then z(p′|E) = limk→∞ z(p̃k, F k) ≤ 0. If p′c > 0, we must have that p̃kc > 0 for all

large enough k, and so zc(p
′|E) = 0. Therefore, p′ 6= p is a market clearing cuto�, a

contradiction.
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Note that Theorem 2 and Corollary 1 follow from the previous results.

Proof. (Theorem 2) Part (i) follows from Lemma 5 and Part (ii) follows from Lemma

4. As for Part (iii), note �rst that given an economy F k the set of market clearing

cuto�s is compact, which follows easily from the de�nition of market clearing cuto�s.

Therefore there exist market clearing cuto�s pk and p′k of F k such that the diameter

of F k is ‖pk− p′k‖∞. However, by Part (ii), both sequences pk and p′k are converging

to p, and therefore the diameter of F k is converging to 0.

Proof. (Corollary ) Given Theorem 2, it only remains to prove that the sequence

of random economies F k converges to E almost surely. It is true by assumption

that q[F k] converges to q. Moreover, by the Glivenko-Cantelli Theorem, the realized

measure η[F k] converges to η in the weak-* topology almost surely. Therefore, by

de�nition of convergence, we have that F k converges to E almost surely.

C Asymptotics of mechanisms

C.1 Random serial dictatorship

The assignment problem consists of allocating indivisible objects to a set of agents.

No transfers of a numeraire or any other commodity are possible. The most well-

known solution to the assignment problem is the random serial dictatorship mecha-

nism (RSD). In the RSD mechanism, agents are �rst ordered randomly by a lottery.

They then take turns picking their favorite object, out of the ones that are left.

Recently, Che and Kojima (Forthcoming) have characterized the asymptotic limit

of the RSD mechanism. They show that RSD is asymptotically equivalent to the

probabilistic serial mechanism proposed by Bogomolnaia and Moulin (2001). This

is a particular case of our results, as the serial dictatorship mechanism is equivalent

to deferred acceptance when all colleges have the same ranking over students. This

section formalizes this point.

In the assignment problem there are n object types c = 1, 2, . . . , n, plus a null

object n+1, which corresponds to not being assigned an object. Consider a sequence

of �nite assignment problems, with k →∞ agents. A fraction mk
� has each possible

preference list � over objects. There are qkc objects of each type per agent, plus an
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in�nite number of copies of the null object. Assume (mk, qk) converges to some (m, q)

with q > 0,m > 0.

We can describe RSD as a particular case of the deferred acceptance mechanism

where all colleges have the same preferences. First, we give agents priorities based on a

lottery, generating a random college admissions problem, where agents correspond to

students, and colleges to objects. Given assignment problem k, randomly assign each

agent a single lottery number l uniformly in [0, 1], that gives her score in all colleges

(that is, objects) of ec = l. This induces a random discrete economy F k de�ned as in

Corollary 1. We have that the RSD outcome is the unique stable matching of F k.29

Notice that the F k converge almost surely to a continuum economy E with a

vector q of quotas, a mass m� of agents with each preference list �, and scores eθ

uniformly distributed along the diagonal of [0, 1]n. This limit economy has a unique

market clearing cuto� p(m, q). We have the following characterization of the limit of

the RSD mechanism.

Proposition 5. Under the RSD mechanism the probability that an agent with pref-

erences � will recieve object c converges to

ˆ
l∈[0,1]

1(c=arg max
�

{c∈C|pc(m,q)≤l})dl.

That is, the cuto�s of the limit economy describe the limit allocation of the RSD

mechanism. In the limit, agents are given a lottery number uniformly drawn between

0 and 1, and receive their favorite object out of the ones with cuto�s below the lottery

number. Inspection of the market clearing equations shows that cuto�s correspond

to 1 minus the times where objects run out in the probabilistic serial mechanism.

This yields the Che and Kojima (Forthcoming) result on the asymptotic equivalence

of RSD and the probabilistic serial mechanism.

C.2 School choice mechanisms

The argument in the previous section can be extended to characterize the asymptotic

behavior of actual school choice mechanisms used in practice. The school choice prob-

29Formally, we are using the known facts that for almost every drawing of the economy preferences
are strict, and that when all colleges agree on the rankings of all students, there is a unique stable
matching, and that this matching corresponds to the outcome of serial dictatorship where the most
preferred students choose �rst.
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lem consists in assigning seats in public schools to students, while observing priorities

some students may have to certain schools. It di�ers from the assignment problem be-

cause schools have priorities. And di�ers from the classic college admissions problem

in that often schools are indi�erent between large sets of students (Abdulkadiroglu

and Sonmez (2003)). For example, a school may give priority to students students

living within its walking zone, but treat all students within a priority class equally. In

Boston and NYC, the clearinghouses that assign seats in public schools to students

were recently redesigned by academic economists (Abdulkadiroglu et al. (2005a,b)).

The chosen mechanism was deferred acceptance with single tie-breaking (DA-STB).

DA-STB �rst orders all students using a single lottery, which is used to break indif-

ferences in the schools' priorities, generating a college admissions problem with strict

preferences. It then runs the student-proposing deferred acceptance algorithm, given

those re�ned preferences (Abdulkadiroglu et al. (2009)).

We can use our framework to derive the asymptotics of the DA-STB mechanism.

Fix a set of schools C = 1, . . . , n, n + 1 (which correspond to the colleges in our

framework). School n + 1 is the null school that corresponds to being unmatched,

and is the least preferred school of each student. Student types θ = (�θ, eθ) are

again given by a strict preference list �θ and a vector of scores eθ. However, to

incorporate the idea that schools only have very coarse priorities, corresponding to a

small number of priority classes, we assume that all eθc are integers in {0, 1, 2, . . . , ē}
for ē > 0. Therefore the set of possible student types is �nite. We denote by Θ̄ the set

of possible types. Consider a sequence of school choice problems, each with k → ∞
students. Problem k has a fraction mk

θ of students of each type, and school c has

capacity qc per student. The null school has capacity qn+1 = ∞. Assume (mk, qk)

converges to some (m, q) with q > 0,m > 0.

We can describe the DA-STB mechanism as �rst breaking indi�erences through

a lottery, which generates a college admissions model, and then giving each student

the student-proposing deferred acceptance allocation. Assume each student receives a

lottery number l independently uniformly distributed in [0, 1]. The student's re�ned

score in each school is given by her priority, given by her type, plus lottery number,

eθc + l. Therefore, for each k the lottery yields a randomly generated �nite economy

F k, as the one de�ned in Corollary 1. The DA-STB mechanism then assigns each

student in F k to her match in the unique student-optimal stable matching in F k.

For each type θ in the original problem, denote by xkDA−STB(θ) in ∆C the random
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allocation she receives from the DA-STB mechanism.

Analogously to the assignment problem, as the number of agents grows, the ag-

gregate randomness generated by the lottery disappears. The randomly generated

economies F k are converging almost surely to a limit economy, given as follows. For

each of the possible types in θ ∈ Θ̄, let the measure ηθ over Θ be uniformly distributed

in the line segment �θ ×[eθ, eθ + 1], with total mass 1. Let η =
∑

θ∈Θ̄m
k
θ · ηθ. The

limit continuum economy is given by E = [η, q]. We have the following generalization

of the result in the previous section.

Proposition 6. Assume the limit economy E has a unique market clearing cuto�

p(m, q). Then the probability that DA-STB assigns student θ to school c converges to

ˆ
l∈[0,1]

1(c=arg max
�θ

{c∈C |pc(m,q)≤eθc+l})dl.

The Proposition says that the asymptotic limit of the DA-STB allocation can be

described using cuto�s. The intuition is that, after tie-breaks, a discrete economy

with a large number of students is very similar to a continuum economy where stu-

dents have lottery numbers uniformly distributed in [0, 1]. The main limitation of

the Proposition is that it requires the continuum economy to have a unique market

clearing cuto�. Although we know that this is valid for generic vectors of capacities

q, example 1 show that it is not always the case.

This result also suggests that the outcome of the DA-STB mechanism should dis-

play small aggregate randomness, even though the mechanism is based on a lottery.

The Proposition suggests that, for almost every vector (m, q), the market clearing

cuto�s of large discrete economies approach the unique market clearing cuto� of the

continuum limit. Therefore, although the allocation a student receives depends on

her lottery number, she faces approximately the same cuto�s with very high proba-

bility. This is consistent with simulations using data from the New York City match,

reported by Abdulkadiroglu et al. (2009). For example, they report that in multiple

runs of the algorithm, the average number of applicants who are assigned their �rst

choice is 32,105.3, with a standard deviation of only 62.2.

Another important feature of the Proposition is that the asymptotic limit of DA-

STB given by cuto�s is analytically simpler than the allocation in a large discrete

economy. To compute the allocation of DA-STB in a discrete economy, it is in prin-

ciple necessary to compute the outcome for all possible ordering of the students by
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a lottery. Therefore, to compute the outcome with ten students, it is necessary to

consider 10! ≈ 4 · 106 lottery outcomes, and for each one compute the outcome of

the deferred acceptance algorithm. For an economy with 100 students, the number

of possible lottery outcomes is 100! ≈ 10156. Consequently, the continuum model can

be applied to derive analytic results on the outcomes of DA-STB in large economies.

Azevedo and Leshno (2010) apply this model to compare the equilibrium properties

of deferred acceptance with student optimal stable mechanisms.

In addition, the Proposition generalizes the result in the previous section, that

describes the asymptotic limit of the RSD mechanism. RSD corresponds to DA-STB

in the case where all students have equal priorities. Therefore, the market clearing

equations provide a uni�ed way to understand asymptotics of RSD, the probabilistic

serial mechanism, and DA-STB.

D Matching with contracts

D.1 The Setting

In many markets, agents must negotiate not only who matches with whom, but also

wages and other terms of contracts. When hiring faculty most universities negotiate

both in wages and teaching load. Firms that supply or demand a given production

input may negotiate, besides the price, terms like quality or timeliness of the deliveries.

This section extends the continuum model to include these possibilities.

Formally, we now consider a set of doctors Θ distributed according to a measure

η, a �nite set of hospitals H, and a set of contracts X. η is assumed to be de�ned

over a σ-algebra ΣΘ. Each contract x in X speci�es

x = (θ, h, w),

that is, a doctor, a hospital, and other terms of the contract w. A case of particular

interest, to which we return to later, is when w is a wage, and agents have quasilinear

preferences.

We also assume that X contains a null contract ∅, that corresponds to being

unmatched. A matching is a function

µ : Θ ∪H → X ∪ 2X
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that associates each doctor (hospital) to a (set of) contract(s) that contain it, or to

the empty contract. In addition, each doctor can be assigned to at most one hospital.

Moreover, hospitals must be matched to a set of doctors of measure at most equal

to its quota qh. Finally, a matching has to be stable with respect to the product

σ-algebra given by ΣΘ in the set Θ and the σ-algebra 2H in the set of hospitals.

Models of matching with contracts have been proposed by Kelso and Crawford

(1982); Hat�eld and Milgrom (2005). Those papers de�ne stable matchings with

respect to preferences of �rms over sets of contracts. While this is an interesting

direction, we focus on a simpler model, where stability is de�ned with respect to

preferences of �rms over single contracts. This corresponds to the approach that

focuses on responsive preferences in the college admissions problem. This restriction

considerably simpli�es the exposition, as the same arguments used in the previous

sections may be applied. Henceforth we assume that hospitals have preferences

over single contracts and the empty contract �h, and agents have preferences over

contracts and over being unmatched �θ.
A single agent (doctor or hospital) blocks a matching µ if it is matched to a

contract that is worse than the empty contract. A matching is individually rational

if no single agent blocks it. A doctor-hospital pair θ, h is said to block a matching

µ if they are not matched, there is a contract x = (θ, h, w) that θ prefers over µ(θ)

and either (i) hospital h did not �ll its capacity η(µ(h)) < qh and h prefers x to the

empty contract, (ii) h is matched to a contract x′ which it likes less than contract x .

De�nition 6. A matching µ is stable if

• It is individually rational.

• There are no blocking pairs.

Assume also that doctor's preferences can be expressed by an utility function uθ(x).

And hospital's by an utility function πh(x). To get an analogue of the cuto� Lemma,

we impose some additional restrictions. Let Xθ
h be the set of contracts that contain

both a hospital h and a doctor θ.

Assumption 2. (Regularity Conditions)

• (Boundedness) All uθ(x) and πh(x) are contained in [−M,M ].
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• (Compactness) For any doctor-hospital pair θ, h, the set of pairs

{(uθ(x), πh(x))|x ∈ Xθ
h}

is compact.

• (No Redundancy) Given θ, h, no contract in Xθ
h weakly Pareto dominates,

nor has the same payo�s as another.

• (Richness) Given h and k ∈ [−M,M ], there exists an agent θ ∈ Θ whose only

acceptable hospital is h, and Xθ
h = {x} with πh(x) = k.

• (Measurability) The σ-algebra ΣΘ contains all sets of the form

{θ ∈ Θ|K ⊆ {(uθ(x), πh(x))|x ∈ Xθ
h}}.

D.2 Cuto�s

We can write an agent's maximum utility of working for a hospital h and providing

the hospital with utility of at least a cuto� ph as

ūθh(ph) = supuθ(x)

s.t. x ∈ Xθ
h

πh(x) ≥ ph.

We refer to this as the reservation utility that hospital o�ers the doctor. Note

that the reservation utility may be −∞, if the feasible set is empty. Moreover,

whenever this sup is �nite, it is attained by a contract x, due to the compactness

assumption. We will also de�ne ūθ∅(·) ≡ 0.

Now we de�ne a doctor's demand. Note that doctors demand hospitals, and not

contracts. The demand of a doctor θ given a vector of cuto�s p is

Dθ(p) = arg max
H∪{∅}

ūθh(ph),

Demand may not be uniquely de�ned, as an agent may have the same reservation

utility in more than one hospital. Henceforth we make an assumption, analogous to

the case without contracts, that indi�erences only occur in sets of measure 0.
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Assumption 3. (Strict Preferences) For any vector p, and hospitals h, h′, the set

of agents with ūθh = ūθh′ has measure 0.

From now on, we �x a selection from the demand correspondence, so that it is a

function. The aggregate demand for a hospital is de�ned as

Dh(p) = η({Dθ(p) = h}).

notice that this does not depend on the demand of agents which are indi�erent be-

tween more than one hospital, by the strict preferences assumption.

A market clearing cuto� is de�ned exactly as in de�nition 2. Given a stable

matching µ, let p = Pµ be given by

ph = inf{πh(x)|x ∈ µ(h)},

if η(µ(h)) = qh and ph = 0 otherwise. Given a market clearing cuto� p, let µ =Mp

be given by the demand function. Given θ, let the hospital to which θ is matched be

denoted h = Dθ(p). If h ∈ H, let the contract that θ gets be

µ(θ) = arg max
x∈Xθ

h

πh(x)

s.t. uθ(x) ≥ ūθh′(p) for all h
′ 6= h,

and µ(θ) = ∅ otherwise. Note that µ(θ) is uniquely de�ned, by the compactness and

no redundancy assumptions. We have the following extension of the cuto� Lemma.

Lemma 8. (Cuto� Lemma with Contracts) If µ is a stable matching, then Pµ
is a market clearing cuto�, and if p is a market clearing cuto� then Mp is a stable

matching. Also PM is the identity.

Proof. Let µ be a stable matching, and p = Pµ. Consider a doctor θ. Let x be any

contract she strictly prefers to µ(θ), in any hospital di�erent than the one to which

she is matched. By de�nition of stability, that hospital must be �lling its quota, and

for all contracts x′ ∈ µ(h) we must have πh(x
′) ≥ πh(x). Because this is true for

any such contracts, ūθh(ph) ≤ ph. By the strict preferences assumption, except for a

measure 0 set we have ūθh(ph) < ph for all such agents θ. Hence, for almost every

agent,

Dθ(p) = µ(θ),
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and so aggregate demand satis�es D(p) ≤ q. By the completeness assumption and

stability, we must have that if Dh(p) < q, then ph = 0.

Now consider a market clearing cuto� p, and let µ =Mp. It is immediate that µ

respects the capacity constraints. It also is individually rational. Hence, we only have

to show it has no blocking pairs. Assume, by contradiction, that (θ, h) is a blocking

pair. Assume θ is matched to h′, signing a contract x′. Then uθ(x′) = ūθh′(p). But

since (θ, h) is a blocking pair there is a contract x giving utility larger than this to θ

and pro�ts of at least ph to h. This is a contradiction with ūθh′(p) > ūθh(p). If there

were no such h′, then θ would be unmatched, although ūθh > 0, a contradiction.

In the case of matching with contracts, there is no longer a bijection between

market clearing cuto�s and stable matchings.

D.3 Existence, Lattice Property, and Rural Hospitals

The proofs of the lattice Theorem and the rural hospitals Theorem only relied on the

fact that aggregate demand has a gross substitutes property. Therefore these results

extend to the case of matching with contracts using the same argument.

Corollary 3. The lattice Theorem 3 and the rural hospitals Theorem 4 extend to the

matching with contracts model.

As for existence of a stable matching, we must modify the previous argument,

which used the deferred acceptance algorithm. One easy modi�cation is using a ver-

sion of the algorithm that Biró 2007 terms a �score limit algorithm�, which calculates

a stable matching by progressivelly increasing cuto�s to clear the market. A straight-

forward application of Tarski's �xed point Theorem gives us existence in this case.

Proposition 7. A stable matching always exists.

Proof. Consider the operator p′ = Tp given by the smallest solution p′ ∈ [0,M ]n to

the system of inequalities

Dh(p
′
h, p−h) ≤ qh.

T is weakly increasing in p. Moreover, it takes the cube [0,M ]n in itself. By Tarski's

�xed point Theorem, it has a �xed point, which must be a market clearing cuto�.
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D.4 The quasilinear case

A particularly interesting case of the model is when contracts only specify a wage w,

and preferences are quasilinear. That is, the utility of a contract x = (θ, h, w) is just

uθ(x) = uθh + w

πh(x) = πθh − w.

and contracts include all possible ws, such that these values are in [−M,M ].

De�ne the surplus of a doctor-hospital pair as

sθh = uθh + πθh.

If we assume that M is large enough so that, for all θ in the support of η we have

sθi < M , doctors and hospitals freely divide the surplus of a relationship with each

other. From the de�nition of reservation utility we get that for all doctors in the

support of η

ūθh(p) = sθh − ph.

Therefore, in any stable matching, doctors are sorted into the hospitals where

sθh − ph is the highest, subject to it being positive. One immediate consequence

is that doctors do not go necessarily to the hospital where they create the largest

surplus. If ph 6= ph′ , it may be the case that sθh > sθh′ , but doctor θ is assigned to h′.
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