A Continuous Time Approach for the Asymptotic Value in Two-Person Zero-Sum Repeated Games

Pierre Cardaliaguet* Rida Laraki ${ }^{\dagger}$ and Sylvain Sorin ${ }^{\ddagger}$

February 24, 2011

Abstract

We consider the asymptotic value of two person zero-sum repeated games. We extend results due to Laraki (2001) (2010), obtained for incomplete information games, splitting games and absorbing games in the discounted case using comparison arguments. The technique of proof consists in embedding the discrete repeated game into a continuous time one and to use viscosity solution tools. The results extend to general decreasing evaluations of the stream of stage payoffs.

AMS classification: 91A15, 91A20, 93C41, 49J40, 58E35, 45B40, 35B51.
JEL classification: C73, D82.
Keywords: stochastic games, repeated games, incomplete information, asymptotic value, comparison principle, variational inequalities, viscosity solutions, continuous time.

1 Introduction

In this paper we are interested in the asymptotic value of two person zero-sum repeated games. Our aim is to show that techniques which are typical of continuous time games ("viscosity solution") can be used to prove the convergence of the discounted value of such games as the discount factor tends to 0 , as well as the convergence of the value of the n-stage games as $n \rightarrow+\infty$. The originality of our approach is that it provides the same proof for both classes of problems. It also allows to handle general decreasing evaluations of the stream of stage payoffs, as well as situations in which the payoff varies "slowly" in time. We illlustrate our purpose through three typical problems: repeated games with incomplete information on both sides, first analyzed by Mertens-Zamir (1971) [11], splitting games, introduced by Laraki (2001) [6] and absorbing games, studied in particular by Kohlberg (1974) [5]. For the splitting games, we show that the value of the n-stage game has a limit, which was not known yet. In order to better explain our approach, let us first recall the definition of Shapley operator for stochastic games, and its adaptation to games with imperfect information. Then we briefly describe the operator approach and its link with the viscosity solution techniques used in this paper.

[^0]
1.1 Discounted stochastic games and Shapley operator

A stochastic game is a repeated game where the state changes from stage to stage according to a transition depending on the current state and the moves of the players. We consider the two person zero-sum case.
The game is specified by a state space Ω, move sets I and J, a transition probability ρ from $I \times J \times \Omega \rightarrow \Delta(\Omega)$ and a payoff function g from $I \times J \times \Omega \rightarrow \mathbb{R}$. All sets A under consideration are finite and $\Delta(A)$ denotes the set of probabilities on A.
Inductively, at stage $n=1, \ldots$, knowing the past history $h_{n}=\left(\omega_{1}, i_{1}, j_{1}, \ldots, i_{n-1}, j_{n-1}, \omega_{n}\right)$, player 1 chooses $i_{n} \in I$, player 2 chooses $j_{n} \in J$. The new state $\omega_{n+1} \in \Omega$ is drawn according to the probability distribution $\rho\left(i_{n}, j_{n}, \omega_{n}\right)$. The triplet $\left(i_{n}, j_{n}, \omega_{n+1}\right)$ is publicly announced and the situation is repeated. The payoff at stage n is $g_{n}=g\left(i_{n}, j_{n}, \omega_{n}\right)$ and the total payoff is the discounted sum $\sum_{n} \lambda(1-\lambda)^{n-1} g_{n}$.
This discounted game has a value v_{λ} (Shapley, 1953 [16]).
The Shapley operator $\mathbf{T}(\lambda, \cdot)$ associates to a function f in \mathbb{R}^{Ω} the function:

$$
\begin{equation*}
\mathbf{T}(\lambda, f)(\omega)=\operatorname{val}_{\Delta(I) \times \Delta(J)}\left[\lambda g(x, y, \omega)+(1-\lambda) \sum_{\tilde{\omega}} \rho(x, y, \omega)(\tilde{\omega}) f(\tilde{\omega})\right] \tag{1}
\end{equation*}
$$

where $g(x, y, \omega)=\mathrm{E}_{x, y} g(i, j, \omega)=\sum_{i, j} x_{i} y_{j} g(i, j, \omega)$ is the multilinear extension of $g(., ., \omega)$ and similarly for $\rho(., ., \omega)$, and val is the value operator

$$
\operatorname{val}_{\Delta(I) \times \Delta(J)}=\max _{x \in \Delta(I)} \min _{y \in \Delta(J)}=\min _{y \in \Delta(J)} \max _{x \in \Delta(I)}
$$

The Shapley operator $\mathbf{T}(\lambda, \cdot)$ is well defined from \mathbb{R}^{Ω} to itself. Its unique fixed point is v_{λ} (Shapley, 1953 [16]).

1.2 Extension: repeated games

A recursive structure leading to an equation similar to the previous one (1) holds in general for repeated games described as follows:
M is a parameter space and g a function from $I \times J \times M$ to \mathbb{R}. For each $m \in M$ this defines a two person zero-sum game with action spaces I and J for Player 1 and 2 respectively and payoff function $g(m,$.$) . The initial parameter m_{1}$ is chosen at random and the players receive some initial information about it, say a_{1} (resp. b_{1}) for player 1 (resp. player 2). This choice is performed according to some initial probability π on $A \times B \times M$, where A and B are the signal sets of both players. At each stage n, player 1 (resp. 2) chooses an action $i_{n} \in I$ (resp. $\left.j_{n} \in J\right)$. This determines a stage payoff $g_{n}=g\left(i_{n}, j_{n}, m_{n}\right)$, where m_{n} is the current value of the parameter. Then a new value of the parameter is selected and the players get some information. This is generated by a map ρ from $I \times J \times M$ to probabilities on $A \times B \times M$. Hence at stage n a triple $\left(a_{n+1}, b_{n+1}, m_{n+1}\right)$ is choosen according to the distribution $\rho\left(i_{n}, j_{n}, m_{n}\right)$. The new parameter is m_{n+1}, and the signal a_{n+1} (resp. b_{n+1}) is transmitted to player 1 (resp. player 2). Note that each signal may reveal some information about the previous choice of actions $\left(i_{n}, j_{n}\right)$ and both the previous (m_{n}) and the new (m_{n+1}) values of the parameter.
Stochastic games correspond to public signals including the parameter.
Incomplete information games correspond to an absorbing transition on the parameter (which thus remains fixed) and no further information (after the initial one) on the parameter.
Mertens, Sorin and Zamir (1994) [12] Section IV.3, associate to each such repeated game G an auxiliary stochastic game Γ having the same values that satisfy a recursive equation of the type (1). However the play, hence the strategies in both games differ. More precisely, in games with incomplete information on both sides, M is a product space $K \times L, \pi$ is a product probability $p \otimes q$ with $p \in P=\Delta(K), q \in Q=\Delta(L)$ and in addition $a_{1}=k$ and $b_{1}=\ell$. Given the
parameter $m=(k, \ell)$, each player knows his own component and holds a prior on the other player's component. From stage 1 on, the parameter is fixed and the information of the players after stage n is $a_{n+1}=b_{n+1}=\left\{i_{n}, j_{n}\right\}$.
The auxiliary stochastic game Γ corresponding to the recursive structure can be taken as follows: the "state space" Ω is $P \times Q$ and is interpreted as the space of beliefs on the true parameter. $\mathbf{X}=\Delta(I)^{K}$ and $\mathbf{Y}=\Delta(J)^{L}$ are the type-dependent mixed action sets of the players; g is extended on $\mathbf{X} \times \mathbf{Y} \times M$ by $g(x, y, p, q)=\sum_{k, \ell} p^{k} q^{\ell} g\left(x^{k}, y^{\ell}, k, \ell\right)$.
Given (x, y, p, q), let $x(i)=\sum_{k} x_{i}^{k} p^{k}$ be the probability of action i and $p(i)$ be the conditional probability on K given the action i, explicitely $p^{k}(i)=\frac{p^{k} x_{i}^{k}}{x(i)}$ (and similarly for y and q).
In this framework the Shapley operator is defined on the set \mathcal{F} of continuous concave-convex fonctions on $P \times Q$:

$$
\begin{equation*}
\mathbf{T}(\lambda, f)(p, q)=\operatorname{val}_{\mathbf{X} \times \mathbf{Y}}\left\{\lambda g(p, q, x, y)+(1-\lambda) \sum_{i, j} x(i) y(j) f(p(i), q(j))\right\} \tag{2}
\end{equation*}
$$

and $v_{\lambda}(p, q)$ is the unique fixed point of $\mathbf{T}(\lambda,$.$) on \mathcal{F}$. These relations are due to Aumann and Maschler (1966) [1] and Mertens and Zamir (1971) [11].

1.3 Extension: general evaluation

The basic formula expressing the discounted value as a fixed point of the Shapley operator

$$
\begin{equation*}
v_{\lambda}=\mathbf{T}\left(\lambda, v_{\lambda}\right) \tag{3}
\end{equation*}
$$

can be extended for values of games with the same plays but alternative evaluations of the stream of payoffs $\left\{g_{n}\right\}$.
For example the n-stage game with payoff defined by the Cesaro mean $\frac{1}{n} \sum_{m=1}^{n} g_{m}$ has a value v_{n} and the recursive formula for these values is obtained similarly as

$$
v_{n}=\mathbf{T}\left(\frac{1}{n}, v_{n-1}\right)
$$

with obviously $v_{0}=0$.
Consider now an arbitrary evaluation probability μ on $I N^{\star}$. The corresponding payoff in the game is $\sum_{n} \mu_{n} g_{n}$. Note that μ induces a partition $\Pi=\left\{t_{n}\right\}$ of $[0,1]$ with $t_{0}=0, t_{n}=\sum_{m=1}^{n} \mu_{m}, \ldots$ and thus the repeated game is naturally represented as a game played between times 0 and 1 , where the actions are constant on each subinterval $\left(t_{n-1}, t_{n}\right)$ which length μ_{n} is the weight of stage n in the original game. Let v_{Π} be its value. The corresponding recursive equation is now

$$
v_{\Pi}=\operatorname{val}\left\{t_{1} g_{1}+\left(1-t_{1}\right) \mathrm{E} v_{\Pi_{t_{1}}}\right\}
$$

where $\Pi_{t_{1}}$ is the normalization on $[0,1]$ of the trace of the partition Π on the intervall $\left[t_{1}, 1\right]$. If one defines $V_{\Pi}\left(t_{n}\right)$ as the value of the game starting at time t_{n}, i.e. with evaluation μ_{n+m} for the payoff g_{m} at stage m, one obtains the alternative recursive formula

$$
\begin{equation*}
V_{\Pi}\left(t_{n}\right)=\operatorname{val}\left\{\left(t_{n+1}-t_{n}\right) g_{n+1}+\mathrm{E} V_{\Pi}\left(t_{n+1}\right)\right\} . \tag{4}
\end{equation*}
$$

The stationarity properties of the game form in terms of payoffs and dynamics induce time homogeneity

$$
\begin{equation*}
V_{\Pi}\left(t_{n}\right)=\left(1-t_{n}\right) V_{\Pi_{t_{n}}}(0) \tag{5}
\end{equation*}
$$

where, as above, $\Pi_{t_{n}}$ stands for the normalization of Π restricted to the intervall $\left[t_{n}, 1\right]$.
By taking the linear extension of $V_{\Pi}\left(t_{n}\right)$ we define for every partition Π, a function $V_{\Pi}(t)$ on $[0,1]$.

Lemma 1 Assume that the sequence μ_{n} is decreasing. Then V_{Π} is C-Lipschitz in t, where C is a uniform bound on the payoffs in the game.

Proof. Given a pair of strategies (σ, τ) in the game G with evaluation Π starting at time t_{n} the total payoff can be written in the form

$$
E_{\sigma, \tau}\left[\mu_{n+1} g_{1}+\ldots+\mu_{n+k} g_{k}+\ldots\right]
$$

where g_{k} is the payoff at stage k. Assume now that σ is optimal in the game G with evaluation Π starting at time t_{n+1}, then the alternative evaluation of the stream of payoffs satisfies, for all τ

$$
E_{\sigma, \tau,}\left[\mu_{n+2} g_{1}+\ldots+\mu_{n+k+1} g_{k}+\ldots\right] \geq V_{\Pi}\left(t_{n+1}, p, q\right) .
$$

It follows that

$$
V_{\Pi}\left(t_{n}, p, q\right) \geq V_{\Pi}\left(t_{n+1}, p, q\right)-\left|E_{\sigma, \tau}\left[\left(\mu_{n+1}-\mu_{n+2}\right) g_{1}+\ldots+\left(\mu_{n+k}-\mu_{n+k+1}\right) g_{k}+\ldots\right]\right|
$$

hence μ_{n} being decreasing

$$
V_{\Pi}\left(t_{n}, p, q\right) \geq V_{\Pi}\left(t_{n+1}, p, q\right)-\mu_{n+1} C .
$$

This and the dual inequality imply that the linear interpolation $V_{\Pi}(., p, q)$ is a C Lipschitz function.

1.4 Asymptotic analysis: previous results

We consider now the asymptotic behavior of v_{n} as n goes to ∞, or of v_{λ} as λ goes to 0 .
For games with incomplete information on one side, the first results proving the existence of $\lim _{n \rightarrow \infty} v_{n}$ and $\lim _{\lambda \rightarrow 0} v_{\lambda}$ are due to Aumann and Maschler (1966) [1], including in addition an identification of the limit as $\operatorname{Cav}_{\Delta(K)} u$. Here $u(p)=\operatorname{val}_{\Delta(I) \times \Delta(J)} \sum_{k} p^{k} g(x, y, k)$ is the value of the one shot non revealing game, where the informed player does not use his information and Cav_{C} is the concavification operator: given ϕ, a real bounded function defined on a convex set C, $\operatorname{Cav}_{C}(\phi)$ is the smallest function greater than ϕ and concave, on C.
Extensions of these results to games with lack of information on both sides were achieved by Mertens and Zamir (1971) [11]. In addition they identified the limit as the only solution of the system of implicit functional equations with unknown ϕ :

$$
\begin{align*}
\phi(p, q) & =\operatorname{Cav}_{p \in \Delta(K)} \min \{\phi, u\}(p, q), \tag{6}\\
\phi(p, q) & =\operatorname{Vex}_{q \in \Delta(L)} \max \{\phi, u\}(p, q) \tag{7}
\end{align*}
$$

Here again u stands for the value of the non revealing game:

$$
u(p, q)=\operatorname{val}_{\Delta(I) \times \Delta(J)} \sum_{k, \ell} p^{k} q^{\ell} g(x, y, k, \ell)
$$

and we will write MZ for the corresponding operator

$$
\begin{equation*}
\phi=\mathbf{M Z}(u) . \tag{8}
\end{equation*}
$$

As for stochastic games, the existence of $\lim _{\lambda \rightarrow 0} v_{\lambda}$ in the finite case $(\Omega, I, J$ finite $)$ is due to Bewley and Kohlberg (1976) [3] using algebraic arguments: the Shapley fixed point equation can be written as a finite set of polynomial equalities and inequalities involving the variables $\left\{\lambda, x_{\lambda}(\omega), y_{\lambda}(\omega), v_{\lambda}(\omega) ; \omega \in \Omega\right\}$ thus it defines a semi-algebraic set in some euclidean space \mathbb{R}^{N}, hence by projection v_{λ} has an expansion in Puiseux series of λ.
The existence of $\lim _{n \rightarrow \infty} v_{n}$ is obtained by an algebraic comparison argument, Bewley and Kohlberg (1976) [4].
The asymptotic values for specific classes of absorbing games with incomplete information are studied in Sorin (1984), (1985) [17], [18], see also Mertens, Sorin and Zamir (1994) [12].

1.5 Asymptotic analysis: operator approach and comparison criteria

Starting with Rosenberg and Sorin (2001) [14] several existence results for the asymptotic value have been obtained, based on the Shapley operator: continuous absorbing and recursive games, games with incomplete information on both sides, and for absorbing games with incomplete information on one side, Rosenberg (2000) [13].
We describe here an approach that was initially introduced by Laraki (2001) [6] for the discounted case. The analysis of the asymptotic behavior for the discounted games is simpler because of its stationarity: v_{λ} is a fixed point of (3). Many discounted game models have been solved using a variational approach (see Laraki [6], [7] and [10]).
Our work is the natural extension of this analysis to more general evaluations of the stream of stage payoffs including the limit of Cesaro mean. Recall that each evaluation of the stream of payoffs is interpreted as a discretization of an underlying continuous time game. We prove for several classes of games (incomplete information, splitting, absorbing) the existence of a (uniform) limit of the values of the discretized continuous time game as the mesh of the discretization goes to zero. The basic recursive structure is used to formulate variational inequalities that have to be satisfied by any accumulation point of the sequences of values. Then an ad-hoc comparison principle allows to prove uniqueness, hence convergence. Note that this technique is a simple transposition to discrete games of the numerical schemes used to approximate the value function of differential games via viscosity solution arguments, as developed in Barles-Souganidis [2]. The main difference is that, in our case, the limit equation is singular and does not satisfy the conditions usualy required to apply the comparison principles.
To sum up, the paper unifies tools used in discrete and continuous time approaches by dealing with functions defined on the product state \times time space, in the spirit of Vieille (1992) [21] for weak approachability or Laraki (2002) [8] for the dual game with lack of information on one side, see also Sorin (2005) [20].

2 Repeated Games with Incomplete Information

Let us briefly recall the structure of repeated games with incomplete information: at the beginning of game the pair (k, ℓ) is chosen at random according to some product probability $p \otimes q$ where $p \in P=\Delta(K)$ and $q \in Q=\Delta(L)$. Player 1 knows k while player 2 knows ℓ. At each stage n of the game, player 1 (resp. player 2) choses a mixed strategy $x_{n} \in \mathbf{X}=(\Delta(I))^{K}$ (resp. $\left.y_{n} \in \mathbf{Y}=(\Delta(J))^{K}\right)$. This determines a payoff $g\left(x_{n}, y_{n}, p, q\right)$. In the discounted case, the total payoff is given by $\sum_{n} \lambda(1-\lambda)^{n} g\left(x_{n}, y_{n}, p, q\right)$ and we denote by $v_{\lambda}(p, q)$ the corresponding value. In this framework the Shapley operator is defined on the set \mathcal{F} of continuous concave-convex fonctions on $P \times Q$:

$$
\begin{equation*}
\mathbf{T}(\lambda, f)(p, q)=\operatorname{val}_{\mathbf{X} \times \mathbf{Y}}\left\{\lambda g(p, q, x, y)+(1-\lambda) \sum_{i, j} x(i) y(j) f(p(i), q(j))\right\} \tag{9}
\end{equation*}
$$

where, given $(x, y, p, q), x(i)=\sum_{k} x_{i}^{k} p^{k}$ is the probability of action i and $p(i)$ be the conditional probability on K given the action i, namely: $p^{k}(i)=\frac{p^{k} x_{i}^{k}}{x(i)}$ (and similarly for y and q). Recall that $v_{\lambda}(p, q)$ is the unique fixed point of $\mathbf{T}(\lambda,$.$) on \mathcal{F}([1],[11])$. In particular, v_{λ} is concave in p and convex in q.

2.1 The discounted game

We now describe the analysis in the discounted case. We follow here Laraki (2001) [6].
Note that the family of functions $\left\{v_{\lambda}(p, q)\right\}$ is C-Lipschitz continuous, where C is an uniform bound on the payoffs, hence relatively compact. To prove convergence it is enough to show that
there is only one accumulation point (for the uniform convergence on $P \times Q$).
Note that by (3) any accumulation point w of the family $\left\{v_{\lambda}\right\}$ will satisfy

$$
w=\mathbf{T}(0, w)
$$

i.e. is a fixed point of the projective operator, see Sorin [19], appendix C.

Explicitly here: $\mathbf{T}(0, w)=\operatorname{val}_{\mathbf{X} \times \mathbf{Y}}\left\{\sum_{i, j} x(i) y(j) w(p(i), q(j))\right\}=\operatorname{val}_{\mathbf{X} \times \mathbf{Y}} \mathbf{E}_{x, y, p, q} w(\tilde{p}, \tilde{q})$, where $\tilde{p}=\left(p^{k}(i)\right)$ and $\tilde{q}=\left(q^{l}(j)\right)$.
Let \mathcal{S} be the set of fixed points of $\mathbf{T}(0, \cdot)$ and $\mathcal{S}_{0} \subset \mathcal{S}$ the set of accumulation points of the family $\left\{v_{\lambda}\right\}$. Given $w \in \mathcal{S}_{0}$, we denote by $\mathbf{X}(p, q, w) \subseteq \Delta(I)^{K}=\mathbf{X}$ the set of optimal strategies for player 1 (resp. $\mathbf{Y}(p, q, w) \subseteq \Delta(J)^{L}=\mathbf{Y}$ for player 2) in the projective game with value $\mathbf{T}(0, w)$ at (p, q). A strategy $x \in \mathbf{X}$ of player 1 is called non-revealing at $p, x \in N R_{\mathbf{X}}(p)$ if $\tilde{p}=p$ a.s. (i.e. $p(i)=p$ for all $i \in I$ with $x(i)>0$) and similarly for $y \in \mathbf{Y}$. Note that the value of the non revealing game satisfies

$$
\begin{equation*}
u(p, q)=\operatorname{val}_{N R_{\mathbf{X}}(p) \times N R_{\mathbf{Y}}(q)} g(x, y, p, q) \tag{10}
\end{equation*}
$$

A subset of strategies is non-revealing if all its elements are non-revealing.
Lemma 2 Let $w \in \mathcal{S}_{0}$ and $\mathbf{X}(p, q, w) \subset N R_{\mathbf{X}}(p)$ then

$$
w(p, q) \leq u(p, q)
$$

Proof. Consider a family $\left\{v_{\lambda_{n}}\right\}$ converging to w and $x_{n} \in \mathbf{X}$ optimal for $\mathbf{T}\left(\lambda_{n}, v_{\lambda_{n}}\right)(p, q)$, see (2). Fix $j \in J$. Jensen's inequality applied to (2) leads to

$$
v_{\lambda_{n}}(p, q) \leq \lambda_{n} g\left(p, q, x_{n}, j\right)+\left(1-\lambda_{n}\right) v_{\lambda_{n}}(p, q), \quad \forall j \in J .
$$

Thus

$$
v_{\lambda_{n}}(p, q) \leq g\left(p, q, x_{n}, j\right)
$$

If $\bar{x} \in \mathbf{X}$ is an accumulation point of the family $\left\{x_{n}\right\}$, then \bar{x} is still optimal in $\mathbf{T}(0, w)(p, q)$. Since, by assumption $\mathbf{X}(p, q, w) \subset N R_{\mathbf{X}}(p), \bar{x}$ is non revealing and therefore one obtains as λ_{n} goes to 0 :

$$
w(p, q) \leq g(\bar{x}, j, p, q), \quad \forall j \in J
$$

So, by (10),

$$
w(p, q) \leq \max _{x \in N R_{\mathbf{X}}(p)} \min _{j \in J} g(x, j, p, q)=u(p, q)
$$

Consider now w_{1} and w_{2} in \mathcal{S} and let $\left(p_{0}, q_{0}\right)$ be an extreme point of the (convex hull of) the compact set in $P \times Q$ where the difference $\left(w_{1}-w_{2}\right)(p, q)$ is maximal (this argument goes back to Mertens Zamir (1971) [11]).

Lemma 3

$$
\mathbf{X}\left(p_{0}, q_{0}, w_{1}\right) \subset N R_{\mathbf{X}}\left(p_{0}\right), \quad \mathbf{Y}\left(p_{0}, q_{0}, w_{2}\right) \subset N R_{\mathbf{Y}}\left(q_{0}\right)
$$

Proof. By definition, if $x \in \mathbf{X}\left(p_{0}, q_{0}, w_{1}\right)$ and $y \in \mathbf{Y}\left(p_{0}, q_{0}, w_{2}\right)$,

$$
w_{1}\left(p_{0}, q_{0}\right) \leq \mathrm{E}_{x, y, p_{0}, q_{0}} w_{1}(\tilde{p}, \tilde{q})
$$

and

$$
w_{2}\left(p_{0}, q_{0}\right) \geq \mathrm{E}_{x, y, p_{0}, q_{0}} w_{2}(\tilde{p}, \tilde{q})
$$

Hence (\tilde{p}, \tilde{q}) belongs a.s. to the argmax of $w_{1}-w_{2}$ and the result follows from the extremality of p_{0}, q_{0}.

Proposition $4 \lim _{\lambda \rightarrow 0} v_{\lambda}$ exists.
Proof. Let w_{1} and w_{2} be two different elements in \mathcal{S}_{0}. To fix the ideas we suppose that $\max w_{1}-w_{2}>0$. Let (p_{0}, q_{0}) be an extreme point of the (convex hull of) the compact set in $P \times Q$ where the difference $\left(w_{1}-w_{2}\right)(p, q)$ is maximal. Then Lemmas 2 and 3 imply $w_{1}\left(p_{0}, q_{0}\right) \leq$ $u\left(p_{0}, q_{0}\right) \leq w_{2}\left(p_{0}, q_{0}\right)$, hence a contradiction. The convergence of the family $\left\{v_{\lambda}\right\}$ follows.

Given $w \in \mathcal{S}$ let $\mathcal{E} w(., q)$ be the set of $p \in P$ such that $(p, w(p, q))$ is an extreme point of the epigraph of $w(., q)$.

Lemma 5 Let $w \in \mathcal{S}$. Then $p \in \mathcal{E} w(., q)$ implies $\mathbf{X}(p, q, w) \subset N R_{\mathbf{X}}(p)$.
Proof. Use the fact that if $x \in \mathbf{X}(p, q, w)$ and $y \in N R_{\mathbf{Y}}(q)$

$$
w(p, q) \leq \mathrm{E}_{x, y, p, q} w(\tilde{p}, \tilde{q})=\mathrm{E}_{x, p} w(\tilde{p}, q) .
$$

Hence one recovers the characterization through the variational inequalities of Mertens and Zamir (1971) [11] and one identifies the limit as MZ (u).

Proposition $6 \lim _{\lambda \rightarrow 0} v_{\lambda}=\mathbf{M Z}(u)$
Proof. Use Lemma 5 and the characterization of Laraki (2001) [7] or Rosenberg and Sorin (2001) [14].

2.2 The finitely repeated game

We now turn to the finitely repeated game: recall that the payoff at stage n is given by $\frac{1}{n} \sum_{k=1}^{n} g\left(x_{k}, y_{k}, p, q\right)$. We denote by v_{n} the value of this game. We have the recursive formula:

$$
\begin{equation*}
v_{n}(p, q)=\max _{x \in \mathbf{X}} \min _{y \in \mathbf{Y}}\left[\frac{1}{n} g(x, y, p, q)+\left(1-\frac{1}{n}\right) \sum_{i, j} x(i) y(j) v_{n-1}(p(i), q(j))\right]=\mathbf{T}\left(\frac{1}{n}, v_{n-1}\right) . \tag{11}
\end{equation*}
$$

Given an integer n, let Π be the uniform partition of $[0,1]$ with mesh $\frac{1}{n}$ and write simply W_{n} for the associate function V_{Π}. Hence $W_{n}(1, p, q):=0$ and for $m=0, \ldots, n-1, W_{n}\left(\frac{m}{n}, p, q\right)$ satisfies:

$$
\begin{equation*}
W_{n}\left(\frac{m}{n}, p, q\right)=\max _{x \in \Delta(I)^{K}} \min _{y \in \Delta(J)^{L}}\left[\frac{1}{n} g(x, y, p, q)+\sum_{i, j} x(i) y(j) W_{n}\left(\frac{m+1}{n}, p(i), q(j)\right)\right] \tag{12}
\end{equation*}
$$

Note that $W_{n}\left(\frac{m}{n}, p, q, \omega\right)=\left(1-\frac{m}{n}\right) v_{n-m}(p, q, \omega)$ and if W_{n} converges uniformly to W, v_{n} converges uniformly to some function v with $W(t, p, q)=(1-t) v(p, q)$.
Let \mathcal{T} be the set of real continuous functions W on $[0,1] \times P \times Q$ such that for all $t \in[0,1], W(t, .,.) \in$ \mathcal{S}. $\mathbf{X}(t, p, q, W)$ is the set of optimal strategies for Player 1 in $\mathbf{T}(0, W(t, .,)$.$) and \mathbf{Y}(t, p, q, W)$ is defined accordingly.
Let \mathcal{T}_{0} be the set of accumulation points of the family $\left\{W_{n}\right\}$ for the uniform convergence.
Lemma $7 \mathcal{T}_{0} \neq \emptyset$ and $\mathcal{T}_{0} \subset \mathcal{T}$.
Proof. $W_{n}(t, .,$.$) is C$-Lipschitz continuous in (p, q) for the L^{1} norm since the payoff, given the strategies (σ, τ) of the players, is of the form $\sum_{k, \ell} p^{k} q^{\ell} A^{k \ell}(\sigma, \tau)$. Using Lemma 1 it follows that the family $\left\{W_{n}\right\}$ is uniformly Lipschitz on $[0,1] \times P \times Q$ hence is relatively compact for the uniform norm. Note finally using (11) that $\mathcal{T}_{0} \subset \mathcal{T}$.

We now define two properties for a function $W \in \mathcal{T}$ and a C^{1} test function $\phi:[0,1] \rightarrow \mathbb{R}$.

- P1: If $t \in[0,1)$ is such that $\mathbf{X}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ has a global maximum at t, then $u(p, q)+\phi^{\prime}(t) \geq 0$.
- P2: If $t \in[0,1)$ is such that $\mathbf{Y}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ has a global minimum at t then $u(p, q)+\phi^{\prime}(t) \leq 0$.

Lemma 8 Any $W \in \mathcal{T}_{0}$ satisfies $\mathbf{P} 1$ and $\mathbf{P} 2$.
Note that this result is the variational counterpart of Lemma 2.
Proof. Let $t \in[0,1), p$ and q be such that $\mathbf{X}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ admits a global maximum at t. Adding the function $s \mapsto(s-t)^{2}$ to ϕ if necessary, we can assume that this global maximum is strict.
Let $W_{\varphi(n)}$ be a sequence converging uniformly to W. Define $\theta(n) \in\{0, \ldots, \varphi(n)-1\}$ such that $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $W_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on the set $\{0, \ldots, \varphi(n)-1\}$. Since t is a strict maximum, one has $\frac{\theta(n)}{\varphi(n)} \rightarrow t$, as $n \rightarrow \infty$. From (12):

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)=\max _{x \in \mathbf{X}} \min _{y \in \mathbf{Y}}\left[\frac{1}{\varphi(n)} g(x, y, p, q)+\sum_{i, j} x(i) y(j) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p(i), q(j)\right)\right]
$$

Let $x_{n} \in \mathbf{X}$ be optimal for player 1 in the above formula and let $j \in J$ be any (non-revealing) pure action of player 2 . Then:

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \frac{1}{\varphi(n)} g\left(x_{n}, j, p, q\right)+\sum_{i} x_{n}(i) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p_{n}(i), q\right)
$$

By concavity of $W_{\varphi(n)}$ with respect to p, we have

$$
\sum_{i \in I} x_{n}(i) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p_{n}(i), q\right) \leq W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)
$$

hence:

$$
0 \leq g\left(x_{n}, j, p, q\right)+\varphi(n)\left[W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)\right] .
$$

Since $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $W_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on $\{0, \ldots, \varphi(n)-1\}$ one has:

$$
W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)
$$

so that:

$$
0 \leq g\left(x_{n}, j, p, q\right)+\varphi(n)\left[\phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)\right] .
$$

Since \mathbf{X} is compact, one can assume without loss of generality that $\left\{x_{n}\right\}$ converges to some x. Note that x belongs to $\mathbf{X}(t, p, q, W)$ by upper semicontinuity using the uniform convergence of $W_{\varphi(n)}$ to W. Hence x is non-revealing. Thus, passing to the limit one obtains:

$$
0 \leq g(x, j, p, q)+\phi^{\prime}(t)
$$

Since this inequality holds true for every $j \in J$, we also have:

$$
\min _{j \in J} g(x, j, p, q)+\phi^{\prime}(t) \geq 0 .
$$

Taking the maximum with respect to $x \in N R_{\mathbf{X}}(p)$ gives the desired result:

$$
u(p, q)+\phi^{\prime}(t) \geq 0
$$

The comparison principle in this case is given by the next result.
Lemma 9 Let W_{1} and W_{2} in \mathcal{T} satisfying P1, P2 and

- P3: $W_{1}(1, p, q) \leq W_{2}(1, p, q)$ for any $(p, q) \in \Delta(K) \times \Delta(L)$.

Then $W_{1} \leq W_{2}$ on $[0,1] \times \Delta(K) \times \Delta(L)$.
Proof. We argue by contradiction, assuming that

$$
\max _{t \in[0,1], p \in P, q \in Q}\left[W_{1}(t, p, q)-W_{2}(t, p, q)\right]=\delta>0 .
$$

Then, for $\varepsilon>0$ sufficiently small,

$$
\begin{equation*}
\delta(\varepsilon):=\max _{t \in[0,1], s \in[0,1], p \in P, q \in Q}\left[W_{1}(t, p, q)-W_{2}(s, p, q)-\frac{(t-s)^{2}}{2 \varepsilon}+\varepsilon s\right]>0 \tag{13}
\end{equation*}
$$

Moreover $\delta(\varepsilon) \rightarrow \delta$ as $\varepsilon \rightarrow 0$.
We claim that there is $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)$, point of maximum in (13), such that $\mathbf{X}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player 1 and $\mathbf{Y}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player 2. The proof of this claim is like Lemma 3 and follows again Mertens Zamir (1971) [11]. Let ($t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}^{\prime}, q_{\varepsilon}^{\prime}$) be a maximum point of (13) and $C(\varepsilon)$ be the set of maximum points in $P \times Q$ of the function: $(p, q) \mapsto W_{1}\left(t_{\varepsilon}, p, q\right)-W_{2}\left(s_{\varepsilon}, p, q\right)$. This is a compact set. Let $\left(p_{\varepsilon}, q_{\varepsilon}\right)$ be an extreme point of the convex hull of $C(\varepsilon)$. By Caratheodory's theorem, this is also an element of $C(\varepsilon)$. Let $x_{\varepsilon} \in \mathbf{X}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ and $y_{\varepsilon} \in \mathbf{Y}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$. Since W_{1} and W_{2} are in \mathcal{T}, we have:

$$
W_{1}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)-W_{2}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right) \leq \sum_{i, j} x_{\varepsilon}(i) y_{\varepsilon}(j)\left[W_{1}\left(t_{\varepsilon}, p_{\varepsilon}(i), q_{\varepsilon}(j)\right)-W_{2}\left(s_{\varepsilon}, p_{\varepsilon}(i), q_{\varepsilon}(j)\right)\right] .
$$

By optimality of $\left(p_{\varepsilon}, q_{\varepsilon}\right)$, one deduces that, for every i and j with $x_{\varepsilon}(i)>0$ and $y_{\varepsilon}(j)>0$, $\left(p_{\varepsilon}(i), q_{\varepsilon}(j)\right) \in C(\varepsilon)$. Since $\left(p_{\varepsilon}, q_{\varepsilon}\right)=\sum_{i, j} x_{\varepsilon}(i) y_{\varepsilon}(j)\left(p_{\varepsilon}(i), q_{\varepsilon}(j)\right)$ and $\left(p_{\varepsilon}, q_{\varepsilon}\right)$ is an extreme point of the convex hull of $C(\varepsilon)$ one concludes that $\left(p_{\varepsilon}(i), q_{\varepsilon}(j)\right)=\left(p_{\varepsilon}, q_{\varepsilon}\right)$ for all i and $j: x_{\varepsilon}$ and y_{ε} are non-revealing. Therefore we have constructed $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)$ as claimed.
Finally we note that $t_{\varepsilon}<1$ and $s_{\varepsilon}<1$ for ε sufficiently small, because $\delta(\varepsilon)>0$ and $W_{1}(1, p, q) \leq$ $W_{2}(1, p, q)$ for any $(p, q) \in P \times Q$ by P3.
Since the map $t \mapsto W_{1}\left(t, p_{\varepsilon}, q_{\varepsilon}\right)-\frac{\left(t-s_{\varepsilon}\right)^{2}}{2 \varepsilon}$ has a global maximum at t_{ε} and since $\mathbf{X}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player 1, condition P1 implies that

$$
\begin{equation*}
u\left(p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon} \geq 0 \tag{14}
\end{equation*}
$$

In the same way, since the map $s \mapsto W_{2}\left(s, p_{\varepsilon}, q_{\varepsilon}\right)+\frac{\left(t_{\varepsilon}-s\right)^{2}}{2 \varepsilon}-\varepsilon s$ has a global minimum at s_{ε} and since $\mathbf{Y}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player 2 , we have by condition $\mathbf{P} \mathbf{2}$ that

$$
u\left(p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}+\varepsilon \leq 0 .
$$

This latter inequality contradicts (14).
We are now ready to prove the convergence result for $\lim _{n \rightarrow \infty} v_{n}$.

Proposition $10 W_{n}$ converges uniformly to the unique point $W \in \mathcal{T}$ that satisfies the variational inequalities $\mathbf{P} 1$ and $\mathbf{P} 2$ and the terminal condition $W(0, p, q)=0$.
Consequently, $v_{n}(p, q)$ converges uniformly to $v(p, q)=W(0, p, q)$ and $W(t, p, q)=(1-t) v(p, q)$, where $v=\mathbf{M Z}(u)$.

Proof. Let $W \in \mathcal{T}_{0}$. From Lemma 8, W satisfies the variational inequalities $\mathbf{P 1}$ and P2. Moreover, $W(1, p, q)=0$. Since, from Lemma 9 , there is at most one function fulfilling these conditions, we obtain convergence of the family $\left\{W_{n}\right\}$.
Consequently, $v_{n}(p, q)$ converges uniformly to $v(p, q)=W(0, p, q)$ and $W(t, p, q)=(1-t) v(p, q)$. In particular if one considers $\phi(t)=W(t, p, q)$ as test function, then $\phi^{\prime}(t)=-v(p, q)$. Now P1 and $\mathbf{P} 2$ reduce to Lemma 2 hence via Lemma 5 to the variational characterization of $\mathbf{M Z}(u)$.

2.3 General evaluation

Consider now an arbitrarly evaluation probability μ on \mathbb{N}^{*} with $\mu_{n} \geq \mu_{n+1}$ inducing the partition Π. Let $V_{\Pi}\left(t_{k}, p, q\right)$ be the value of the game starting at time t_{k}. One has $V_{\Pi}(1, p, q):=0$ and

$$
\begin{equation*}
V_{\Pi}\left(t_{n}, p, q\right)=\max _{x \in \mathbf{X}} \min _{y \in \mathbf{Y}}\left[\mu_{n+1} g(x, y, p, q)+\sum_{i, j} x(i) y(j) V_{\Pi}\left(t_{n+1}, p(i), q(j)\right)\right] . \tag{15}
\end{equation*}
$$

Moreover V_{Π} belongs to \mathcal{F} and is C Lipschitz in (p, q).
Lemma 1 then implies that any family of values $V_{\Pi(m)}$ associated to partitions $\Pi(m)$ with $\mu_{1}(m) \rightarrow 0$ as $m \rightarrow \infty$ has an accumulation point. Denote by \mathcal{T}_{1} the set of those. Then $\mathcal{T}_{1} \subset \mathcal{T}$ by (15) and lemma 8 extends in a natural way: let $\bar{V} \in \mathcal{T}_{1}$ and $V_{\Pi(m)} \rightarrow \bar{V}$ uniformly. Let t_{n}^{m} be a global maximum of $V_{\Pi(m)}(., p, q)-\phi($.$) on \Pi(m)$. Then $t_{n}^{m} \rightarrow t$ and one has

$$
0 \leq g\left(x_{n}, j, p, q\right)+\frac{1}{\mu_{n}(m)}\left[V_{\Pi(m)}\left(t_{n+1}^{m}, p, q\right)-V_{\Pi(m)}\left(t_{n}^{m}, p, q\right)\right]
$$

hence

$$
0 \leq g\left(x_{n}, j, p, q\right)+\frac{1}{\mu_{n}(m)}\left[\phi\left(t_{n+1}^{m}\right)-\phi\left(t_{n}^{m}\right)\right]
$$

and letting $n \rightarrow \infty$ the result follows.
Using Lemma 9 this implies the convergence. Thus:
Proposition $11 V_{\Pi(m)}$ converges uniformly to the unique point $V \in \mathcal{T}$ that satisfies the variational inequalities P1 and P2.
Consequently, $v_{\Pi(k)}(p, q)$ converges uniformly to $v(p, q)=V(0, p, q)$ and $V(t, p, q)=(1-t) v(p, q)$. Moreover $v=\mathbf{M Z}(u)$.

In particular the convergence of $\left\{V_{\Pi(m)}\right\}$ for any family of decreasing partitions allows to use $\lim _{\lambda \rightarrow 0} v_{\lambda}$ to characterize the limit.

3 Splitting games

We consider now the framework of splitting games, Sorin (2002) [19], p. 78. Let P and Q be two simplexes (or product of simplexes) of some finite dimensional spaces, and H a C-Lipschitz function from $P \times Q$ to \mathbb{R}. The corresponding Shapley operator is defined on continuous real functions f on $P \times Q$ by

$$
\mathbf{T}(\lambda, f)(p, q)=\operatorname{val}_{\mu \in M_{p}^{P} \times \nu \in M_{q}^{Q}} \int_{P \times Q}\left[\left(\lambda H\left(p^{\prime}, q^{\prime}\right)+(1-\lambda) f\left(p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right)\right.
$$

where M_{p}^{P} stands for the set of Borel probabilities on P with expectation p (and similarly for M_{q}^{Q}).
The associated repeated game is played as follows: at stage $n+1$ knowing the state $\left(p_{n}, q_{n}\right)$ player 1 (resp. player 2) chooses $\mu_{n+1} \in M_{p_{n}}^{P}$ (resp. $\nu \in M_{q_{n}}^{Q}$). A new state $\left(p_{n+1}, q_{n+1}\right)$ is selected according to these distributions and the stage payoff is $H\left(p_{n+1}, q_{n+1}\right)$. We denote by V_{λ} the value of the discounted game and by v_{n} the value of the discounted game.
A procedure analogous to the previous study of discounted games with incomplete information has been developed by Laraki [6], [7], [9].

3.1 The discounted game

The next properties are established in Laraki (2001) [7].
Let \mathcal{G} be the set of C-Lipschitz functions that are concave convex on $P \times Q$.
Lemma 12 The Shapley operator $\mathbf{T}(\lambda, \cdot)$ maps \mathcal{G} to itself and $V_{\lambda}(p, q)$ is the only fixed point of $T(\lambda,$.$) in \mathcal{G}$.

The corresponding projective operator is the splitting operator Ψ :

$$
\begin{equation*}
\Psi(f)(p, q)=\operatorname{val}_{M_{p}^{P} \times \nu M_{q}^{Q}} \int_{P \times Q} f\left(p^{\prime}, q^{\prime}\right) \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right) \tag{16}
\end{equation*}
$$

and we denote again by \mathcal{S} its set of fixed points. Given $W \in \mathcal{S}, \mathbf{P}(p, q, W) \subset M_{p}^{P}$ denotes the set of optimal strategies of player 1 in (16) for $\Psi(W)(p, q)$. We say that $\mathbf{P}(p, q, W)$ is non-revealing if it is reduced to δ_{p}, the Dirac mass at p. We use the symmetric notation $\mathbf{Q}(p, q, W)$ and terminology for player 2 .

We define two properties for functions in \mathcal{S}.

- PP1: If $\mathbf{P}(p, q, W)$ is non-revealing, then $W(p, q) \leq H(p, q)$.
- PP2: If $\mathbf{Q}(p, q, W)$ is non-revealing, then $W(p, q) \geq H(p, q)$

Proposition $13 V_{\lambda}$ converges uniformly to the unique point $V \in \mathcal{S}$ that satisfies the variational inequalities PP1 and PP2.

The link with the MZ operator is as follows: as in Lemma 5 one defines:

- QQ1: If $p \in \mathcal{E} W(., q)$, then $W(p, q) \leq H(p, q)$.
- QQ2: If $q \in \mathcal{E} W(p,$.$) , then W(p, q) \geq H(p, q)$
(where, as before, $\mathcal{E} V$ denotes the set of extreme points of a convex or concave map V). Then one has

Proposition 14 Let $G \in \mathcal{G}$. Then G satisfies QQ1 and QQ2 iff $G=\operatorname{MZ}(H)$.

3.2 The finitely repeated game

Recall the recursive formula defining by induction the value of the n stage game $v_{n} \in \mathcal{G}$, using Lemma 12:

$$
\begin{equation*}
v_{n}(p, q)=\operatorname{val}_{M_{p}^{P} \times M_{q}^{Q}} \int_{P \times Q}\left[\frac{1}{n} H\left(p^{\prime}, q^{\prime}\right)+\left(1-\frac{1}{n}\right) v_{n-1}\left(p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right)=\mathbf{T}\left(\frac{1}{n}, V_{n-1}\right) . \tag{17}
\end{equation*}
$$

For each integer n, let $W_{n}(1, p, q):=0$ and for $m=0, \ldots, n-1$ define $W_{n}\left(\frac{m}{n}, p, q\right)$ inductively as follows:

$$
\begin{equation*}
W_{n}\left(\frac{m}{n}, p, q\right)=\operatorname{val}_{M_{p}^{P} \times M_{q}^{Q}} \int_{P \times Q}\left[\frac{1}{n} H\left(p^{\prime}, q^{\prime}\right)+W_{n}\left(\frac{m+1}{n}, p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right) . \tag{18}
\end{equation*}
$$

By induction we have $W_{n}\left(\frac{m}{n}, p, q\right)=\left(1-\frac{m}{n}\right) v_{n-m}(p, q)$. Note that W_{n} is the function on $[0,1] \times$ $P \times Q$ associated to the uniform partition of mesh $\frac{1}{n}$.

Lemma $15 W_{n}$ is Lipschitz continuous uniformly in n on $\left\{\frac{m}{n}, m \in\{0, \ldots, n\}\right\} \times P \times Q$.
Proof. By Lemma $12 W_{n}(t, .,$.$) belongs to \mathcal{G}$ for any t. As for Lipschitz continuity with respect to t, we have, if μ is optimal in (18) and by Jensen inequality:

$$
\begin{aligned}
W_{n}\left(\frac{m}{n}, p, q\right) & \leq \int_{P \times Q} \frac{1}{n} H\left(p^{\prime}, q\right)+W_{n}\left(\frac{m+1}{n}, p^{\prime}, q\right) d \mu\left(p^{\prime}\right) \\
& \leq \quad \frac{\|H\|_{\infty}}{n}+W_{n}\left(\frac{m+1}{n}, p, q\right) .
\end{aligned}
$$

On gets the reverse inequality $W_{n}\left(\frac{m}{n}, p, q\right) \geq-\frac{\|H\|_{\infty}}{n}+W_{n}\left(\frac{m+1}{n}, p, q\right)$ with the symmetric arguments. Therefore $W_{n}(\cdot, p, q)$ is $\|H\|_{\infty}-$ Lipschitz continuous.

Let \mathcal{T} be the set of real continuous functions W on $[0,1] \times P \times Q$ such that for all $t \in$ $[0,1], W(t, .,.) \in \mathcal{S} . \mathbf{P}(t, p, q, W)$ is defined as $\mathbf{P}(p, q, W(t, .,)$.$) and \mathbf{Q}(t, p, q, W)$ as $\mathbf{Q}(p, q, W(t, .,)$.$) .$ Let \mathcal{T}_{0} be the set of accumulation points of the family W_{n}. Using (18), we have that $\mathcal{T}_{0} \subset \mathcal{T}$.

We introduce two properties for a function $W \in \mathcal{T}$ and any C^{1} test function $\phi:[0,1] \rightarrow \mathbb{R}$.

- PS1: If, for some $t \in[0,1), \mathbf{P}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ has a global maximum at t, then $H(p, q)+\phi^{\prime}(t) \geq 0$.
- PS2: If, for some $t \in[0,1), \mathbf{Q}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ has a global minimum at t then $H(p, q)+\phi^{\prime}(t) \leq 0$.

Lemma 16 Any $W \in \mathcal{T}_{0}$ satisfies PS1 and PS2.
Proof. The proof is very similar to the proof of Lemma 8.
Let $t \in[0,1), p$ and q be such that $\mathbf{P}(t, p, q, W)$ is non-revealing and $W(\cdot, p, q)-\phi(\cdot)$ admits a global maximum at t. Adding $(\cdot-t)^{2}$ to ϕ if necessary, we can assume that this global maximum is strict.
Let $W_{\varphi(n)}$ be a sequence converging uniformly to W. Define $\theta(n) \in\{0, \ldots, \varphi(n)-1\}$ such that $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $W_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on $\{0, \ldots, \varphi(n)-1\}$. Since t is a strict maximum, we have $\frac{\theta(n)}{\varphi(n)} \rightarrow t$. By (18) we have that:

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)=\operatorname{val}_{M_{p}^{P} \times M_{q}^{Q}} \int_{P \times Q}\left[\frac{1}{\varphi(n)} H\left(p^{\prime}, q^{\prime}\right)+W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right) .
$$

Let μ_{n} be optimal for player 1 in the above formula and let $\nu=\delta_{q}$ be the Dirac mass at q. Then:

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \int_{P} \frac{1}{\varphi(n)} H\left(p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right)+\int_{P} W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right) .
$$

By concavity of $W_{\varphi(n)}$ with respect to p, we have

$$
\int_{P} W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right) \leq W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)
$$

Hence:

$$
0 \leq \int_{P} H\left(p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right)+\varphi(n)\left[W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)\right] .
$$

Since $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $W_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on $\{0, \ldots, \varphi(n)-1\}$ one has:

$$
W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)
$$

So that

$$
\begin{equation*}
0 \leq \int_{P} H\left(p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right)+\varphi(n)\left[\phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)\right] \tag{19}
\end{equation*}
$$

Since M_{p}^{P} is compact, one can assume without loss of generality that $\left\{\mu_{n}\right\}$ converges to some μ. Note that μ belongs to $\mathbf{P}(t, p, q, W)$ by upper semicontinuity and uniform convergence of $W_{\varphi(n)}$ to W. Hence μ is non-revealing: $\mu=\delta_{p}$. Thus, passing to the limit in (19) one obtains:

$$
0 \leq H(p, q)+\phi^{\prime}(t)
$$

The comparison principle in this case is given by the next result.
Lemma 17 Let W_{1} and W_{2} in \mathcal{T} satisfying PS1, PS2 and

- PS3: $W_{1}(1, p, q) \leq W_{2}(1, p, q)$ for any $(p, q) \in \Delta(K) \times \Delta(L)$.

Then $W_{1} \leq W_{2}$ on $[0,1] \times \Delta(K) \times \Delta(L)$.
Proof. The proof is very similar to the proof of Lemma 9.
We argue by contradiction, assuming that

$$
\max _{t \in[0,1], p \in P, q \in Q}\left[W_{1}(t, p, q)-W_{2}(t, p, q)\right]=\delta>0 .
$$

Then, for $\varepsilon>0$ sufficiently small,

$$
\begin{equation*}
\delta(\varepsilon):=\max _{t \in[0,1], s \in[0,1], p \in P, q \in Q}\left[W_{1}(t, p, q)-W_{2}(s, p, q)-\frac{(t-s)^{2}}{2 \varepsilon}+\varepsilon s\right]>0 . \tag{20}
\end{equation*}
$$

Moreover $\delta(\varepsilon) \rightarrow \delta$ as $\varepsilon \rightarrow 0$.
We claim that there is $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)$, point of maximum in (13), such that $\mathbf{P}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player 1 and $\mathbf{Q}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player 2. Let $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}^{\prime}, q_{\varepsilon}^{\prime}\right)$ be a maximum point of (13) and $C(\varepsilon)$ be the set of maximum points in $P \times Q$ of the map $(p, q) \mapsto$ $W_{1}\left(t_{\varepsilon}, p, q\right)-W_{2}\left(s_{\varepsilon}, p, q\right)$. This is a compact set. Let $\left(p_{\varepsilon}, q_{\varepsilon}\right)$ be an extreme point of the convex hull of $C(\varepsilon)$. By Caratheodory's theorem, this is also an element of $C(\varepsilon)$. Let $\mu_{\varepsilon} \in \mathbf{P}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ and $\nu_{\varepsilon} \in \mathbf{Q}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$. Since W_{1} and W_{2} are in \mathcal{T}, we have:

$$
W_{1}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)-W_{2}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right) \leq \int_{P \times Q}\left[W_{1}\left(t_{\varepsilon}, p^{\prime}, q^{\prime}\right)-W_{2}\left(s_{\varepsilon}, p^{\prime}, q^{\prime}\right)\right] \mu_{\varepsilon}\left(d p^{\prime}\right) \nu_{\varepsilon}\left(d q^{\prime}\right)
$$

By extremality of $\left(p_{\varepsilon}, q_{\varepsilon}\right)$, one deduces that $\mu_{\varepsilon}=\delta_{p_{\varepsilon}}$ and $\mu_{\varepsilon}=\delta_{p_{\varepsilon}}$. Therefore we have constructed $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)$ as claimed.
Finally we note that $t_{\varepsilon}<1$ and $s_{\varepsilon}<1$ for ε sufficiently small, because $\delta(\varepsilon)>0$ and $W_{1}(1, p, q) \leq$ $W_{2}(1, p, q)$ for any p, q by P3.

Since the map $t \mapsto W_{1}\left(t, p_{\varepsilon}, q_{\varepsilon}\right)-\frac{\left(t-s_{\varepsilon}\right)^{2}}{2 \varepsilon}$ has a global maximum at t_{ε} and since $\mathbf{P}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player I, condition PS1 implies that

$$
\begin{equation*}
u\left(p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon} \geq 0 \tag{21}
\end{equation*}
$$

In the same way, since the map $s \mapsto W_{2}\left(s, p_{\varepsilon}, q_{\varepsilon}\right)+\frac{\left(t_{\varepsilon}-s\right)^{2}}{2 \varepsilon}-\varepsilon s$ has a global minimum at s_{ε} and since $\mathbf{Q}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player J, we have by condition PS2 that

$$
u\left(p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}+\varepsilon \leq 0
$$

This latter inequality contradicts (21).
I suggest to drop the above part

We are now ready to prove the convergence result for $\lim _{n \rightarrow \infty} v_{n}$:

Proposition $18 W_{n}$ converges uniformly to the unique point $W \in \mathcal{T}$ that satisfies the variational inequalities PS1 and PS2 and the terminal condition $W(1, p, q)=0$.
Consequently, $v_{n}(p, q)$ converges uniformly to $v(p, q)=W(0, p, q)$ and $W(t, p, q)=(1-t) v(p, q)$. Moreover $v=\mathbf{M Z}(H)$.

Proof. Let W be any limit point of the relatively compact family W_{n}. Then, from Lemma 16, $W \in \mathcal{T}_{0}$ satisfies the variational inequalities PS1 and PS2. Moreover, $W(1, p, q)=0$. Since, from Lemma 17, there is at most one map fulfilling these conditions, we obtain convergence.
Consequently, $v_{n}(p, q)$ converges uniformly to $V(p, q)=W(0, p, q)$ and $W(t, p, q)=(1-t) V(p, q)$. In particular if one choose as test function $\phi(t)=W(t, p, q)$, then $\phi^{\prime}(t)=-V(p, q)$, so that PS1 and PS2 reduce PP1 and PP2. On concludes by using the variational characterization of $\mathbf{M Z}(u)$ in Proposition 14.

3.3 General evaluation

The same results extend to the general evaluation case defined by a partition Π with μ_{n} decreasing. The existence of V_{Π} is obtained in two steps. We first let V_{Π}^{n} to be 0 on $\left[t_{n}, 1\right]$ and define inductively $V_{\Pi}^{n}\left(t_{m}, .,.\right)$ for $m<n$ by

$$
\begin{equation*}
V_{\Pi}^{n}\left(t_{m}, p, q\right)=\operatorname{val}_{M_{p}^{P} \times M_{q}^{Q}} \int_{P \times Q}\left[\mu_{m+1} H\left(p^{\prime}, q^{\prime}\right)+V_{\Pi}^{n}\left(t_{m+1}, p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right) \tag{22}
\end{equation*}
$$

It follows that $V_{\Pi}^{n} \in \mathcal{G}$ by Lemma 12 and converges uniformly to V_{Π}. Then the proof follows exactly the same steps than in Part 2.

3.4 Time dependent case

We consider here the case where the function H may depend on the stage.
To be able to study the asymptotic behavior one has to define H directly in the limit game: the map H is a continuous real function on $[0,1] \times P \times Q$.

For each integer n, let $Z_{n}(1, p, q):=0$ and for $m=0, \ldots, n-1$ define $Z_{n}\left(\frac{m}{n}, p, q\right)$ inductively as follows:

$$
\begin{equation*}
Z_{n}\left(\frac{m}{n}, p, q\right)=\operatorname{val}_{M_{p}^{P} \times M_{q}^{Q}} \int_{P \times Q}\left[\frac{1}{n} H\left(\frac{m}{n}, p^{\prime}, q^{\prime}\right)+Z_{n}\left(\frac{m+1}{n}, p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right) \tag{23}
\end{equation*}
$$

By induction each function $Z_{n}\left(\frac{m}{n}, .,.\right)$ is in \mathcal{G} and one can show as in Lemma 15 that Z_{n} is uniformly Lipschitz continuous on $\left\{\frac{m}{n}, m \in\{0, \ldots, n\}\right\} \times P \times Q$.
Remark : An alternative choice is to replace $\frac{1}{n} H\left(\frac{m}{n}, p^{\prime}, q^{\prime}\right)$ by $\int_{\frac{m}{n}}^{\frac{m+1}{n}} H\left(t, p^{\prime}, q^{\prime}\right) d t$.
Note that the projective operator is the same than in the autonomous case. Let \mathcal{T} be the set of real functions Z on $[0,1] \times P \times Q$ such that for all $t \in[0,1], Z(t, .,.) \in \mathcal{S}$. We define $\mathbf{P}(t, p, q, Z)$ and $\mathbf{Q}(t, p, q, Z)$ as before and denote by \mathcal{Z}_{0} the set of accumulation points of the family Z_{n}. We note that $\mathcal{Z}_{0} \subset \mathcal{T}$.

We define two properties for a function $Z \in \mathcal{T}$ and all C^{1} test function $\phi:[0,1] \rightarrow \mathbb{R}$.

- PST1: If, for some $t \in[0,1), \mathbf{P}(t, p, q, Z)$ is non-revealing and $Z(\cdot, p, q)-\phi(\cdot)$ has a global maximum at t, then $H(t, p, q)+\phi^{\prime}(t) \geq 0$.
- PST2: If, for some $t \in[0,1), \mathbf{Q}(t, p, q, Z)$ is non-revealing and $Z(\cdot, p, q)-\phi(\cdot)$ has a global minimum at t then $H(t, p, q)+\phi^{\prime}(t) \leq 0$.

Lemma 19 Any $Z \in \mathcal{Z}_{0}$ satisfies PST1 and PST2.
Proof. Let $t \in[0,1), p$ and q be such that $\mathbf{P}(t, p, q, Z)$ is non-revealing and $Z(\cdot, p, q)-\phi(\cdot)$ admits a global maximum at t. Adding $(\cdot-t)^{2}$ to ϕ if necessary, we can assume that this global maximum is strict.
Let $Z_{\varphi(n)}$ be a sequence converging uniformly to Z. Define $\theta(n) \in\{0, \ldots, \varphi(n)-1\}$ such that $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $Z_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on $\{0, \ldots, \varphi(n)-1\} . t$ being a strict maximum $\frac{\theta(n)}{\varphi(n)} \rightarrow t$. By (23) we have that:
$Z_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)=\sup _{\mu \in M_{p}^{P}} \inf _{\nu \in M_{q}^{Q}} \int_{P \times Q}\left[\frac{1}{\varphi(n)} H\left(\frac{\theta(n)}{\varphi(n)}, p^{\prime}, q^{\prime}\right)+Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q^{\prime}\right)\right] \mu\left(d p^{\prime}\right) \nu\left(d q^{\prime}\right)$.
Let μ_{n} be optimal for player I in the above formula and let $\nu=\delta_{q}$ be the Dirac mass at q. Then:

$$
Z_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \int_{P} \frac{1}{\varphi(n)} H\left(\frac{\theta(n)}{\varphi(n)}, p^{\prime}, q^{\prime}\right) \mu_{n}\left(d p^{\prime}\right)+\int_{P} Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right) .
$$

By concavity of $Z_{\varphi(n)}$ with respect to p, we have

$$
\int_{P} Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p^{\prime}, q\right) \mu_{n}\left(d p^{\prime}\right) \leq Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)
$$

Hence:

$$
0 \leq \int_{P} H\left(\frac{\theta(n)}{\varphi(n)}, p^{\prime}, q^{\prime}\right) \mu_{n}\left(d p^{\prime}\right)+\varphi(n)\left[Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-Z_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right)\right] .
$$

Since $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $Z_{\varphi(n)}(\cdot, p, q)-\phi(\cdot)$ on $\{0, \ldots, \varphi(n)-1\}$ one has:

$$
Z_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}, p, q\right)-Z_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}, p, q\right) \leq \phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)
$$

Since M_{p}^{P} is compact, one can assume without loss of generality that $\left\{\mu_{n}\right\}$ converges to some μ. Note that μ belongs to $\mathbf{P}(t, p, q, Z)$ by upper semicontinuity and uniform convergence of $Z_{\varphi(n)}$ to Z. Hence $\mu=\delta_{p}$ is non-revealing. Thus, passing to the limit one obtains:

$$
0 \leq H(t, p, q)+\phi^{\prime}(t) .
$$

The comparison principle in this case is given by the next result.

Lemma 20 Let Z_{1} and Z_{2} in \mathcal{T} satisfying PS1, PS2 and

- PSS: $Z_{1}(1, p, q) \leq Z_{2}(1, p, q)$ for any $(p, q) \in \Delta(K) \times \Delta(L)$.

Then $Z_{1} \leq Z_{2}$ on $[0,1] \times \Delta(K) \times \Delta(L)$.
Proof. We argue by contradiction, assuming that

$$
\max _{t \in[0,1], p \in P, q \in Q}\left[Z_{1}(t, p, q)-Z_{2}(t, p, q)\right]=\delta>0 .
$$

Then, for $\varepsilon>0$ sufficiently small,

$$
\begin{equation*}
\delta(\varepsilon):=\max _{t \in[0,1], s \in[0,1], p \in P, q \in Q}\left[Z_{1}(t, p, q)-Z_{2}(s, p, q)-\frac{(t-s)^{2}}{2 \varepsilon}+\varepsilon s\right]>0 \tag{24}
\end{equation*}
$$

Moreover $\delta(\varepsilon) \rightarrow \delta$ as $\varepsilon \rightarrow 0$.
Hence as before there is $\left(t_{\varepsilon}, s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)$, point of maximum in (13), such that $\mathbf{P}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player I and $\mathbf{Q}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player J.
Finally we note that $t_{\varepsilon}<1$ and $s_{\varepsilon}<1$ for ε sufficiently small, because $\delta(\varepsilon)>0$ and $Z_{1}(1, p, q) \leq$ $Z_{2}(1, p, q)$ for any p, q by P3.
Since the map $t \mapsto Z_{1}\left(t, p_{\varepsilon}, q_{\varepsilon}\right)-\frac{\left(t-s_{\varepsilon}\right)^{2}}{2 \varepsilon}$ has a global maximum at t_{ε} and since $\mathbf{P}\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{1}\right)$ is non-revealing for player I, condition PST1 implies that

$$
\begin{equation*}
H\left(t_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon} \geq 0 \tag{25}
\end{equation*}
$$

In the same way, since the map $s \mapsto W_{2}\left(s, p_{\varepsilon}, q_{\varepsilon}\right)+\frac{\left(t_{\varepsilon}-s\right)^{2}}{2 \varepsilon}-\varepsilon s$ has a global minimum at s_{ε} and since $\mathbf{Q}\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}, W_{2}\right)$ is non-revealing for player J, we have by condition PST2 that

$$
H\left(s_{\varepsilon}, p_{\varepsilon}, q_{\varepsilon}\right)+\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}+\varepsilon \leq 0
$$

This latter inequality contradicts (25), since $H(., p, q)$ is Lipschitz and $\left|t_{\varepsilon}-s_{\varepsilon}\right|=o(\varepsilon)$.

We are now ready to prove the convergence result for Z_{n} :

Proposition $21 Z_{n}$ converges uniformly to the unique point $Z \in \mathcal{T}$ that satisfies the variational inequalities PST1 and PST2 and the terminal condition $Z(1, p, q)=0$.

Remark : the same result obviously holds for any sequence of decreasing evaluation.
Proof. Let Z be any limit point of the relatively compact family Z_{n}. Then, from Lemma 19, $W \in \mathcal{T}_{0}$ satisfies the variational inequalities PST1 and PST2. Moreover, $Z((1, p, q)=0$. Since, from Lemma 20, there is at most one map fulfilling these conditions, we obtain convergence.

On peut ajouter l'extension des resultats d'A.S. On definit

$$
\begin{equation*}
A_{n}\left(\frac{m}{n}, p, q\right)=\mathbf{M Z}\left[\frac{1}{n} H\left(\frac{m}{n}, p, q\right)+A_{n}\left(\frac{m+1}{n}, p, q\right)\right] . \tag{26}
\end{equation*}
$$

ou plus generalement pour toute evaluation Π, alors A_{n} converge la solution de la Proposition 21.

4 Absorbing games

An absorbing game is a stochastic game where only one state is non absorbing. In the other states one can assume that the payoff is constant (equal to the value) thus the game is defined by the following elements: two finite sets I and J, two (payoff) functions f, g from $I \times J$ to $[-1,1]$ and a function p from $I \times J$ to $[0,1]$.
The repeated game with absorbing states is played in discrete time as follows. At stage $m=1,2, \ldots$ (if absorbtion has not yet occurred) player 1 chooses $i_{m} \in I$ and, simultaneously, player 2 chooses $j_{m} \in J:$
(i) the payoff at stage m is $f\left(i_{m}, j_{m}\right)$;
(ii) with probability $1-p\left(i_{m}, j_{m}\right)$ absorbtion is reached and the payoff in all future stages $n>m$ is $g\left(i_{m}, j_{m}\right)$ and
(iii) with probability $p\left(i_{m}, j_{m}\right)$ the situation is repeated at stage $m+1$.

Recall that the asymptotic analysis for these games is due to Kohlberg (1974) [5] who also proved the existence of a uniform value in case of standard signalling.

4.1 The discounted game

The λ discounted game has a value, v_{λ}. Using the Shapley operator, v_{λ} is the unique real number in $[-1,1]$ satisfying

$$
\begin{equation*}
v_{\lambda}=\max _{x \in \Delta(I)} \min _{j \in J}\left[\lambda f(x, j)+(1-\lambda) p(x, j) v_{\lambda}+(1-\lambda) f^{*}(x, j)\right] . \tag{27}
\end{equation*}
$$

where $p^{*}(i, j)=1-p(i, j)$ and $f^{*}(i, j)=p^{*}(i, j) g(i, j)$ and any map $\varphi: I \times J \rightarrow \mathbb{R}$ is extended linearly to $\mathbb{R}^{I} \times \mathbb{R}^{J}$ as follows: $\varphi(\alpha, \beta)=\sum_{i \in I, j \in J} \alpha^{i} \beta^{j} \varphi(i, j)$.
A simple computation implies that the payoff $r(\lambda, x, y)$ induced by the stationary strategies $x \in \Delta(I)$ and $y \in \Delta(J)$ is

$$
\begin{equation*}
r(\lambda, x, y)=\frac{\lambda f(x, y)+(1-\lambda) f^{*}(x, y)}{\lambda p(x, y)+p^{*}(x, y)} \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
v_{\lambda}=\max _{x \in \Delta(I)} \min _{y \in \Delta(J)} r(\lambda, x, j) \tag{29}
\end{equation*}
$$

The next result by Laraki (2010) [10] identifies the limit as the value of a one shot game on $\left(\Delta(I) \times \mathbb{R}_{+}^{I}\right) \times\left(\Delta(J) \times \mathbb{R}_{+}^{J}\right)$ with payoff

$$
A(x, \alpha, y, \beta)=\frac{f^{*}(x, y)}{p^{*}(x, y)} \mathbf{1}_{\left\{p^{*}(x, y)>0\right\}}+\frac{f(x, y)+f^{*}(\alpha, y)+f^{*}(x, \beta)}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)} \mathbf{1}_{\left\{p^{*}(x, y)=0\right\}}
$$

Proposition 22 ([10]) v_{λ} converges, as λ goes to zero, to

$$
\begin{equation*}
v:=\operatorname{val}_{\left(\Delta(I) \times \mathbb{R}_{+}^{I}\right) \times\left(\Delta(J) \times \mathbb{R}_{+}^{J}\right)} A(x, \alpha, y, \beta) \tag{30}
\end{equation*}
$$

Proof. Let $w=\lim _{n \rightarrow \infty} v_{\lambda_{n}}$ be an accumulation point of $\left\{v_{\lambda}\right\}$ and consider an optimal stationary strategy $x\left(\lambda_{n}\right)$ of player 1 for $v_{\lambda_{n}}$ in (29). Thus, for every $y \in \Delta(J)$ and $\beta \in \mathbb{R}_{+}^{J}$ one has, using homogeneity:

$$
\begin{equation*}
v_{\lambda_{n}} \leq \frac{\lambda_{n} f\left(x\left(\lambda_{n}\right), y+\lambda_{n} \beta\right)+\left(1-\lambda_{n}\right) f^{*}\left(x\left(\lambda_{n}\right), y+\lambda_{n} \beta\right)}{\lambda_{n} p\left(x\left(\lambda_{n}\right), y+\lambda_{n} \beta\right)+p^{*}\left(x\left(\lambda_{n}\right), y+\lambda_{n} \beta\right)} . \tag{31}
\end{equation*}
$$

By compactness of $\Delta(I)$, we can assume that $x\left(\lambda_{n}\right) \rightarrow x$.

Case 1: $p^{*}(x, y)>0$. Letting λ_{n} go to zero in (31) implies

$$
w \leq \frac{f^{*}(x, y)}{p^{*}(x, y)}
$$

Case 2: $p^{*}(x, y)=0$. Let $\alpha\left(\lambda_{n}\right)=\left(\frac{x^{i}\left(\lambda_{n}\right)}{\lambda_{n}}\right)_{i \in I} \in \mathbb{R}_{+}^{I}$. Hence, from equation (31), and because $p(x, y)=1$,

$$
\begin{equation*}
w \leq \lim _{n \rightarrow \infty} \inf \frac{f(x, y)+f^{*}(x, \beta)+\left(1-\lambda_{n}\right) f^{*}\left(\alpha\left(\lambda_{n}\right), y\right)}{1+p^{*}(x, \beta)+p^{*}\left(\alpha\left(\lambda_{n}\right), y\right)} . \tag{32}
\end{equation*}
$$

Since f^{*} and p^{*} are linear in y and J is finite, for any $\varepsilon>0$, there is $N(\varepsilon)$ such that, for every $y \in \Delta(J)$,

$$
w \leq \frac{f(x, y)+f^{*}(x, \beta)+f^{*}\left(\alpha\left(\lambda_{N(\varepsilon)}\right), y\right)}{1+p^{*}(x, \beta)+p^{*}\left(\alpha\left(\lambda_{N(\varepsilon)}\right), y\right)}+\varepsilon .
$$

Hence there exists (x, α) such that for any (y, β)

$$
w \leq A(x, \alpha, y, \beta)
$$

Consequently, $w \leq \max _{\left(\Delta(I) \times \mathbb{R}_{+}^{I}\right)} \min _{\left(\Delta(J) \times \mathbb{R}_{+}^{J}\right)} A(x, \alpha, y, \beta)$ and the result follows by symmetry.

4.2 The finitely repeated game

The values $\left\{v_{n}\right\}_{n=1, \ldots}$ of the finitely repeated games satisfy:

$$
v_{n}=\max _{x \in \Delta(I)} \min _{y \in \Delta(J)}\left[\frac{1}{n} f(x, y)+\frac{n-1}{n} p(x, y) v_{n-1}+\frac{n-1}{n} f^{*}(x, y)\right],
$$

with $v_{0}=0$.
For each integer n, define a function W_{n} on $[0,1]$ as follows: $W_{n}(1)=0$ and for $m=0, \ldots, n-1$, $W_{n}\left(\frac{m}{n}\right)$ is specified inductively by:

$$
W_{n}\left(\frac{m}{n}\right)=\max _{x \in \Delta(I)} \min _{y \in \Delta(J)}\left[\frac{1}{n} f(x, y)+p(x, y) W_{n}\left(\frac{m+1}{n}\right)+\frac{n-m-1}{n} f^{*}(x, y)\right] .
$$

By induction, $W_{n}\left(\frac{m}{n}\right)=\left(1-\frac{m}{n}\right) v_{n-m}$. Extend $W_{n}(\cdot, p, q)$ to [0, 1] by linear interpolation. Consequently: $W_{n}(\cdot)$ is a C Lipschitz function and if W_{n} converges uniformly to some function W, v_{n} converges to $W(0)$ and $W(t)=(1-t) W(0)$.
The projective operator is $\Phi(v)=\max _{x \in \Delta(I)} \min _{y \in \Delta(J)}\left(p(x, y) v+f^{*}(x, y)\right)$ and \mathcal{S} is his set of fixed points. As usual the set \mathcal{S}_{0} of accumulation points of $\left\{v_{n}\right\}$ is included in \mathcal{S}.
Define the Hamiltonian H from $[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ as follows. It is the value of a zero-sum game where the strategies of Player 1 are of the form $(x, \alpha) \in \Delta(I) \times \mathbb{R}_{+}^{I}$ while strategies for Player 2 are $(y, \beta) \in \Delta(J) \times \mathbb{R}_{+}^{J}$ and the payoff is given by:

$$
\begin{aligned}
h(t, a, b, x, \alpha, y, \beta)= & \left(\frac{(1-t) f^{*}(x, y)}{p^{*}(x, y)}-a\right) \mathbf{1}_{\left\{p^{*}(x, y)>0\right\}} \\
& +\frac{f(x, y)+(1-t) f^{*}(\alpha, y)+(1-t) f^{*}(x, \beta)-\left[p^{*}(\alpha, y)+p^{*}(x, \beta)\right] a+b}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)} \mathbf{1}_{\left\{p^{*}(x, y)=0\right\}} .
\end{aligned}
$$

According to Proposition 22, this game has a value (just replace in the absorbing game the function f with $f+b$ and the function g with $g-a)$:

$$
H(t, a, b)=\operatorname{val}_{\left(\Delta(I) \times \mathbb{R}_{+}^{I}\right) \times\left(\Delta(J) \times \mathbb{R}_{+}^{J}\right)} h(t, a, b, x, \alpha, y, \beta)
$$

The variational characterization for this class uses the following properties: for all $t \in[0,1)$ and any C^{1} function $\phi:[0,1] \rightarrow \mathbb{R}$:

- R1: If $U(\cdot)-\phi(\cdot)$ admits a global maximum at t then $H\left(t, U(t), \phi^{\prime}(t)\right) \geq 0$.
- R2: If $U(\cdot)-\phi(\cdot)$ admits a global minimum at t then $H\left(t, U(t), \phi^{\prime}(t)\right) \leq 0$.

Lemma 23 Any accumulation point $U(\cdot)$ of $W_{n}(\cdot)$ satisfies R1 and R2.
Proof. Let us prove the first variational inequality, the second being obtained by symmetry.
Let t be such that $U(\cdot)-\phi(\cdot)$ admits a global maximum at t. Adding $(\cdot-t)^{2}$ to ϕ if necessary, we can assume that this global maximum is strict.
Let $W_{\varphi(n)}$ converge to U and let $\frac{\theta(n)}{\varphi(n)}$ be a global maximum of $W_{\varphi(n)}(\cdot)-\phi(\cdot)$ over the set $\left\{\frac{m}{\varphi(n)} ; m=0, \cdots, \varphi(n)-1\right\}$. Then, $\frac{\theta(n)}{\varphi(n)} \rightarrow t$. Recall that, by definition:

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}\right)=\max _{x \in \Delta(I)} \min _{y \in \Delta J)}\left[\frac{1}{\varphi(n)} f(x, y)+p(x, y) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right)+\frac{\varphi(n)-\theta(n)-1}{\varphi(n)} f^{*}(x, y)\right] .
$$

Let x_{n} be optimal for player 1 in the above formula and let $y \in \Delta(J)$. Thus:

$$
W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}\right) \leq \frac{1}{\varphi(n)} f\left(x_{n}, y\right)+p\left(x_{n}, y\right) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right)+\frac{\varphi(n)-\theta(n)-1}{\varphi(n)} f^{*}\left(x_{n}, y\right)
$$

By compactness one can assume that x_{n} converges to some x.
Case 1: $p^{*}(x, y)>0$. Letting $n \rightarrow \infty$ implies:

$$
U(t) \leq p(x, y) U(t)+(1-t) f^{*}(x, y)
$$

hence

$$
0 \leq \frac{(1-t) f^{*}(x, j)}{p^{*}(x, j)}-U(t)
$$

Case 2: $p^{*}(x, y)=0$.
Since $p\left(x_{n}, y\right)=1-p^{*}\left(x_{n}, y\right)$, we deduce that:

$$
\begin{aligned}
& W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}\right)-W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right) \\
\leq & \frac{1}{\varphi(n)} f\left(x_{n}, y\right)+\frac{\varphi(n)-\theta(n)-1}{\varphi(n)} f^{*}\left(x_{n}, y\right)-p^{*}\left(x_{n}, y\right) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right) .
\end{aligned}
$$

Since $\frac{\theta(n)}{\varphi(n)}$ is a global maximum of $W_{\varphi(n)}(\cdot)-\phi(\cdot)$ one has:

$$
\phi\left(\frac{\theta(n)}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)+1}{\varphi(n)}\right) \leq W_{\varphi(n)}\left(\frac{\theta(n)}{\varphi(n)}\right)-W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right) .
$$

Consequently:
$0 \leq \frac{1}{\varphi(n)} f\left(x_{n}, y\right)+\frac{\varphi(n)-\theta(n)-1}{\varphi(n)} f^{*}\left(x_{n}, y\right)-p^{*}\left(x_{n}, y\right) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right)+\phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)$
Let $\alpha_{n}=\varphi(n) x_{n} \in M_{+}(I)$. Thus,

$$
0 \leq \frac{f\left(x_{n}, y\right)+\frac{\varphi(n)-\theta(n)-1}{\varphi(n)} f^{*}\left(\alpha_{n}, y\right)-p^{*}\left(\alpha_{n}, y\right) W_{\varphi(n)}\left(\frac{\theta(n)+1}{\varphi(n)}\right)+\varphi(n)\left[\phi\left(\frac{\theta(n)+1}{\varphi(n)}\right)-\phi\left(\frac{\theta(n)}{\varphi(n)}\right)\right]}{p\left(x_{n}, y\right)+p^{*}\left(\alpha_{n}, y\right)}
$$

Up to a subsequence, by linearity using the fact that J is finite, one may suppose that the right hand term converges uniformly in y. Thus, for any $\varepsilon>0$, there exist (x, α) such that for any $y \in \Delta(J):$

$$
-\varepsilon \leq \frac{f(x, y)+(1-t) f^{*}(\alpha, y)-p^{*}(\alpha, y) U(t)+\phi^{\prime}(t)}{1+p^{*}(\alpha, y)}
$$

Consequently for any $\varepsilon>0, H\left(t, U(t), \phi^{\prime}(t)\right) \geq-\varepsilon$ and so $H\left(t, U(t), \phi^{\prime}(t)\right) \geq 0$.
The comparison principle for this class is the next result.
Lemma 24 Let U_{1} and U_{2} be two Lipschitz functions with $U_{i}(t) \in \mathcal{S}$ for all $t \in[0,1]$ satisfying R1, R2, and

- R3: $U_{1}(1) \leq U_{2}(1)$.

Then $U_{1} \leq U_{2}$ on $[0,1] \times \Delta(K) \times \Delta(L)$.
Proof. By contradiction, suppose

$$
\max _{t \in[0,1]}\left[U_{1}(t)-U_{2}(t)\right]=\delta>0 .
$$

Let $\varepsilon>0$ and set

$$
\delta(\varepsilon)=\max _{(t, s) \in[0,1] \times[0,1]}\left[U_{1}(t)-U_{2}(s)-\frac{(t-s)^{2}}{2 \varepsilon}+\varepsilon s\right] .
$$

Then, $\delta(\varepsilon) \rightarrow \delta$ as $\delta \rightarrow 0$. Let

$$
\left(t_{\varepsilon}, s_{\varepsilon}\right) \in \arg \max _{t, s, p, q} U_{1}(t)-U_{2}(s)-\frac{(t-s)^{2}}{2 \varepsilon}+\varepsilon s
$$

Note that, for ε sufficiently small, $t_{\varepsilon}<1$ and $s_{\varepsilon}<1$ because $U_{1}(1) \leq U_{2}(1)$. Moreover, from standard arguments, $t_{\varepsilon}-s_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Since the map $U_{1}(t)-\frac{\left(t-s_{\varepsilon}\right)^{2}}{2 \varepsilon}$ has a global maximum at $t_{\varepsilon} \in[0,1)$, we have by condition $\mathbf{R} 1$ that

$$
\begin{equation*}
H\left(t_{\varepsilon}, U_{1}\left(t_{\varepsilon}\right), \frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}\right) \geq 0 \tag{33}
\end{equation*}
$$

In the same way, since the map $s \rightarrow U_{2}(s)+\frac{\left(t_{\varepsilon}-s\right)^{2}}{2 \varepsilon}-\varepsilon s$ has a global minimum at s_{ε}, we have by condition R2 that

$$
\begin{equation*}
H\left(s_{\varepsilon}, U_{2}\left(s_{\varepsilon}\right), \frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}+\varepsilon\right) \leq 0 \tag{34}
\end{equation*}
$$

To simplify the expressions, let us set $w_{1}^{\varepsilon}=U_{1}\left(t_{\varepsilon}\right), w_{2}^{\varepsilon}=U_{2}\left(s_{\varepsilon}\right)$ and $b_{\varepsilon}=\frac{t_{\varepsilon}-s_{\varepsilon}}{\varepsilon}$. Let $\left(x_{\varepsilon}, \alpha_{\varepsilon}\right) \in$ $\Delta(I) \times \mathbb{R}_{+}^{I}$ be such that:

$$
H\left(t_{\varepsilon}, w_{1}^{\varepsilon}, b_{\varepsilon}\right) \leq \varepsilon^{2}+\inf _{(y, \beta)} h\left(t_{\varepsilon}, w_{1}^{\varepsilon}, b_{\varepsilon}, x_{\varepsilon}, \alpha_{\varepsilon}, y, \beta\right)
$$

and $\left(y_{\varepsilon}, \beta_{\varepsilon}\right) \in \Delta(J) \times \mathbb{R}_{+}^{J}$ be such that

$$
H\left(s_{\varepsilon}, w_{2}^{\varepsilon}, b_{\varepsilon}+\varepsilon\right) \geq-\varepsilon^{2}+\sup _{(x, \alpha)} h\left(s_{\varepsilon}, w_{2}^{\varepsilon}, b_{\varepsilon}+\varepsilon, x, \alpha, y_{\varepsilon}, \beta_{\varepsilon}\right) .
$$

We now discuss two cases:
Case 1: There is a subsequence $\varepsilon \rightarrow 0$ such that $p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)>0$.
Then, from (33),

$$
\left(1-t_{\varepsilon}\right) f^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)-p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right) w_{1}^{\varepsilon} \geq-\varepsilon^{2} p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)
$$

while, from (34),

$$
\left(1-s_{\varepsilon}\right) f^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)-p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right) w_{2}^{\varepsilon} \leq \varepsilon^{2} p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)
$$

Computing the difference between the two last inequalities, we get

$$
\left(t_{\varepsilon}-s_{\varepsilon}\right) f^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)+\left(w_{1}^{\varepsilon}-w_{2}^{\varepsilon}\right) p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right) \leq 2 \varepsilon^{2} p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right),
$$

Since $f^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)=\sum_{i, j} x_{\varepsilon}(i) y_{\varepsilon}(j) p^{*}(i, j) g(i, j)$ and $|g(i, j)| \leq C$ one has $\left|f^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)\right| \leq C p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)$, hence

$$
-C\left|t_{\varepsilon}-s_{\varepsilon}\right|+\left(w_{1}^{\varepsilon}-w_{2}^{\varepsilon}\right) \leq 2 \varepsilon^{2} .
$$

This leads to a contradiction as $\varepsilon \rightarrow 0$ because $\delta(\varepsilon) \rightarrow \delta>0$ and $t_{\varepsilon}-s_{\varepsilon} \rightarrow 0$.
Case 2: $p^{*}\left(x_{\varepsilon}, y_{\varepsilon}\right)=0$ for any $\varepsilon>0$ sufficiently small.
Then, letting in order to simplify the expressions: $f_{\varepsilon}=f\left(x_{\varepsilon}, y_{\varepsilon}\right), p_{\varepsilon}^{*}=p^{*}\left(\alpha_{\varepsilon}, y_{\varepsilon}\right)+p^{*}\left(x_{\varepsilon}, \beta_{\varepsilon}\right)$, and $f_{\varepsilon}^{*}=f^{*}\left(\alpha_{\varepsilon}, y_{\varepsilon}\right)+f^{*}\left(x_{\varepsilon}, \beta_{\varepsilon}\right)$, we obtain:

$$
\begin{equation*}
f_{\varepsilon}+\left(1-t_{\varepsilon}\right) f_{\varepsilon}^{*}-p_{\varepsilon}^{*} w_{1}^{\varepsilon}+b_{\varepsilon} \geq-\varepsilon^{2}\left(1+p_{\varepsilon}^{*}\right), \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\varepsilon}+\left(1-s_{\varepsilon}\right) f_{\varepsilon}^{*}-p_{\varepsilon}^{*} w_{2}^{\varepsilon}+b_{\varepsilon}+\varepsilon \leq \varepsilon^{2}\left(1+p_{\varepsilon}^{*}\right) . \tag{36}
\end{equation*}
$$

Computing and simplifying the difference between (36) and (35) we get

$$
-C p_{\varepsilon}^{*}\left|t_{\varepsilon}-s_{\varepsilon}\right|+\varepsilon+p_{\varepsilon}^{*}\left(w_{1}^{\varepsilon}-w_{2}^{\varepsilon}\right) \leq 2 \varepsilon^{2}\left(1+p_{\varepsilon}^{*}\right) .
$$

So, dividing the above inequality by $\left(1+p_{\varepsilon}^{*}\right)$ implies that

$$
\min \left\{\varepsilon, w_{1}^{\varepsilon}-w_{2}^{\varepsilon}-C\left|t_{\varepsilon}-s_{\varepsilon}\right|\right\} \leq 2 \varepsilon^{2},
$$

which is impossible because $w_{1}^{\varepsilon}-w_{2}^{\varepsilon} \rightarrow \delta>0$ and $t_{\varepsilon}-s_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
On n'a pas utilisé Lipschitz dans la preuve, seulement continu
Consequently, we obtain the uniform convergence of v_{n} to v :
Theorem $25 v_{n}$ converges to $v=\lim v_{\lambda}$ and $W_{n}(t)$ converges uniformly to $(1-t) v$.
Proof. The last two lemmas implies that W_{n} converges uniformly to the unique C-Lipschitz function satisfying R1-R3. On the other hand, the function $V(t)=(1-t) v$ is C-Lipschitz and trivially satisfies the inequalities. Consequently, $V(t)$ is the limit of W_{n} and so v is the limit of v_{n}

4.3 General evaluation

The proof and the result extend in a straightforward way to any sequence of decreasing evaluation of the payoffs.

4.4 Remark

Lemma 24 does not use the fact that $U_{i}(t) \in \mathcal{S}$. In fact this property implies that for any couple of optimal strategies x in the projective game at U_{1} and y in the projective game at U_{2}, one has $p^{*}(x, y)=0$. This leads to a shorter proof and simpler variational characterization.

For $w \in \mathcal{S}$, let $X(w)$ be the set of optimal strategies for player 1 and $Y(w)$ be the set of optimal strategies for player 2 in the limiting game at $w . X(w)$ is called non absorbing if for every $x \in X(w)$, there exists $y \in \Delta(J)$ such that $p^{*}(x, y)=0$ and similarly for $Y(w)$.

We introduce now two properties:

- R1: if $X(w)$ is non absorbing then for any $\varepsilon>0$, there exists $(x, \alpha) \in X(w) \times \mathbb{R}_{+}^{I}$ such that for every $(y, \beta) \in \Delta(J) \times \mathbb{R}_{+}^{J}$ with $p^{*}(x, y)=0$, one has $v \leq \frac{f(x, y)+f^{*}(\alpha, y)+f^{*}(x, \beta)}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)}+\varepsilon$.
- R2: if $Y(w)$ is non absorbing then for any $\varepsilon>0$, there exists $(y, \beta) \in Y(w) \times \mathbb{R}_{+}^{J}$ such that for every $(x, \alpha) \in \Delta(I) \times$ rit ${ }_{+}^{I}$ with $p^{*}(x, y)=0$, one has $v \geq \frac{f(x, y)+f^{*}(\alpha, y)+f^{*}(x, \beta)}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)}-\varepsilon$.

Lemma 27 If $w \in \mathcal{S}_{0}$ then w satifies $\boldsymbol{R} 1$ and $\boldsymbol{R} 2$.
Proof. Follows from the proof of Proposition 22.
Lemma 28 If $w_{1} \in \mathcal{S}$ satisfies $\boldsymbol{R} 1$ and $w_{2} \in \mathcal{S}$ satisfies $\boldsymbol{R} 2$ then $w_{1} \leq w_{2}$.
Proof. Suppose that $w_{1}-w_{2}=\delta>0$. Let $x_{1} \in X\left(w_{1}\right)$ and $x_{2} \in Y\left(w_{2}\right)$. Then:

$$
\delta=w_{1}-w_{2} \leq p(x, y)\left(w_{1}-w_{2}\right)=p(x, y) \delta
$$

Thus, $p^{*}(x, y)=1-p(x, y)=0$. Consequently, $X\left(w_{1}\right)$ and $Y\left(w_{2}\right)$ are non absorbing. Hence, for any $\varepsilon>0$ there exists (x, y, α, β) such that:

$$
w_{1} \leq \frac{f(x, y)+f^{*}(\alpha, y)+f^{*}(x, \beta)}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)}+\varepsilon,
$$

and

$$
w_{2} \geq \frac{f(x, y)+f^{*}(\alpha, y)+f^{*}(x, \beta)}{1+p^{*}(\alpha, y)+p^{*}(x, \beta)}+\varepsilon,
$$

implying that $\delta \leq 2 \varepsilon$, a contradiction.
Corollary $29 v$ converges to the unique point in \mathcal{S} satisfying $\boldsymbol{R} \mathbf{1}$ and $\boldsymbol{R} 2$.

5 Concluding comments

The main contribution of this approach is to provide a unified treatment of the asymptotic analysis of the value of repeated games:

- it applies to all decreasing evaluations and shows the interest of the limiting game played on $[0,1]$. Further research will be devoted to a formal construction and to the analysis of optimal strategies.
- it allows to treat incomplete infomation games as well as absorbing games. We strongly believe that similar tools will allow to analyze more general classes,
- it shows that technics introduced in diferential games where the dynamics on the state are smooth can be used in a repeated game framework. On the other the stationary aspect of the payoff in repeated games is no longer necessary to obtain asymptotic properties.

References

[1] Aumann R.J. and M. Maschler (1995). Repeated Games with Incomplete Information, M.I.T. Press.
[2] Barles, G. and Souganidis, P. E. (1991) Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4, 3, 271?283.
[3] Bewley T. and Kohlberg E. (1976a). The Asymptotic Theory of Stochastic Games. Mathematics of Operations Research, 1, 197-208.
[4] Bewley T. and Kohlberg E. (1976b). The Asymptotic Solution of a Recursion Equation Occurring in Stochastic Games. Mathematics of Operations Research, 1, 321-336.
[5] Kohlberg E. (1974). Repeated Games with Absorbing States. Annals of Statistics, 2, 724-738.
[6] Laraki R. (2001a). The Splitting Game and Applications. International Journal of Game Theory, 30, 359-376.
[7] Laraki R. (2001b). Variational Inequalities, System of Functional Equations, and Incomplete Information Repeated Games. SIAM J. Control and Optimization, 40, 516-524.
[8] Laraki R. (2002). Repeated Games with Lack of Information on One Side : the Dual Differential Approach. Mathematics of Operations Research, 27, 419-440.
[9] Laraki R. (2004). On the Regularity of the Convexification Operator on a Compact Set. Journal of Convex Analysis, 11, 209-234.
[10] Laraki R. (2010). Explicit Formulas for Repeated Games with Absorbing States. International Journal of Game Theory, 39, 53-69.
[11] Mertens J.-F. and S. Zamir (1971). The Value of Two-Person Zero-Sum Repeated Games with Lack of Information on Both Sides. International Journal of Game Theory, 1, 39-64.
[12] Mertens J.-F., S. Sorin and S. Zamir (1994). Repeated Games. CORE DP 9420-22.
[13] Rosenberg D. (2000). Zero-Sum Absorbing Games with Incomplete Information on One Side: Asymptotic Analysis. SIAM J. Control and Optimization, 39, 557-597.
[14] Rosenberg D. and S. Sorin (2001). An Operator Approach to Zero-Sum Repeated Games. Israel Journal of Mathematics, 121, 221-246.
[15] Rosenberg D. and N. Vieille (2001). The MaxMin of Recursive Games with Incomplete Information on One Side. Mathematics of Operations Research, 25, 23-35.
[16] Shapley L. S. (1953). Stochastic Games. Proceedings of the National Academy of Sciences of the U.S.A., 39, 1095-1100.
[17] Sorin S. (1984). "Big Match" with Lack of Information on One Side, Part I. International Journal of Game Theory, 13, 201-255.
[18] Sorin S. (1985). "Big Match" with Lack of Information on One Side, Part II. International Journal of Game Theory, 14, 173-204.
[19] Sorin S. (2002). A First Course on Zero-Sum Repeated Games. Springer.
[20] Sorin S. (2005). New Approaches and Recent Advances in Two-Person Zero-Sum Repeated Games. Advances in Dynamic Games, A. Nowak and K. Szajowski (eds.), Annals of the ISDG, 7, Birkhauser, 67-93.
[21] Vieille N. (1992). Weak Approachability. Mathematics of Operations Research, 17, 781-791.

[^0]: * Ceremade, Université Paris-Dauphine, France. cardaliaguet@ceremade.dauphine.fr
 ${ }^{\dagger}$ CNRS, Economics Department, Ecole Polytechnique, France. rida.laraki@polytechnique.edu. Part time associated with Équipe Combinatoire et Optimisation CNRS FRE 3232, Université P. et M. Curie - Paris 6.
 ${ }^{\ddagger}$ Equipe Combinatoire et Optimisation, CNRS FRE 3232, Faculté de Mathématiques, Université P. et M. Curie - Paris 6, Tour 15-16, 1 étage, 4 Place Jussieu, 75005 Paris and Laboratoire d'Econométrie, Ecole Polytechnique, France; sorin@math.jussieu.fr

