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1 Introduction

We consider repeated games on a social network: each player has a set of neighbors

with whom he interacts and communicates. The payoff of a player depends only on the

actions chosen by himself and his neighbors, and at each stage, a player can send different

messages to his neighbors. Players observe their stage payoff but not the actions chosen

by their neighbors. We establish a necessary and sufficient condition on the network for

the existence of a protocol which identifies a deviating player in finite time. We derive a

Folk theorem for a relevant class of payoff functions.

2 The model

2.1 Preliminaries

We consider a repeated game on a network where the players interact and communicate

with their neighbors. This is described by the following data.

• A finite set N = {1, . . . , n} of players, n ≥ 2.
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• For each player i ∈ N , a non-empty finite set Ai of his actions (with ]Ai ≥ 2). We

denote A =
∏

i∈N A
i.

• An undirected graph G = (N,E) where the vertices are the players N and E ⊆

N × N is a set of links. Let N (i) = {j 6= i : ij ∈ E} be the set of neighbors of

player i. Since G is undirected, we have that i ∈ N (j)⇔ j ∈ N (i).

• For each player i ∈ N , a payoff function gi :
∏

j∈N (i)∪{i}A
j → R, i.e. the stage

payoff of player i in N only depends on the actions chosen by him and his neighbors.

For each player i in N , we denote by G− i the graph obtained from G by removing i

and its links. More precisely, G−i = (N \ {i}, E ′) where E ′ = {jk ∈ (N \{i})×(N \{i}) :

j ∈ N (k) and k ∈ N (j)}.

The graph represents both the interactions and the communication possibilities. At

each stage, players choose an action and send messages to their neighbors. We use the

following notations: AN (i)∪{i} =
∏

j∈N (i)∪{i}A
j, aN (i) = (aj)j∈N (i) and g = (g1, . . . , gn)

denotes the vector of payoffs. The repeated game unfolds as follows. At any stage t ∈ N∗:

• the players choose actions simultaneously in their action sets. Let at : (ait) be the

profile of actions taken at stage t.

• Then, each player i ∈ N observes his stage payoff gi(ait, a
N (i)
t ). A player cannot

observe the actions chosen by others, even by his neighbors.

• Finally, messages are sent by each player to his neighbors. Communication is unicast

in that each player can send different messages to his neighbors. Communication

between a pair of neighbors is private, i.e. no other player can learn the message

or change it. Let M i be a non-empty finite set of messages of player i and denote

by mi
t(j) the message sent by player i to his neighbor j ∈ N (i) at stage t. The

specification of the set M i is part of the solution concept and is described in section

3.

We assume players have perfect recall (i.e. they never forget what they have learnt)

and that the whole description of the game is common knowledge. For each stage t, denote
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byH i
t the set of histories of player i up to stage t, that is (Ai×(M i)N (i)×(M j)j∈N (i)×{gi})t,

where {gi} is the range of gi (H i
0 is a singleton). An element of H i

t is called an i-

history of length t. A behavior strategy of a player i is a pair (σi, φi) where σi = (σit)t≥1,

φi = (φit)t≥1, and for each stage t, σit is a mapping from H i
t−1 to ∆(Ai), with ∆(Ai) the

set of probabilities distributions over Ai, and φit is a mapping from H i
t−1 × {ait} × {git}

to ∆((M i)N (i)). We call σi the action strategy of player i and φi his communication

strategy. Let Σi be the set of action strategies of player i and Φi his set of communication

strategies. We denote by σ = (σi)i∈N ∈
∏

i∈N Σi the joint action strategy of the players

and by φ = (φi)i∈N ∈
∏

i∈N Φi their joint communication strategy. Let Ht be the set of

histories of length t, that is the sequences of actions, payoffs and messages for t stages. H∞

is the set of all possible infinite histories. A profile (σ, φ) defines a probability distribution,

Pσ,φ, over the set of plays H∞, and we denote Eσ,φ the corresponding expectation operator.

We consider the infinitely discounted repeated game, where the overall payoff function of

any player i in N is the expected normalized sum of discounted payoffs. That is, for each

player i in N :

γiδ(σ, φ) = Eσ,φ

[
(1− δ)

∞∑
t=1

δt−1git(a
i
t, a
N (i)
t )

]
,

where δ ∈ [0, 1) is a common discount factor. A strategy profile (σ, φ) is a Nash equilibrium

if no player can increase his discounted payoff by switching unilaterally to an alternative

strategy (τ i, ψi). We study equilibrium outcomes of repeated games with high discount

factor.

Definition 2.1 A payoff vector x = (xi)i∈N ∈ RN is an equilibrium payoff of the repeated

game if there exists a discount factor δ̄ ∈ (0, 1) such that, for any δ ∈ (δ̄, 1), x is induced

by a Nash equilibrium of the δ-discounted game.

Let Γδ(G, g) be the δ-discounted game, and let Eδ(G, g) be its associated set of equi-

librium payoffs. For any action profile a ∈ A, let g(a) = (g1(a1, aN (1)), . . . , gn(an, aN (n)))

and g(A) = {g(a) : a ∈ A}. We denote by co g(A) the convex hull of g(A): co g(A) is the

set of feasible payoffs. It is straightforward that Eδ(G, g) ⊆ co g(A). The (independent)
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minmax level of player i is defined by:

vi = min
xN (i)∈

∏
j∈N (i) ∆(Aj)

max
xi∈∆(Ai)

gi(xi, xN (i)).

We denote by SIR(G, g) = {x = (x1, . . . , xn) ∈ RN : xi > vi ∀i ∈ N} the set of strictly

individually rational payoffs. The aim of this paper is to characterize the networks G for

which a Folk theorem holds, i.e. each feasible and strictly individually rational payoff is

an equilibrium payoff of the repeated game for large enough discount factors. The next

section presents our conditions on payoff functions and on networks.

We recall now some usual definitions of graph theory (the reader is referred to [Die00]).

Definition 2.2 • A graph is a pair G = (V,E) where V is a set of nodes and E ⊆

V × V is a set of links (or edges).

• A subgraph G′ of G, written as G′ ⊆ G, is a pair G′ = (V ′, E ′) where V ′ ⊆ V and

E ′ ⊆ E.

• A walk in G = (V,E) is a sequence of links e1, . . . , eK such that ekek+1 ∈ E for

each k ∈ {1, . . . , K − 1}. A path from node i to node j is a walk such that e1 = i,

eK = j and each node in the sequence e1, . . . , eK is distinct. The number of links of

a path is referred as its length.

• The distance dG(i, j) in G of two nodes i, j is the length of a shortest path from i

to j in G; if no such path exists, we set dG(i, j) := +∞.

• Two paths from i to j are independent if there are no common links except i and j.

• G is called k-connected (for k ∈ N) if ]V ≥ k and G−X is connected for every set

X ⊆ V with ]X < k, where G−X represents the graph where all nodes in X have

been removed (and the corresponding links). In other words, a graph is k-connected

if any two of its nodes can be joined by k independent paths.

• A connected component of a graph G is a subgraph in which any two vertices are

connected to each other by paths, and which is connected to no additional vertices.
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2.2 Structures of payoffs and networks

2.2.1 Payoff functions

Payoff functions need to be sufficiently rich for the players to be able to detect a deviation.

The next example shows that a Folk theorem may be impossible for some particular payoff

functions.

Example 2.3 Consider the 2-player game played on the following network:

•
1

•
2

and with payoff matrix (player 1 chooses the row, player 2 the column):

L M R
U 0, 0 1, 0 0, 0
D 3, 4 3, 3 1, 0

The payoff vector (3, 3) is feasible and strictly individually rational, but is not an

equilibrium payoff. Indeed, for any discount factor δ ∈ [0, 1), player 2 has an incentive to

deviate by playing L at each stage. When player 1 chooses D, he does not know whether

player 2 plays L or R, and thus does not know if player 2 deviates.

On another hand, suppose that the payoff matrix is the following:

L M R
U 0, 0 1, 0 0, 0
D 3, 4 3 + ε, 3 1, 0

with ε > 0. Then, player 1 detects player 2’s deviation and starts punishing by playing U .

For a large enough discount factor δ, (D,M) is an equilibrium of the discounted game.

The previous example shows that if a deviation of a player i does not change the

payoffs of his neighbors, then they do not detect the deviation and as a consequence, it

may possible for some feasible and strictly individually rational payoffs are not equilibrium

payoffs of the repeated game. For a similar phenomenon, see [Leh89]. So it is not possible

to have a Folk theorem for all payoff functions g. We introduce the following assumption.
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Assumption 2.4 For any player i ∈ N , for any neighbor j ∈ N (i), for any pair of

actions bj and cj in Aj:

gi(ai, aN (i)\{j}, bj) 6= gi(ai, aN (i)\{j}, cj).

Example 2.5 The following payoff functions satisfy Assumption 2.4:

• For each player i in N , let Ai ⊂ N and gi(ai, aN (i)) =
∑

j∈N (i)∪{i} a
j.

• For each player i in N , let Ai ⊂ R and gi is strictly monotone with respect to any

coordinate.

• For each player i in N , let Ai = A ⊂ R and gi is strictly monotone with respect to

any coordinate and invariant by permutation of the actions chosen by i’s neighbors.

2.2.2 Condition on networks

The next example puts forwards the importance of the connectivity of the graph.

Example 2.6 Consider the 5-player game played on the following network:

•3 •4

•5

•1

•2

where for each player i in N , N (i) ≡ {i − 1, i + 1} mod 5. Suppose that each player

chooses between two actions, a and b. For simplicity, we focus only on payoff functions

of players 1, 2 and 3 given by the following matrix (player 1 chooses the row, player 2 the

column, player 3 the matrix):

a b
a 1, 1, 1 0, 1, 3
b 3, 0, 0 0, 0, 4

a

a b
a 3, 0, 3 2, 0, 4
b 4, 1, 0 2, 1, 2

b

In addition, we assume that g4 and g5 are such that, if player 4 (respectively 5) plays

b, each of his neighbors gets a bonus of ε and if player 1 (respectively 3) chooses a, his
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neighbor 5 (respectively 4) receives a bonus of ε. It is easy to check that Assumption 2.4

is satisfied.

The minmax levels of players 1, 2 and 3 are zero, so the payoff (1, 1, 1), only obtained

by the profile of actions (a, a, a), is feasible and strictly individually rational. However,

players 1 and 3 have both an incentive to deviate by playing b in order to get a payoff of 3.

Player 1 then gets a payoff of 0 no matter who is the deviator. Player 5 (respectively 4)

can differentiate between the two deviations: if player 1 deviates (respectively player 3),

then player 5 (respectively player 4) has a decrease of ε in his payoff. But, both players 4

and 5 cannot communicate truthfully this information to player 1, since all paths between

them and player 1 go through players 1 or 3, both of them being suspected1. So, player 1

cannot differentiate between a deviation of player 1 and a deviation of player 3.

Moreover, player 1 cannot punish both players 1 and 3: player 2 has to play b to

minmax player 2 and player 3 then gets at least 3 by playing a; and he has to play a to

punish player 3, player 1 getting then at least 3 by playing b. So, the element (1, 1, 1) is

not an equilibrium payoff and with this network, the Folk theorem does not hold.

In the network with five players presented in the previous example, a Folk theorem

does not hold as there exists a particular payoff function (which satisfies Assumption 2.4)

for which a feasible and strictly individually rational payoff is not an equilibrium payoff.

The situation would be different if players 4 and 5 could have transmit directly (by a link)

to player 1 their information concerning an eventual deviation of player 1 or 3. This puts

forwards the importance of the connectivity of a network: the more connected the network

is, the less manipulated the communication between two players is. The example below

shows that too much connectivity is also an obstacle in order to have a Folk theorem.

Example 2.7 Consider the 5-player game played on the following network:

where for each i in N , N (i) = N \ {i}. Assume that, for each player i in N , Ai = {0, 1}

and gi(ai, aN (i)) = gi(a1, . . . , a5) = gi(a) =
∑

i∈N a
i. For any player i in N , it is not

possible to identify the deviator when there is an action deviation. For instance, it is not

possible to differentiate a deviation of player 1 from a deviation of player 2. Indeed, if

1A formal proof of this idea is given in a general case in section 4.
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•3 •4

•5

•1

•2

player 1 deviates in action at some stage t, everybody detects the deviation because of the

change in their stage payoffs. However, as the graph is complete, each player suspects

every other player and nobody can differentiate between players 1 and 2 in particular.

In this example, an action deviation of any player is detected, but the deviator is not

identified.

The previous example shows that the networks must not be complete and players

should have different neighbors in order to have a Folk theorem. We now explicit the

sufficient and necessary condition on networks to have a Folk theorem.

Condition 2.8 Necessary and sufficient condition

For any i ∈ N , for any j, k ∈ N (i) such that j 6= k, there exists l ∈ N (j)4N (k) such

that there is a path from l to i which goes neither through j nor k, where:

N (j)4N (k) = (N (j) \ N (k))
⋃

(N (k) \ N (j)) .

The basic idea of Condition 2.8 is the following. Take any player i in N . If at some

stage there is an action deviation of one of his neighbors, he needs to identify him in

order to punish him. So, for any pair of neighbors j, k in N (i), he needs to differentiate

between a deviation of player j and a deviation of player k. If the network satisfies

Condition 2.8, then there exists some player l who is a neighbor of only one of players j

and k, say j. On one hand, if player j is the deviator, then player l observes a change in

his payoff whenever Assumption 2.4 is satisfied and concludes that k is innocent (because

k is not his neighbor). On the other hand, if k is the deviator, player l concludes that j

is innocent because he does not observe a change in his payoff. In both situations, player

l can transmit this information to player i as there is path from l to i which goes not

through the suspects j nor k. Moreover, when a player, say m tells to player i that some
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other player, say j, is innocent, one concludes that player j is indeed innocent. Actually,

either player m is not telling the truth, thus deviates, and player j is innocent as we focus

on unilateral deviations; or, player m is innocent, thus telling the truth and player j also

is innocent. This idea is resumed in the example below.

Example 2.9 Consider the 6-player game played on the following network:

•3 •5

•6

•1

•2

•
4

Suppose that the payoff functions are such that Assumption 2.4 is satisfied. Notice that

Condition 2.8 is satisfied in this network. Consider without loss of generality player 1’s

point of view (the network is symmetric) and suppose that player 3 deviates in action at

some stage t > 0. Then player 1 observes a change in his payoff due to Assumption 2.4

and suspects his neighbors 3, 4 and 5. On the other hand, player 2 is not a neighbor of

player 3 and does not observe a change in his payoff, so he concludes that his neighbors

players 4 and 5 (and 6) are innocent. Player 2 transmits this information to players 4

and 5. Then, player 4 is able to tell to player 1 that 5 is innocent and player 5 that 4 is

innocent. Player 1 then knows that player 1 is guilty since he is the only suspect left.

The important fact here is that player 2 can clear players 4 and 5 and that there exists

a path from player 2 to player 1 which goes neither trough 3 nor 4 and this path is used

to transmit the information that 4 is innocent. In the same way, there is a path from 2

to 1 which goes neither trough 3 nor 5.

We now exhibit some basic properties of the networks which satisfy Condition 2.8.

Proposition 2.10 If the graph G satisfies Condition 2.8, then for each pair of players i

and j in the same connected component of at least 3 players, N (i) \ {j} 6= N (j) \ {i}.

Proof. Take a graph G which satisfies Condition 2.8 and a connected component C ⊆ G

with at least three nodes. Assume that there exists a pair of players j and k in C such that

9



N (j) \ {k} = N (k) \ {j}. Since C contains at least three nodes, there exists i 6= j, k such

that i ∈ N (j)∩N (k) (otherwise j and k would not be in the same connected component).

So j and k are in N (i), but then there exists no l ∈ N (j)4 N (k) such that l 6= j, k,

which contradicts Condition 2.8.

Proposition 2.11 If the network G satisfies Condition 2.8, then no player can have

exactly two neighbors: ∀i ∈ N , ]N (i) 6= 2.

Proof. Take a graph G which satisfies Condition 2.8. Suppose that there exists a player

i in N who has exactly two neighbors, say j and k, that is: N (i) = {j, k}. Then, because

of Condition 2.8, there must exist a player l in N such that l 6= j, k and such that there

is a path from l to i going neither trough j nor k. This implies that i must have another

neighbor different from j and k, which is impossible by assumption.

We can deduce from the two previous propositions a family of graphs that satisfy

Condition 2.8.

Corollary 2.12 Let n ≥ 3. If a network G is 3-connected and if, for any pair (i, j) ∈ N2,

N (i) \ {j} 6= N (j) \ {i}, then G satisfies Condition 2.8.

Remark 2.13 Except the 2-player case, one can see easily that there is no connected

graph satisfying Condition 2.8 with strictly less than six players.

Before presenting the main result, we exhibit some graphs which satisfy Condition 2.8

(Figure 1) and some which do not (Figure 2). Regarding the first ones, notice that G1 is

3-connected, whereas G2, G3 and G4 are not even 2-connected.

2.3 Main result

The main result of the paper is the following.

Theorem 2.14 The following statements are equivalent.

1. The network G satisfies Condition 2.8.

10



•3 •5

•6

•1

•2

•
4

G1

•3 •5

•6

•1

•2

•
4

•
7 •10 •12

•13

•8

•9

•
11

G2

•3 •5

•6

•1

•2

•
4

•7 •8

•9 •10

G3

•3 •5

•6

•1

•2

•
4

•10 •12

•13

•8

•9

•
11

G4

Figure 1: Networks satisfying Condition 2.8

•3 •4

•5

•1

•2

G5

•3 •4

•5

•1

•2

G6

Figure 2: Networks not satisfying Condition 2.8

2. For any payoff function which satisfies Assumption 2.4, any feasible and strictly

individually rational payoff is an equilibrium payoff of the discounted game, that is:

there exists δ̄ ∈ (0, 1) such that for any δ ∈ (δ̄, 1),

co g(A) ∩ SIR(G, g) ⊆ Eδ(G, g).

The second assertion of the above theorem can be seen as a Folk theorem. Section 3 is

devoted to prove that Condition 2.8 is sufficient for this Folk theorem to hold. In section

4, we prove that this is also a necessary condition, i.e. for the family of networks which

do not satisfy Condition 2.8, we find a particular payoff function g such that there exists

a feasible and strictly individually rational payoff which is not an equilibrium payoff of

the discounted game.
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Remark 2.15 Henceforth, we only focus on connected networks. Notice that when a

network G has several connected components, the payoff function of each player only

depends on the actions chosen by himself and his neighbors and no player in a connected

component can communicate with any player of another component. Therefore, each

connected component can be seen as a game in itself.

3 Construction of the equilibrium strategy

In this section, we assume that the network G satisfies Condition 2.8 and show the inclu-

sion co g(A) ∩ SIR(G, g) ⊆ Eδ(G, g) for any large enough discount factor and any payoff

function that satisfies Assumption 2.4. From now on, suppose that g satisfies Assumption

2.4. We take a point γ̄ = (γ̄1, . . . , γ̄n) in co g(A)∩SIR(G, g) and construct an equilibrium

of the discounted game (σ̄, φ̄) with payoff γ̄ for a large enough discount factor.

The strategy is made of three parts: a stream of pure actions leading to the payoff γ̄

and to be played in case of non deviation, periods of communication allowing the neighbors

of the deviator to identify him exactly if there is an action deviation, and punishments

phases. We need first to precise these three phases, then describe the communication part

in order to identify the deviator when there is a deviation (section 3.2). In section 3.3, we

prove the sufficient part of theorem 2.14. Finally, in section 3.4, we study the particular

case of 2-connected networks which have some additional properties.

3.1 Description of the equilibrium strategy

The equilibrium path. For any player i in N and any stage t > 0, choose āit ∈ Ai

such that

(1− δ)
∞∑
t=1

δt−1git(ā
i
t, ā
N (i)
t ) = γ̄i

In this phase, player i should play action āit at stage t. There is a blank message ∅ that

should be sent by player i to his neighbors at each stage t: it corresponds to the case

where player i does not transmit any information to his neighbors.
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Punishment phase. For any player i in N and any neighbor k ∈ N (i), fix σ̄i,k ∈ Σi

such that for any φi and for any (σk, ψk),

γkδ (σk, (σ̄i,k)i∈N (k), ψ
k, (φi)i∈N (k)) ≤

∞∑
t=1

(1− δ)δt−1vk.

During this phase, player i plays a minmax strategy against his neighbor k. Notice that

only the neighbors of player k are able to minmax him, so the strategies of other players

are arbitrary.

Communication phase. Notice that there are two kinds of deviations, action and

communication ones: a faulty player k may stop playing ākt at some stage t and/or send

spurious messages. The deviator is supposed to be Byzantine: he is allowed to choose

any possible strategy (τ k, ψk). In particular, this deviator may stop playing ākt and try to

avoid other players to identify him by sending false messages. He may also take action ākt

at any stage t but send spurious messages to induce wrong conclusions on behalf of the

others.

By assumption, communication is non-costly, so we only need to identify the deviator

when there is an action deviation. In this case, we only need the neighbors of the deviator

to identify him as only they can minmax him. However, all the neighbors of the deviator

have to identify him because for some payoff functions, it may not be possible to punish

several neighbors and it may also be needed that all the neighbors of the deviator start

playing the punishment strategy in order to force him to his minmax. During this phase,

each player i in N should play action āit at stage t.

In the next section, we construct the communication part of the strategy (σ̄, φ̄) in

order to identify the deviator when there is an action deviation.

3.2 Communication protocol

For the communication phase of the equilibrium strategy, we use a communication pro-

tocol, i.e. the specification of how players choose their messages, the number of com-
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munication rounds and an output rule for each player. In our context, we need the

communication protocol to start when there is a deviation and if it is an action deviation,

that the neighbors of the deviator output the identity of the faulty player. In particular,

the protocol has to start even if there is only a communication deviation, as it may not be

possible for some players to differentiate between action and communication deviations.

We first introduce some definitions, then construct a communication protocol which has

the desired properties.

3.2.1 Definitions

A communication protocol specifies: a finite set of messages, a strategy for each player,

a number of rounds of communication and an output rule for each player. We need to

construct a communication protocol such that:

• if, for any stage t > 0 and any player i in N , git = gi(āit, ā
N (i)
t ) and for any neighbor

j ∈ N (i), player i received the blank message from j, that is mj
t(i) = ∅, then the

protocol does not start;

• if there is a stage t > 0 such that:

– for any stage s < t and any player i in N , gis = gi(āit, ā
N (i)
t ) and mj

t(i) = ∅ for

any neighbor j ∈ N (i);

– and there is a single player k who starts deviating at stage t, i.e. either akt 6= ākt

or there exists a player j ∈ N (j) such that mk
t (j) 6= ∅;

then, the protocol starts. In addition, if there is an action deviation at any stage

t′ ≥ t, i.e. akt′ 6= ākt′ , and if all the players, except possibly player k, perform

the protocol, then after the specified number of rounds, each neighbor of player k

outputs the name of k.

In this case, we say that deviator identification by neighbors is possible for the

network G.
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Remark 3.1 An action deviation of player k at some stage t > 0 is not directly observ-

able, since players do not observe actions. However, since the payoffs satisfy Assumption

2.4, an action deviation leads to a change in payoff for each player j ∈ N (k), who then

should start the protocol.

More precisely, we denote by θ the first stage at which some player starts deviating, ie θ

is the stopping time θ = inf{t ≥ 1 : ∃k ∈ N s.t.
(
akt 6= ākt or ∃j ∈ N (k) s.t. mk

t (j) 6= ∅
)
}.

Also denote by θA the first stage at which some player starts deviating in action, i.e. θA

is the stopping time θA = inf{t ≥ 1 : ∃k ∈ N s.t. akt 6= ākt }.

Definition 3.2 Communication protocol

A communication protocol is a tuple (T, (M i)i∈N , σ, φ, (x
i)i∈N) with:

• an integer T ,

• an action strategy σ = (σi)i∈N and a communication strategy φ = (φi)i∈N ,

• a family of random variables (xi)i∈N where xi is Hi
θA+T -mesurable with values in

N ∪ {OK}.

Definition 3.3 Deviator identification by neighbors

Deviator identification by neighbors is possible for the network G if there exists a com-

munication protocol (T, (M i)i∈N , σ, φ, (x
i)i∈N) such that, for any player k ∈ N , behavior

strategy (τ k, ψk) and integer t such that Pτk,σ−k,ψk,φ−k(θA = t) > 0, then:

Pτk,σ−k,ψk,φ−k

(
∀i ∈ N (k), xi = k | θA = t

)
= 1.

The interpretation is the following. The action strategy σk prescribes player k to

choose akt = ākt at each stage t > 0. The communication strategy φk prescribes player

k to send to any neighbor j ∈ N (k) the blank message mk
t (j) = ∅ at stage t as far

as for any stage s < t, gks = gks (āk, āN (k)) and mj
s(k) = ∅ for any neighbor j ∈ N (k).

An alternative strategy (τ k, ψk) for player k such that Pτk,σ−k,ψk,φ−k(θA < +∞) > 0

is henceforth called an action deviation. The definition requires that, under an action
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deviation, the protocol ends in finite time for the deviator’s neighbors. That is, T stages

of communication after the action deviation, each player i ∈ N (k) comes up with a value

for xi. Deviator identification by neighbors is possible if, whenever there is an action

deviation of some player k ∈ N , any of his neighbors i ∈ N (k) finds out the name of

the deviating player with probability one (other players output OK). If no player ever

deviates (neither in action nor in communication), each player concludes OK. Recall that

the players may not be able to distinguish between action and communication deviations,

that is why we need the protocol to start in both cases. In the next section, we construct

a communication protocol to prove that under Assumption 2.4, deviator identification by

neighbors is possible for any network which satisfies Condition 2.8.

3.2.2 Deviator identification by neighbors

We now prove the following result.

Proposition 3.4 Suppose that Assumption 2.4 is satisfied. Then, deviator identification

by neighbors is possible for the network G if G satisfies Condition 2.8.

The formal proof is given in section 6. Given a network which satisfies Condition 2.8,

we construct a protocol which satisfies the requirements of Definition 3.3 for deviator iden-

tification by neighbors. This protocol has the additional property of being deterministic:

players who perform the protocol do not use random strategies, although the deviator

might. The main ideas are as follows. When a player i in N detects a deviation, that is

either he observes a change in his payoff or he receives a message different from the blank

one, then he starts broadcasting to all of his neighbors sets of innocent players computed

as follows. If the deviation detected is in action, i.e. he observed a change in his payoff,

then he clears all the players that are not his neighbors since the deviator must be one of

his neighbors. On the other hand, if he does not observe a change in his payoff, he clears

all his neighbors. Player i also updates his set of innocent players with the sets received

by his neighbors: for instance, if one of his neighbors j ∈ N (i) sends the set of innocents

{j, l,m}, he adds players l and m to his own set of innocents. Actually, either j is the

deviator then l and m are cleared (recall that we only focus on unilateral deviations);
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or j is performing the protocol then l and m are truthfully innocent. However, player i

cannot clear player j. Besides, there may be several deviations at different stages, either

in communication and/or in action, so each player i sends in fact a list of sets, each set

being linked with a delay corresponding to the stage of the eventual deviation considered.

At the end of the protocol, for any player i ∈ N (k), if only one of player i’s neighbors,

say player k ∈ N (i), is not cleared, then player i outputs the name of k.

Formally, take any player i in N . Let ti be the first stage at which player i detects a

deviation, that is ti = inf{t ≥ 1 : ∃k ∈ N (i), akt 6= ākt or mk
t (i) 6= ∅}. We denote also

by tiA = {t ≥ 1 : ∃k ∈ N (i), akt 6= ākt } the first stage at which player i detects an action

deviation. Equivalently, since Assumption 2.4 is satisfied, tiA represents the first stage at

which player i observes a change in his payoff: tiA = inf{t ≥ 1 : git 6= git(ā
i
t, ā
N (i)
t )}. In

the same way, let tiC = inf{t ≥ 1 : ∃k ∈ N (i), mk
t (i) 6= ∅}. Obviously, ti = inf{tiA, tiC}.

Let also θ = infi∈N t
i. We then have θ = inf{t ≥ 1 : ∃k ∈ N, akt 6= ākt or ∃j ∈

N (k) s.t. mk
t (j) 6= ∅}. In the same way, let θA : infi∈N t

i
A and θC = infi∈N t

i
C . One have

θ = inf{θA, θC}. The communication protocol is as follows.

PROTOCOL FOR DEVIATOR IDENTIFICATION BY NEIGHBORS

The message space. All players communicate using the same finite set of messages M

with:

M = {(s, Is)s∈S | S ⊆ {0, . . . , t}, with t = n and ∀s ∈ S, Is ⊆ N}

where n is the number of players in the network. A message is a list of couples, each

couple being composed of an integer and a subset of players. The interpretation is as

follows. In each couple, the integer s represents a delay and refers to a stage. The subset

of players Is is a set of innocent players corresponding to a deviation that occurred s

stages before. The maximal delay is restricted to the number of players n.

17



The strategy of player i. Player i always takes action āit when he performs the protocol

and the message sent by him is a function of his observations. At the end of stage ti,

player i starts the protocol. For each stage t ≥ ti, let Si(t) ⊆ {0, . . . , n} be the set of

delays used in the message sent by player i at stage t. We denote also by I is(t) the set of

innocent players according to player i at stage t concerning the deviation that occurred

s stages before, with s ∈ Si(t): I is(t) thus represents player i’s set of innocent players for

a deviation that happened at stage t− s. At each stage t ≥ ti, player i broadcasts to his

neighbors j ∈ N (i) the message mi
j(t) = (s, I is(t))s∈Si(t) computed as follows.

(i) Delay 0: if player i detects an action deviation at stage t, that is git 6= git(ā
i
t, ā
N (i)
t ),

then, at the end of stage t, player i broadcasts to all of his neighbors the couple

(0, I i0(t)) where his set of innocent is I i0(t) = N \ N (i). This means that for any

neighbor j ∈ N (i),

(0, N \ N (i)) ∈ mi
t(j).

(ii) Delays 1, . . . , n : suppose that player i receives at stage t the messages (mj
t(i))j∈N (i)

from his neighbors, where for any player j ∈ N (i), mj
t(i) = (s, Ijs (t))s∈Sj(t) (all

other messages are disregarded). Then, the message sent by player i at stage t+ 1,

mi
t+1(j) = (s, I is(t+ 1))s∈Si(t+1), satisfies the following rule.

1. Each delay increases of one stage, that is: if s ∈
⋃
j∈N (i) S

j(t)∪Si(t) and s 6= n,

then s+ 1 ∈ Si(t+ 1).

2. Then, player i updates his sets of innocents linked to each delay s ∈ Si(t+ 1)\

{0} as follows.

• If s− 1 ∈ Si(t), then:

I is(t+ 1) =
⋃

j∈N (i)

(
Ijs−1(t) \ {j}

)
∪ I is−1(t).

The new set of innocents of player i at stage t+1 for the deviation at stage

t+ 1− s contains player i’s set of innocents at stage t and all the players

cleared by each neighbor j ∈ N (i) at stage t (except player j himself).
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• Otherwise, if s− 1 /∈ Si(t), then:

I is(t+ 1) =
⋃

j∈N (i)

(
Ijs−1(t) \ {j}

)
∪N (i).

For deviations undetected by player i at stage t, his set of innocents at

stage t + 1 contains all the players cleared by his neighbors at stage t

(where the sender is removed from his set of innocents as previously) as

well as his neighbors j ∈ N (i).

For all other histories, the message is arbitrary (histories which are not consistent with

unilateral deviations are disregarded). This ends the definition of the strategies. Denote

by (σ̃, φ̃) this strategy profile.

The output rule. If tiA < +∞, then for any t ≥ tiA, let X i(t) be the set of suspects of

player i regarding the deviation at stage tiA, that is, for any t ≥ tiA:

X i(t) = N (i) ∩
(
N \ I it−tiA(t)

)
.

This set of suspects contains the neighbors of player i that have not been cleared up to

stage t. The output rule xi of player i is defined as follows. Consider the first stage T i at

which player i identifies the faulty player in case of an action deviation of a neighbor:

T i = inf{t ≥ tiA : ]X i(t) = 1}.

If T i = +∞, we set xi = OK. Otherwise, there exists x such that X i(T i) = {x} and

we define xi = x. In other words, when player i’s set of suspects concerning an action

deviation of one of his neighbors is reduced to x, player i concludes that x is faulty.

The number of rounds. We let the number of rounds of communication (after an

action deviation) be T = n where n is the number of players in the game. Notice that if

θA = +∞, the protocol may never stop if the deviator keeps sending spurious messages

infinitely. However, this is not an issue as communication is non costly.
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Let us now present an example to illustrate how this protocol works.

Example 3.5 Consider the game played on the following network:

•3 •5

•6

•1

•2

•
4

•7 •8

•9 •10

and assume that the payoff function g satisfies Assumption 2.4. Suppose now that player

2 deviates from the equilibrium path ā2
t at some stage t. Players 4, 5, 6 and 9 start the

protocol at the end of stage t; players 1, 3, 7 and 9 at stage t + 1 and player 10 at stage

t+ 2. The evolution of the sets of innocent players is described in the following table:

Player t t+ 1 t+ 2 t+ 3 t+10

1 N \ {2} N \ {2} N \ {2} N \ {2}

3 N \ {2} N \ {2} N \ {2} N \ {2}

4 {3, 4, 5, 7, 8, 9, 10} N \ {2, 6} N \ {2} N \ {2} N \ {2}

5 {4, 5, 6, 7, 9, 10} N \ {1, 2, 3, 8} N \ {2} N \ {2} N \ {2}

6 {1, 5, 6, 8, 9, 10} N \ {2, 4} N \ {2} N \ {2} N \ {2}

7 N \ {2, 3, 4, 6} N \ {2, 4, 6} N \ {2, 6} N \ {2, 6}

8 N \ {1, 2, 3, 5} N \ {1, 2, 3, 5} N \ {2, 5} N \ {2, 5}

9 N \ {2} N \ {2} N \ {2} N \ {2} N \ {2}

10 N \ {2, 3} N \ {2, 3} N \ {2, 3}

At the end of stage t + 2, all the neighbors of player 2 output the name of player 2 and

they start to minmax him at stage t+ 3.

Notice however that players 7, 8 and 10 never know who the deviator is since all the

information they have comes from their unique neighbor. In particular, when player 5

starts punishing player 2 at stage t+3, player 8 keeps performing the protocol and outputs

the name of player 5. Then, player 8 starts punishing player 5 at stage t + 4. This is
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due to the fact that player 8 cannot differentiate between the two following histories: a

communication deviation followed by an action deviation of player 5 on one hand, and

an action deviation of player 2 on the other hand. There are too many punished players,

however this is not an issue in order to have a Folk theorem.

In the next section, we prove that the strategy thus constructed is an equilibrium of

the discounted game for any large enough discount factor.

3.3 The equilibrium property

In this section, we prove the sufficient part of Theorem 2.14, that is: if the network G

satisfies Condition 2.8, then for any payoff function which satisfies Assumption 2.4, any

feasible and strictly individually rational payoff is an equilibrium payoff of the discounted

game.

Proof. Take a network G which satisfies Condition 2.8 and assume that the payoff

function g satisfies Assumption 2.4. We prove that the strategy (σ̄, φ̄) constructed before

and which consists in what follows:

• each player i in N takes action āit and sends mi
t(j) = ∅ for each j ∈ N (i) in case of

no deviation (equilibrium path);

• when there is a deviation of a player k, each player i, except possibly k, starts the

protocol for deviator identification by neighbors (Section 3.2.2) and plays (σ̃, φ̃),

with σ̃it = āit for each stage t during the protocol. Since some players may output

the name of the deviator k before the end of the protocol, each player should not

stop communicating before T rounds (recall that T = n with n the number of players

in the game).

• Finally, if there is an action deviation of player k, then each neighbor of player

k outputs the name of k before stage θA + T and starts minmaxing him at stage

θA + T + 1. If a player i outputs OK then he comes back to the equilibrium path

by playing āit and sending mi
t(j) = ∅ (if for some player i in N , the protocol never

ends, then he takes action āit and sends messages according to the protocol). Notice
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that there may be several players minmaxed, as in example 3.5: each player i who

outputs the name of a player starts to punish him.

Now, we check that γ̄ ∈ co g(A) ∩ SIR(G, g) is an equilibrium payoff. If there is no

action deviation, the induced payoff vector is indeed γ̄: if there are only communication

deviations, each player i who performs the protocol either outputs OK since he does not

observe a change in his payoff, or keeps following the protocol forever. Suppose that player

k stops playing action ākt at some stage t; without loss of generality, we let t = 1. The

protocol ends before stage T = n+ 1. The discounted payoff of player k is no more than:

T∑
t=1

(1− δ)δt−1B +
∑
t≥T

(1− δ)δt−1vk = (1− δT )B + δTvk

where B is an upper bound on the payoffs in the stage game, i.e for each player i in N ,

for any ai ∈ Ai and any aN (i) ∈ AN (i), gi(ai, aN (i)) ≤ B. Since γ̄k > vk, the expected

discounted payoff of player k is less than γ̄k for δ close to one.

3.4 2-connected networks

In this section, we present some additional properties for 2-connected networks (notice

that Condition 2.8 does not ensure 2-connectedness, see for instance the networks G2, G3

and G4 in Figure 1). We show first that it is then possible for each player to differentiate

between action and communication deviations. Then in Section 3.4.2, we prove that there

exists a protocol such that each player i in N who performs it outputs the name of the

deviating player when there is an action deviation (and not only the neighbors of the

deviator anymore).

3.4.1 Differentiation between action and communication deviations

In this section, we construct a communication protocol such that:

• if, for any stage t > 0 and any player i in N , git = gi(āit, ā
N (i)
t ) and for any neighbor

j ∈ N (i), player i receives the blank message from j, mj
t(i) = ∅, then the protocol

does not start;
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• if there is a stage t > 0 such that:

– for any stage s < t and any player i in N , gis = gi(āit, ā
N (i)
t ) and mj

t(i) = ∅ for

any neighbor j ∈ N (i);

– and there is a single player k who starts deviating at stage t, i.e. either akt 6= ākt

or there exists a player j ∈ N (j) such that mk
t (j) 6= ∅;

then, the protocol starts. In addition, for any stage t′ ≥ t, if there is an action

deviation at stage t′, i.e. akt′ 6= ākt′ , and if all the players, except possibly player

k, perform the protocol, then after the specified number of rounds, each player i

outputs A regarding the deviation at stage t′. On the other hand, for any stage

t′ ≥ t, if there was no action deviation at stage t′, each player i in N outputs NA.

In other words, for each stage t′ > t, each player who performs the protocol is able to

tell if there was an action deviation or not at stage t′ after a finite number of rounds of

communication. In this case, we say that deviation differentiation is possible for the

network G. More precisely, we modify the definition of a communication protocol, which

is now a tuple (T, (M i)i∈N , σ, φ, (x
i(t))i∈N) with:

• an integer T ,

• an action strategy σ = (σi)i∈N and a communication strategy φ = (φi)i∈N ,

• a family of random variables (xi(t))i∈N where xi(t) is Hi
t+T -mesurable with values

in A ∪NA.

Such a protocol can be seen as a multi-protocol: the output function now depends

on the stage of the deviation considered. Formally, let θ and θA be defined as in Section

3.2.1.

Definition 3.6 Deviation differentiation

Deviation differentiation is possible for the network G if there exists a communication

protocol (T, (M i)i∈N , σ, φ, (x
i(t))i∈N) such that, for any player k ∈ N , behavior strategy
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(τ k, ψk) and integer t such that Pτk,σ−k,ψk,φ−k(θ = t) > 0, then, for each t′ ≥ t:

Pτk,σ−k,ψk,φ−k

(
∀i ∈ N, xi(t′) = A | akt′ 6= ākt′

)
= 1

and Pτk,σ−k,ψk,φ−k

(
∀i ∈ N, xi(t′) = NA | akt′ = ākt′

)
= 1.

The interpretation is the following. The action strategy σk prescribes player k to

choose akt = ākt at each stage t > 0. The communication strategy φk prescribes player k to

send to any neighbor j ∈ N (k) the blank message mk
t (j) = ∅ at stage t as far as for any

stage s < t, gks = gks (āk, āN (k)) and mj
s(k) = ∅ for any j ∈ N (k). An alternative strategy

(τ k, ψk) for player k such that Pτk,σ−k,ψk,φ−k(θ = t) > 0 is henceforth called a deviation.

The definition requires that, for each stage t′ ≥ t and after T stages of communication,

each player i ∈ N comes up with a value for xi(t′). Deviation differentiation is possible

if, whenever there is an action deviation at stage t′, any player i ∈ N outputs A with

probability one. On the contrary, whenever there is no action deviation at stage t′, each

player outputs NA. Now, we show that 2-connected networks have the following property.

Proposition 3.7 Suppose that g satisfies Assumption 2.4. Then, deviation differentia-

tion is possible for the network G if G is 2-connected and satisfies Condition 2.8.

The formal proof is given in section 7. Given a 2-connected network which satisfies

Condition 2.8, we construct a protocol which satisfies the requirements of Definition 3.6 for

deviation differentiation. This protocol has the additional property of being deterministic:

players who perform the protocol to not use random strategies, although the deviator

might. The main ideas are as follows. Let ti be defined as in Section 3.2.2. When a

player i in N detects a deviation at stage ti, that is either he observes a change in his

payoff or he receives a message different from the blank one, then he starts broadcasting

to all of his neighbors ordered sequences of players linked with a date. If player i observes

a change in his payoff at stage ti, then he sends (0, (i)) to his neighbors at the end of

stage ti, which means “player i detects an action deviation 0 stages before”. If player i

receives mi
ti(j) 6= ∅ from a neighbor j ∈ N (i), then i transmits this message adding first

his name at the end and +1 to the delay. For instance, if player i receives (s, (m, l)) from

24



neighbor l ∈ N (i), then he transmits to all his neighbors at stage ti + 1 the new message

(s+ 1, (m, l, i)) which means “i says that l says that m says that he detected a deviation

s + 1 stages before”. Other messages are disregarded. The delay represents the date of

the eventual action deviation, and the sequence of players the path of communication.

After T rounds of communication, each player who performs the protocol analyzes all the

sequences of players received for each delay. We claim the following points (see Section 7

for a formal proof):

• If there is at least one player in all the sequences concerning stage t, then there was

no action deviation at stage t and each player i outputs NA.

• If there is no single player who appears in all the sequences regarding stage t, then

there was an action deviation at stage t and each player i outputs A.

The idea is that if there is no action deviation at stage t, then each message received comes

from the deviating player and his name thus appears in all the paths of communication.

On the other hand, if there is an action deviation at stage t, there are at least two

neighbors of the deviator who start sending messages since G is 2-connected, and each

player receives this information from at least two independent paths. The protocol is

presented formally in Appendix 7. Let us now present a simple example to illustrate how

this protocol works.

Example 3.8 Consider a 6-player game played on the following network:

•3 •5

•6

•1

•2

•
4

and suppose that Assumption 2.4 is satisfied. Suppose also that at some stage t > 0, player

1 deviates in communication and sends to players 4 and 5 the message m1
t (j) = (1, (3, 1)),

j ∈ {4, 5}, which means: “player 3 tells me that he detected an action deviation 1 stage

before (so at stage t-1)”. Player 4 then starts the protocol for deviation differentiation
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and, for any j ∈ {1, 2, 6}, m4
t+1(j) = (2, (3, 1, 4)). In the same way, for any j ∈ {1, 2, 3},

m5
t+1(j) = (2, (3, 1, 5)). Each message after stage t + 1 starts with the same sequence

(s, (3, 1)), s > 0, except if player 1 sends new spurious messages. But, in each case,

player 1 appears in each sequence of players. And at stage t+ n+ 1, each player, except

possibly player 1, outputs NA. However, notice that player 3 may also appear in all the

sequences, so it may be impossible to distinguish between a communication deviation at

stage t− 1 of player 3 on one hand, and a communication deviation of player 1 at stage

t on the other hand.

In the next section, we use the protocol for deviation differentiation in order to show

that 2-connected networks enable all the players to identify the deviator when there is an

action deviation.

3.4.2 Deviator identification

In this section, we introduce the notion of deviator identification by all players, not only

by neighbors.

Definition 3.9 Deviator identification

Deviator identification is possible for the network G if there exists a communication

protocol (T, (M i)i∈N , σ, φ, (x
i)i∈N) such that, for any player k ∈ N , behavior strategy

(τ k, ψk) and integer t such that Pτk,σ−k,ψk,φ−k(θA = t) > 0, then:

Pτk,σ−k,ψk,φ−k

(
∀i ∈ N, xi = k | θA = t

)
= 1.

The difference between deviator identification and deviator identification by neighbors

is that in the first notion, every player outputs the name of the deviator when there is an

action deviation, while the second notion only implies that the neighbors of the deviator

output his name. We then have the following result:

Proposition 3.10 Suppose that Assumption 2.4 is satisfied. Then, deviator identifica-

tion is possible for the network G if G is 2-connected and satisfies Condition 2.8.
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The formal proof is given in Appendix 8. The idea is to combine both protocols con-

structed before for deviator identification by neighbors and for deviation differentiation.

As before, each neighbor of the deviator identifies him in finite time. Moreover, when

there is an action deviation at some stage t, each player i in N detects that it is an action

deviation (Proposition 3.7). Then the results follows from the fact that each player who

is not neighbor of the deviator does not suspect any communication deviation of any

neighbor anymore. Notice that if deviator identification is possible for a network G, then,

when strategy (σ̄, φ̄) (as described in Section 3.1) is played and when there is an action

deviation at some stage t, thereafter only the deviator is minmaxed since all the players

in the game identify him.

In the next section, we prove that Condition 2.8 is necessary to derive a the Folk

theorem.

4 Necessary condition

In this section, we prove that: if for any payoff function which satisfies Assumption

2.4, any feasible and strictly individually rational payoff is an equilibrium payoff of the

discounted game, then the network G satisfies Condition 2.8. To do so, we construct a

payoff function g such that, whenever Condition 2.8 is not satisfied, then there exists a

payoff u ∈ co g(A)∩SIR(G, g) such that u is not an equilibrium payoff of the discounted

game.

Assume hereafter that Condition 2.8 is not satisfied. We then must have that:

∃i ∈ N, ∃j, k ∈ N (i), j 6= k, s.t. ∀l ∈ N (j)4N (k),

every path from l to i goes either through j or k.

This means that, in the graph G−{jk} where j and k have been removed, i is not in the

same connected component as l for any l ∈ N (j)4N (k). The network G is thus such as

below:
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•i

•
k

•
j

•
l′

•l

C C ′

where any player l ∈ N (j)4N (k) is in the subgraph C ′; each player i in the subgraph

C is either a neighbor of both players j and k, i.e. i ∈ N (j) ∩N (k), or of none of them,

i.e. i ∈ N \ (N (j) ∪ N (k)); moreover, C and C ′ are not connected in G − {jk}; finally,

the dashed line between j and k means that players j and k may be neighbors or not,

and we study both cases.

First case: j and k are not neighbors.

Consider the payoff function for players i, j and k represented by the following matrix

(where player i chooses the row, player j the column and player k the matrix):

i \ j C D
U 1,1,1 0,3,1
M 1,0,3 0,0,3
D 1,4,0 0,4,0

i \ j C D
U 0,1,4 1,3,4
M 0,0,3 1,0,3
D 0,4,0 0,4,0

To complete the description of g, let also assume that each player m 6= i, j, k has two

actions C and D such that:

• if m ∈ N (i), then at each stage t > 0:

gmt (amt , a
N (m)
t ) =

 l ε
n

+ ε
n

if ait = U,

l ε
n

otherwise

where l = {]l : l ∈ N (m) ∪ {m} \ {i} and alt = C}.

• If m /∈ N (i), then at each stage t > 0:

gmt (amt , a
N (m)
t ) = l

ε

n
+
ε

n
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with l = {]l : l ∈ N (m) ∪ {m} and alt = C}.

• Finally, for each t > 0:

git(a
i
t, a
N (i)
t ) = git(a

i
t, a

j
t , a

k
t ) + li

ε

n

gjt (a
j
t , a
N (j)
t ) = gjt (a

j
t , a

i
t) + lj

ε

n

gkt (akt , a
N (k)
t ) = gkt (akt , a

i
t) + lk

ε

n

where li = {]l : l ∈ N (i)\{j, k} and al
i

t = C}, lj = {]l : l ∈ N (j)\{i} and al
j

t = C},

lk = {]l : l ∈ N (k) \ {i} and al
k

t = C} and git(a
i
t, a

j
t , a

k
t ), g

j
t (a

j
t , a

i
t) and gkt (akt , a

i
t)

are defined by the matrix above.

If player i has more than three actions and if the other players have more than two

actions, we shall duplicate rows, columns, matrix...etc, after decreasing each payoff by

1
k
× ε

n
where each new action is numbered by k > 1. The payoff function g thus defined

has the following properties:

• g satisfies Assumption 2.4;

• vi = 0, vj = 0 and vk = 0;

• C is a dominant strategy for each player l 6= i, j, k;

• the payoff (1, 1, 1) (representing the payoffs of players i, j and k) is in co g(A) ∩

SIR(G, g);

• for any ai ∈ {U,M,D} and any aj, ak in {C,D}:

gj(aj, ai) + gk(ak, ai) ≥ 3,

to the only way to get the payoff of (1, 1, 1) is that player i chooses action U and

all other players take action C;
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• player i cannot punish both players j and k: player i has to play M in order to

minmax player j and player k thus gets a payoff of 3, and has to choose action D

in order to minmax player k and player j thus gets a payoff of 4.

Assume now that (1, 1, 1) is in Eδ(G, g) and let σ = (σi, σj, σk, (σm)m 6=i,j,k) and φ =

(φi, φj, φk, (φm)m6=i,j,k) be an equilibrium of the discounted game with payoff γδ = (1, 1, 1)

for players i, j and k. We define deviations for players j and k as follows. We construct

(τ j, ψj) and (τ j, ψj) such that Pτ j ,σ−j ,ψj ,φ−j().

5 Extensions

In this section, we present some extensions of our model and open problems.

Partially known networks. One can see easily that Theorem 2.14 is still valid if the

network G is partially known from the players, that is players only know their neighbors

and the number of players in the game. However, a deviator needs to know the graph in

order to know if he has an incitation to deviate.

Uniform equilibrium. Condition 2.8 is also a necessary and sufficient condition to

have a Folk theorem for the undiscounted repeated game. In this case, we consider the

notion of uniform equilibrium (see [Sor92] and [FL91]).

Networks of interaction and communication. We modify our model as follows.

Suppose that we have two networks G1 and G2, where G1 is the graph of interaction

which gives the payoff of the players (depending on the actions of their neighbors) and G2

is the graph of communication (each player can communicate with his neighbors in G2).

Denote by N1(i) the set of neighbors of player i in G1. We can have a similar result as

Theorem 2.14 which is:

Corollary 5.1 The following statements are equivalent.

1. For any payoff function which satisfies Assumption 2.4, any feasible and strictly

individually rational payoff is an equilibrium payoff of the discounted game, that is:
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there exists δ̄ ∈ (0, 1) such that for any δ ∈ (δ̄, 1),

co g(A) ∩ SIR(G, g) ⊆ Eδ(G, g).

2. For each player i in N , for each neighbors j, k in N1(i), there exists a player l in

N1(j)4N1(k) such that there is a path from player l to i in G2 which goes neither

through j nor k.

The proof is let to the reader.

Sequential equilibrium. Since a player does not observe the actions of other players,

the notion of subgame perfection does not capture the fact that each player optimizes

after every history. Therefore we would like to extend our result with the notion of

sequential equilibrium introduced by Kreps and Wilson ([KW82]). This notion requires

the equilibrium strategies to be optimal off the equilibrium path besides being a Nash

equilibrium (that is there exists no profitable deviation from the equilibrium strategies).

However, it remains an open problem in our model.

Broadcast communication. If we modify our model such that communication is mul-

ticast (or broadcast), that is each player is restricted to send the same message to all his

neighbors at each stage, the necessary and sufficient condition to have a Folk theorem

remains an open problem. We believe that this condition may be less strong than Con-

dition 2.8 since in this case, some coding can be used to transmit information even if the

graph does not satisfy Condition 2.8 but this condition may not be intuitive and one can

refer to [RT08] to see that.

6 Appendix A: Proof of Proposition 3.4

We take up the protocol presented in Section 3.2.2 and prove the following lemma.
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Lemma 6.1 Let T = n. Consider a player k, a strategy (τ k, ψk) and an integer t such

that Pτk,σ̃−k,ψk,φ̃−k(θA = t) > 0. Then, for each player i 6= k,

Pτk,σ̃−k,ψk,φ̃−k

(
∀i ∈ N (k), X i(t+ n) = {k} | θA = t

)
= 1.

Note that Proposition 3.4 directly follows.

Proof. Suppose Assumption 2.4 is satisfied. Take a network G that satisfies Condition

2.8 and is connected (see Remark 2.15). Since the 2-player case is trivial, we assume that

n ≥ 6 (see Remark 2.13). Fix a player k and assume that player k stops playing action

ākt at stage t, while each player i in N chooses action āis for each stage s ≤ t. We prove

that, the protocol defined in Section 3.2.2 is such that:

• for each player i 6= N (k), for each player j ∈ N (i) such that j 6= k, j /∈ X i(t+ T );

• k ∈ X i(t+ T ) for any i ∈ N (k);

with T = n.

First, each neighbor of player k, i ∈ N (k), observes a change in his payoff at stage t

(because of Assumption 2.4) and thus starts the protocol at the end of stage t by sending

the message mi
t(j) = (0, N \ N (i)) to his neighbors j ∈ N (i)2. At the end of stage t,

X i(t) = N (i). Since Condition 2.8 is satisfied, for each player j ∈ N (i), j 6= k, there

exists a player l ∈ N (j)4N (k) such that there is a path from l to i which goes neither

trough j nor k. We consider the two following cases:

• if l ∈ N (k) \N (j), then player l starts the protocol at the end of stage t by sending

the message (0, I l0(t)) with j ∈ I l0(t). Since G is connected, the distance between l

and j is at most n− 2 (recall that there is a path which goes not trough neither j

nor k). Then, at some stage s ≤ t+n− 3, there exists a player m ∈ N (i) such that

m 6= j, k, and mm
t (i) = (s− t, Ims−t(s)) with j ∈ Ims−t(s) since along the path which

2One notice that the protocol could have start before, if there were communication deviations only.
However, it does not change the proof to omit them since it only adds some pairs of delays and sets in the
messages that are not taken into account to analyze the deviation that occurred at stage t. For simplicity
we omit all the deviations that happens before stage t.
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goes through neither j nor k, all the players are following the protocol. Finally, at

stage s+ 1 ≤ t+ n− 2, we have j ∈ I is+1−t(s), so j /∈ X i(t+ n− 1).

• On the other hand, if l ∈ N (j) \ N (k), then the distance between l and k is at

most 3, dG(l, k) ≤ 3, as the path k, i, j, l exists. So, player l starts the protocol at

stage s ≤ t+ 3. Again, there is a path from player l to i which goes through neither

k nor j, its maximal length is n − 3 and all the players along this path follow the

protocol. So, as before, at some stage s ≤ t + 3 + n− 4 = t + n− 1, there exists a

player m ∈ N (i) such that m 6= j, k, and mm
t (i) = (s− t, Ims−t(s)) with j ∈ Ims−t(s).

Finally, at stage s+ 1 ≤ t+ n, we have j ∈ I is+1−t(s), so j /∈ X i(t+ n)

We now prove the second point. Each player i ∈ N (k) starts the protocol at the

end of stage t because of Assumption 2.4. So, at the end of stage t and for each player

i ∈ N (k), I i0(t) = N \N (i) and k /∈ I i0(t). On the other hand, any player j /∈ N (k) starts

the protocol at stage s ≤ t + n as the graph is connected. Since all the players except k

perform the protocol, there exists no player l 6= k such that l ∈ N (j) and k ∈ I ls+n−1(s−1)

(recall that if player k sends a set of innocents in which he is, a player who follows the

protocol do not clear player k). Adding the fact that player j did not observe a change

in his payoff at stage t, we conclude that k /∈ Ijs−t(s). Then, the only player that may

transmit the name of player k in his set of innocents regarding the deviation at stage t is

player k himself. So, for each player i ∈ N (k), k ∈ X i(t+ n).

Finally, we conclude that for each player i ∈ N (k), X i(t + n) = {k}, which proves

Lemma 6.1.

7 Appendix B: Proof of Proposition 3.7

Before proving Proposition 3.7, we introduce the following communication protocol.

PROTOCOL FOR DEVIATION DIFFERENTIATION
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The message space. All players communicate using the same finite set of messages M

with:

M =
{

(s, (x1, . . . , xs+1)x1,...,xs+1∈N)s∈S,x1,...,xs+1∈N | S ⊆ {0, . . . , t} with t = n
}

where n is the number of players in the network. Now (x1, . . . , xs+1) is an ordered sequence

of players and s represents a delay which is restricted to the number of players n.

The strategy of player i. Player i always takes his action āit when he performs the

protocol and the message sent by him is a function of his observations. Let ti be defined as

in Section 3.2.2. At the end of stage ti, player i starts the protocol. For each stage t ≥ ti

and each player i in N , let Si(t) ⊆ {0, . . . , n} be the set of delays used in the message

player i sends at stage t. For each stage t ≥ ti, player i broadcasts to his neighbors

j ∈ N (i) the message mi
j(t) = (s, (x1, . . . , xs+1)x1,...,xs+1∈N)s∈Si(t) computed as follows.

(i) Delay 0: if player i detects an action deviation at stage t, that is git 6= git(ā
i
t, ā
N (i)
t ),

then, at the end of stage t, player i broadcasts to all of his neighbors the pair

(0, (x1 = i)).

(ii) Delays 1, . . . , n : for each player i ∈ N , let (xis1 (t), . . . , xiss+1(t))s∈Si(t) be the ordered

sequences of players used in the message player i sends at stage t. Suppose that

player i receives at stage t the messages (mj
t(i))j∈N (i) from his neighbors, where for

any player j ∈ N (i), mj
t(i) = (s, (xjs1 (t), . . . , xjss+1(t) = j))s∈Sj(t) (all other messages

are disregarded). Then, the message sent by player i at stage t+1, mi
t+1(j), satisfies

the following rule:

mi
t+1(j) =

(
(s+ 1, (x

i(s+1)
1 (t+ 1), . . . , j, x

i(s+1)
s+2 (t+ 1) = i))s+1∈Sj(t)\{n}

)
j∈N (i)

.

For all other histories, the message is arbitrary (histories which are not consistent with

unilateral deviations are disregarded). This ends the definition of the strategies. Denote

by (σ∗, φ∗) this strategy profile.
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The output rule. For any i ∈ N , for each t′ ≥ θ (where θ is defined as in Section

3.2.1), if the two following points are satisfied:

1. there exists a player l ∈ N such that, ∃l′ ∈ N (l) such that ∃tl ∈ [t′, t′+T ] such that

there exists a message of the form ml
tl
(l′) = (s, (xls1 (tl), . . . , xlss+1(tl) = l))s∈Sl(tl) such

that ∃sl ∈ Sl(tl) such that tl − sl = t′ (there exists at least one player who sends

before stage t′ + T a message containing a sequence of players linked to an eventual

deviation at stage t′, which implies that stage t′ is a potential stage of deviation);

2. there exists no player k ∈ N such that:

∀j ∈ N (i), ∀t ∈ [t′, t′ + T ], ∀mj
t(i) = (s, (xjs1 (t), . . . , xjss+1(t) = j))s∈Sj(t),

∀s ∈ Sj(t) s.t. t− s = t′, k ∈ (xjs1 (t), . . . , xjss+1(t) = j)

(concerning the eventual deviation at stage t′, no player appears in all the sequences

of players transmitted before stage t′ + T );

then xi(t′) = A. Otherwise, xi(t′) = C.

The number of rounds. We let the number of rounds of communication after each

t ≥ θ such that there exists k ∈ N such that akt 6= ākt or ∃j ∈ N (k) s.t. mk
t (j) 6= ∅ be

T = n where n is the number of players in the game. Notice that, as before, the protocol

may never stop if the deviator keeps sending spurious messages infinitely. However, this

is not an issue as communication is non costly.

We now prove Proposition 3.7.

Proof. Suppose that Assumption 2.4 is satisfied. Take a network G that satisfies

Condition 2.8 and such that G is 2-connected. Since the 2-player case is trivial, we

assume that n ≥ 6 (see Remark 2.13). Fix a player k and assume that player k deviates

at some stage t, that is either akt 6= ākt or there exists j ∈ N (k) such that mk
t (j) 6= ∅,

although for each stage s ≤ t and each player i ∈ N , ais = āis and mi
s(j) = ∅ for any
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j ∈ N (i). We prove that the protocol for deviation differentiation defined before is such

that, for any t′ ≥ t:

• if akt′ 6= ākt′ , for each player i in N , xi(t′) = A at stage t′ + T ;

• otherwise, xi(t′) = C at stage t′ + T ;

with T = n.

First, take t′ ≥ t such that akt′ 6= ākt′ . Since G is connected, each player i in N , except

possibly player k, has started the protocol with a delay referring to stage t′ before stage

t′ + n. Take a neighbor j of player k, j ∈ N (k). Since G is 2-connected, for each player

i in N , there are at least two independent paths between player j and player i. So, if all

the players except possibly k perform the protocol for deviation differentiation, then for

each player i in N , we have that:

1. player j performs the protocol so there exists a player j′ ∈ N (j) such that mj
t′(j
′) =

(s, (xjs1 (t′), . . . , xjss+1(t′) = j))s∈Sj(t′) is such that 0 ∈ Sl(t′) and t′ − 0 = t′;

2. and:

∃j1, j2 ∈ N (i) s.t. ∃t1, t2 ∈ [t′, T + t′] s.t.

∃mj1

t1 (i) = (s, (xj
1s

1 (t1), . . . , xj
1s
s+1(t1) = j1))s∈Sj1 (t1)

and ∃mj2

t2 (i) = (s, (xj
2s

1 (t2), . . . , xj
2s
s+1(21) = j2))s∈Sj2 (t2) s.t.

∃(s1, s2) ∈ Sj1(t1)× Sj2(t2) s.t. t1 − s1 = t2 − s− 2 = t′ s.t.

∀(p, q) ∈ [1, . . . , s1 + 1]× [1, . . . , s2 + 1], xj
1s1

p (t1) 6= xj
2s2

r (t2).

Notice that this results still holds if player i is in N (k), because ]N (k) ≥ 2 since G

is 2-connected. We deduce then easily that there exists no player l ∈ N such that

for any player i ∈ N :

∀j ∈ N (i), ∀t ∈ [t′, t′ + T ], ∀mj
t(i) = (s, (xjs1 (t), . . . , xjss+1(t) = j))s∈Sj(t),

∀s ∈ Sj(t) s.t. t− s = t′, l ∈ (xjs1 (t), . . . , xjss+1(t) = j)
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and so for each player i in N , xi(t′) = A at stage t′ + T with T = n.

For the second point, suppose that akt′ = ākt′ . Then, either there exists no player l ∈ N

such that, ∃l′ ∈ N (l) such that ∃tl ∈ [t′, t′+T ] such that there exists a message of the form

ml
tl
(l′) = (s, (xls1 (tl), . . . , xlss+1(tl) = l))s∈Sl(tl) such that ∃sl ∈ Sl(tl) such that tl − sl = t′

(there exists no player who sends before stage t′ + T a message containing a sequence of

players linked to an eventual deviation at stage t′, which implies that stage t′ is not a

potential stage of deviation).

Or, there exists a player l ∈ N such that, ∃l′ ∈ N (l) such that ∃tl ∈ [t′, t′ + T ] such

that there exists a message of the form ml
tl
(l′) = (s, (xls1 (tl), . . . , xlss+1(tl) = l))s∈Sl(tl) such

that ∃sl ∈ Sl(tl) such that tl−sl = t′. In that latter case, as all the players except possibly

k performs the protocol, we must have that l = k, and moreover, for any i ∈ N :

∀j ∈ N (i), ∀t ∈ [t′, t′ + T ], ∀mj
t(i) = (s, (xjs1 (t), . . . , xjss+1(t) = j))s∈Sj(t),

∀s ∈ Sj(t) s.t. t− s = t′, k ∈ (xjs1 (t), . . . , xjss+1(t) = j)

since player k is the only player who starts to transmit messages concerning stage t′ (and

because no player i 6= k observes a change in his payoff at stage t′).

So, if akt′ = ākt′ , then each player i ∈ N , except possibly player k, outputs NA at stage

t′ + T with T = n. This ends the proof of Proposition 3.7.

8 Appendix C: Proof of Proposition 3.10

Proof. Suppose Assumption 2.4 is satisfied. Take a network G that satisfies Condition

2.8 and such that G is 2-connected. Since the 2-player case is trivial, we assume that

n ≥ 6 (see Remark 2.13). Let define the following protocol constructed with the two

previous protocols. For each player i ∈ N , player i starts at stage ti (where ti is defined

as in Section 3.2.2) the protocol for deviation differentiation (see Section 7). Then, if

θA = +∞, player i keeps performing the protocol for deviation differentiation. On the

other hand, if θA < +∞, then player i starts the protocol for deviator identification by

37



neighbors at stage θA + n+ 1. The output rule of player i only needs to be adapted from

the protocol for deviator identification by neighbors. Now, the output rule xi of player

i is defined as follows. For any player i and any t ≥ θA + n + 1, let X i(t) be the set of

suspects of player i at stage t, that is, for any t ≥ θA + n+ 1:

X i(t) = N \ I it−θA(t).

The output rule xi of player i. Consider the first stage T i at which player i identifies the

faulty player at stage θA:

T i = inf{t ≥ θA + n+ 1 : ]X i(t) = 1}.

If T i = +∞, we set xi = OK. Otherwise, there exists x such that X i(T i) = {x} and we

define xi = x. In other words, when player i’s set of suspects is reduced to x, player i

concludes that x is faulty.

We now prove that this new protocol, with T = 3n− 1 the number of communication

rounds, satisfies the requirements of Definition 3.9. Fix a player k and assume that player

k stops playing action ākt at stage t, while each player i in N chooses action āis for each

stage s ≤ t.

First, since G is 2-connected, Proposition 3.7 is satisfied, and then, at stage t+n, each

player i in N outputs A and thus knows that there was a deviation at stage θA. Then,

each player i ∈ N , except possibly player k, starts the protocol for deviator identification

by neighbors at stage t + n + 1. For each player j 6= k, consider the network G − {jk}

where players j and k have been removed. We only need to prove the following claim:

Claim 8.1 Fix a player j 6= k. In each connected component C of G−{jk}, there exists

a player l ∈ C such that l ∈ N (j).

Indeed, take a player j 6= k. If this claim is true, take any component C of G − {jk},

then there exists l ∈ C such that l ∈ N (j). Then, the following cases are possible:

• either l ∈ N (j)∩N (k), then j ∈ I l2n+1(t+2n+1) (where I l2n+1(t+2n+1) is defined
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as in Section 3.2.2) because of Proposition 3.4. We concludes that for each player

i ∈ C, j ∈ I i3n−1(t+ 3n− 1), since the distance between l and i is at most n− 2.

• or l ∈ N (j) \N (k), then because player l knows that there was an action deviation

at stage t (Proposition 3.7) and since player l did not observe a change in his payoff

at stage t (2.4), then player l knows that the deviator is not one of his neighbors

(and player l does not suspect any of his neighbors to deviate in communication

as we only consider unilateral deviations). So again j ∈ I ln+1(t + n + 1) at stage

t+ n+ 1, and for each player i ∈ C, j ∈ I i2n+1(t+ 2n− 1) as before.

We conclude that if Claim 8.1 is true, then for any player j 6= k and any player i ∈ N ,

except possibly player k, j ∈ I i3n−1(t+ 3n− 1), so each player i outputs the name of k.

We now prove that Claim 8.1 is true. Take a player j ∈ N , such that j 6= k and

consider the graph G−{jk}. Fix a connected component C of G−{jk}. Take any player

i ∈ C. Since the original graph G is 2-connected, there exists a path in G between player

i and j which does not go through k. Then there exists a player l ∈ N such that this

path can be written as i, . . . , l, j. In that case, l ∈ C and l ∈ N (j), which proves Claim

8.1 and concludes the proof of Proposition 3.10.
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