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Abstract The characterization of core stable partitions in a simple game is a
di�cult task. We consider a property called absence of the strong paradox of smaller
coalitions which is a generalization of Shenoy's well-known condition for a nonempty
core and give complete characterizations of strict and semistrict core.
Since this condition is not necessary we consider the Shapley value as allocation
rule on the class of generalized apex games. We characterize those games which
have a nonempty core and compare core stability with Nash stability.

1 Introduction

Talking about the core of a simple game usually means talking about the core of a
TU game. This is not what we consider in this paper. We are interested in coali-
tional games which are induced by simple games.
In the next section we introduce proper monotonic simple games as well as hedonic
games. We de�ne a class of solutions which will play the key role throughout this
paper and show how we can derive hedonic games with their help.
The third section is devoted to characterizations of the core of hedonic games which
are induced by simple games and solutions. We are considering a property which we
call absence of the strong paradox of smaller coalitions. It has been introduced by
Dimitrov and Haake in [4] and is a generalization of Shenoy's well-known su�cient
condition for the nonemptiness of the core. Particularly, we show how strict core
and semistrict core are associated in this situation.
Unfortunately the absence of the strong paradox it not necessary for the existence
of a core stable partition. In the last section we restrict our attention to the Shap-
ley value and analyze generalized apex games. We a give necessary and su�cient
condition for the nonemptiness of its core and strict core.

2 Preliminaries

In this section we will give a brief introduction into the theory of simple games
and hedonic games. Throughout this paper let N be a set of players and v be a
transferable utility (TU) game, i.e. a function v : P (N) → R with v (∅) = 0. If
S ⊂ N we de�ne the subgame vS by vS (T ) = v (S ∩ T ) for all T ⊂ N .

2.1 Simple Games

Simple games are a special class of TU games.
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De�nition 2.1 Let N be a set of players and v be a TU game.

1. v is a simple game if v (S) ∈ {0, 1} for all S ⊂ N and v (∅) = 0.

2. v is a proper simple game if v (S) = 1 implies v (N \ S) = 0 for all S ⊂ N .

3. v is a monotonic simple game if v (S) = 1 implies v (T ) = 1 for all S, T ⊂ N
with S ⊂ T .

Let (N, v) be a proper monotonic simple game. A winning coalition in N is a subset
S ⊂ N such that v (S) = 1. If S ⊂ N such that v (S) = 0 then v (T ) = 0 for all
T ⊂ S.
In the following let V be the set of all proper monotonic simple games. We are
interested in the power of di�erent players within a subset S of N . Let i ∈ S. Then
we de�ne δi (S) = v (S)− v (S \ {i}). In our context of simple games we say i is a
vetoer if δi (N) = 1. The concept of vetoers is not only interesting for N but also
for subsets of N . For this purpose we extend it. Let therefore S ⊂ N . Note that if
v ∈ V then also vS ∈ V. For i ∈ S we de�ne

δSi (T ) = vS (T )− vS (T \ {i}) .

Note that δSi (S) = δi (S). We call i a vetoer in S if δSi (S) = 1. We say S is a
minimal winning coalition if all players i ∈ S are vetoers in S. On the other hand,
if k ∈ N is such that vS (T ∪ {k})− vS (T ) = 0 for all T ⊂ N \ {k} then k is called
null player in S. Note that this is the case if and only if k is not contained is any
minimal winning coalition.

Remark 2.2 Let S ⊂ N be a winning coalition and i ⊂ S.

1. If i is vetoer, he is also vetoer in S; but a vetoer in S does not need to be a
vetoer in N .

2. If i is null player, he is also null player in S; but a null player in S does not
need to be a null player in N .

Since we want to describe a coalitional game in which a player's preferences over
coalitions depend on his payo�s, we need to introduce a system to distribute a
coalition's value v (S) among the players it contains.

De�nition 2.3 An e�cient nonnegative solution is a mapping ϕ : V → RN
≥0 such

that ∑
i∈S

(ϕ (vS))i = v (S)

for all v ∈ V and for all S ⊂ N .

In the following we use ϕi (v) instead of (ϕ (v))i. Since we are talking about non-
negative e�cient solutions throughout this paper, we will just call them solutions.
We denote the set of all e�cient nonnegative solutions by S.
We can extend the solution concept to subgames since these are also proper mono-
tonic simple games. Therefore we will write ϕ (S) for ϕ (vS).
Before we start with the main results we introduce some properties of solutions.

De�nition 2.4 Let ϕ ∈ S.

1. ϕ satis�es the equal treatment property if for all v ∈ V and all players i, j ∈ N
which satisfy v (S ∪ {i}) = v (S ∪ {j}) for all S ⊂ N \ {i, j}

ϕi (v) = ϕj (v) .
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2. ϕ is strongly monotonic i� for all u, v ∈ V and i ∈ N with

u (S ∪ {i})− u (S) ≥ v (S ∪ {i})− v (S)

for all S ⊂ N we have ϕi (u) ≥ ϕi (v).

Although these de�nitions are quite abstract we can use them to derive some more
intuitive properties.

First, if a nonnegative e�cient solution satis�es equal treatment on a proper
monotonic simple game (N, v) and S ⊂ N is a minimal winning coalition then

ϕi (S) =
1

|S|
(1)

A solution which satis�es (1) for each minimal winning coalition in a proper mono-
tonic simple game satis�es equal treatment of minimal winning coalitions. The
second property we derive closes this section.

Lemma 2.5 Let (N, v) be a proper monotonic simple game and ϕ a strongly mono-
tonic solution. Let further S ⊂ N , T ⊃ S and i ∈ S be a vetoer in T . Then

ϕi (T ) ≥ ϕi (S) .

Proof: Let S ⊂ N , T ⊃ S and i ∈ S be a vetoer in T . Since v is monotonic i is a
vetoer in S. We have to show that

δTi (U) ≥ δSi (U) (2)

for all U ⊂ N . So, let U ⊂ N be arbitrary and assume without loss of generality
that δSi (U) = 1. Then (U ∪ {i}) ∩ S is winning (in v) and hence vT (U ∪ {i}) = 1.
As i is vetoer in T we see vT (U \ {i}) = 0 and hence, δTi (U) = 1 = δSi (U). Since
equation (2) is satis�ed for all U ⊂ N and since ϕ is strongly monotonic we conclude
ϕi (T ) ≥ ϕi (S).

�

2.2 Hedonic Games

In the last section we introduced simple games. In this section we will describe the
relation between simple games and and hedonic games. The idea is simple: Given
a solution, each player has preferences over the potential partitions, more precisely
over the coalitions he might belong to.
We still work with proper monotonic simple games v ∈ V and nonnegative e�cient
solutions ϕ ∈ S without stating it all the time.

De�nition 2.6 A hedonic game is a pair (N,�), where N is a set of agents and
�= (�i)i∈N is a pro�le of re�exive, transitive and complete binary relations �i on
Pi (N), the collection of all subsets of N containing i.

Using the properties of � we are able to �nd functions ui : Pi (N) → R which
describes i's preferences. We can also turn it around: If we have a set of utility
functions, we can describe a hedonic game: Let (N, v) be a proper monotonic simple
game and ϕ ∈ S. The binary relations �i, de�ned as

S �i T ⇔ ϕi (S) ≥ ϕi (T )

induce a hedonic game.
We are interested in how coalitions will form. We therefore need the concept of a
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partition. A partition Γ of N is a collection (S1, . . . , Sm) of pairwise disjoint subsets
of N , such that

⋃m
i=1 Si = N . We write CΓ (i) to denote the unique coalition in Γ

which contains i.
In case of proper monotonic simple games, we are not interested in all partitions:
If S is a winning coalition, we represent all partitions containing S by (S,N \ S),
since in all those partitions ϕj (T ) = 0 for all j ∈ N \ S and all T ⊂ N \ S.
We therefore also write CS (i) instead of CΓ (i) if S is the winning coalition in Γ.
When we talk about a non trivial partition (S,N \ S) we always mean that S is the
winning coalition.
The preferences of di�erent players over coalitions will in general not coincide.
However, there might be partitions such that no group of players would leave their
coalition to form a new one. The following stability concept formalizes this idea..

De�nition 2.7 Let (N,�) be a hedonic game and Γ be a partition of N .

1. A deviation of Γ is a coalition S ⊂ N such that

S �i C
Γ (i)

for all i ∈ S.

2. A weak deviation of Γ is a coalition S ⊂ N such that

S �i C
Γ (i)

for all i ∈ S and
S �i C

Γ (i)

for some i ∈ S.

3. Γ is called core stable (lies in the core) if it has no deviations.

4. Γ is called strictly core stable (lies in the strict core) if it has no weak devia-
tions.

5. Γ is called semistrictly core stable (lies in the semistrict core) if it has no weak
deviation D such that for all S ∈ Γ with S ∩ D 6= ∅ there is i ∈ D ∩ S with
D �i S.

Whereas for core and strict core we need only to consider the winning coalition of a
partition, semistrict core stability might depend on all elements of a partition. But
at least we can say something.

Proposition 2.8 Let v be a proper monotonic simple game and ϕ ∈ S. Let Γ =
(S1, . . . , Sm) be a partition in the induced hedonic game such that S1 is winning.

1. If (S1, N \ S1) is semistrictly core stable then Γ is, too.

2. If
(
S1, {i1} , . . . ,

{
i|N\S|

})
is not semistrictly core stable then Γ is neither.

Proof:

1. Has been shown by Dimitrov and Haake in [3].

2. Let
(
S1, {i1} , . . . ,

{
i|N\S|

})
not be semistrictly core stable. Then there is a

weak deviation D of
(
S1, {i1} , . . . ,

{
i|N\S|

})
such that there is i ∈ D ∩ S1

with ϕi (D) > ϕi (S1) and

ϕi (D) > ϕi ({i}) = 0 = ϕi

(
CΓ (i)

)
for all i ∈ D \ S1. Hence, Γ cannot be semistrictly core stable.

�
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3 Core Partitions of Simple Games

It is di�cult to decide whether or not a hedonic game has a nontempty core, even
when they are induced by simple games. However, several authors have been able
to derive su�ent conditions. In this section we present some known results and
develop a language which allows us to recognize, why they cannot be necessary.
Particularly, we give new characterizations of the cores given these conditions.

3.1 A Characterization of the Core

Let (N, v) be a proper monotonic simple game and S ⊂ N be a winning coalition.
A solution tells us how to allocate the payo� among the players in S. Let T ( S
be a winning coalition and a proper subset of S. We might expect that the payo�
allocated to the players of T might increase (or should not decrease) if we distribute
it only under them. Unfortunately, this is a quite strong expectation. The following
de�nition was given by Shenoy in [8].

De�nition 3.1 Let v ∈ V and ϕ ∈ S. ϕ does not exhibit the paradox of smaller
coalitions on v if for all winning coalitions S, T ⊂ N with T ⊂ S we have

ϕi (T ) ≥ ϕi (S)

for all i ∈ T .

Shenoy showed in [8] that the absence of the paradox of smaller coalitions is a
su�cient condition to ensure the existence of a core stable partition. Dimitrov and
Haake gave in [4] weaker conditions which are still su�cient.

De�nition 3.2 Let v ∈ V and ϕ ∈ S. ϕ does not exhibit the strong paradox of
smaller coalitions on v if for all winning coalitions W ⊂ N there is a minimal
winning coalition T ⊂W such that

ϕi (T ) ≥ ϕi (W )

for all i ∈ T .

Proposition 3.3 (Dimitrov, Haake, 2007) Let v ∈ V and ϕ ∈ S such that ϕ
satis�es equal treatment of minimal winning coalitions and does not exhibit the
strong paradox of smaller coalitions on v. Then there is a core stable partition.

The idea of this proposition becomes clear with its proof. Because in this case
minimal winning coalitions with minimal cardinality are core stable. We say that
a minimal winning coalition S has minimal cardinality if |S| ≤ |T | for all minimal
winning coalitions T ⊂ N . We can extend this idea to subgames as well by consid-
ering only sets which are minimal winning in the respective subgame. However, if
we are talking about minimal winning coalitions of minimal cardinality we always
mean minimal cardinality with respect to N if not speci�ed elsewise.
The next lemma gives a characterization of coalitions which lie in the core without
using the absence of the paradox.

Lemma 3.4 Let v ∈ V and ϕ be a solution.

1. A partition (S,N \ S) is core stable if and only if for all winning coalitions
T ⊂ N with ϕj (T ) > 0 for all j ∈ T there is i ∈ S ∩ T such that

ϕi (S) ≥ ϕi (T ) . (3)
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2. A partition (S,N \ S) is strictly core stable if and only if there is no winning
coalition T ⊂ N such that

ϕi (S) ≤ ϕi (T ) . (4)

for all i ∈ S ∩ T and
ϕj (S) > 0 (5)

for some j ∈ S \ T

Proof:

1. First let S ⊂ N be such that (3) is satis�ed for all winning coalitions T .
Assume that (S,N \ S) is no core partition. Then there is a winning coalition
T , such that ϕi (T ) > ϕi

(
CS (i)

)
for all i ∈ T . By properness T ∩ S cannot

be empty. Hence, equation (3) cannot be satis�ed.
Let now S be a winning coalition such that (S,N \ S) is core stable. Assume
that there is a winning coalition T such that equation (3) is not satis�ed
for any i ∈ S ∩ T . In this case T is a deviation for all i ∈ S ∩ T , since
ϕi (S) < ϕi (T ) for all i ∈ T ∩ S. Further, T is a deviation for all i ∈ T \ S
since ϕi (T ) > 0 = ϕi

(
CS (i)

)
for all i ∈ T \ S. Hence, T is a deviation. This

is a contradiction, since S is core stable.

2. First let S ⊂ N and assume that T is a weak deviation of S which does not
satisfy both equation (4) and (5). Let �rst T be a coalition such that equation
(4) is unsatis�ed. Then T cannot be a weak deviation per de�nition. If (4) is
satis�ed but (5) is not then there cannot be any k ∈ T \S such that ϕk (T ) > 0.
If there was i ∈ S ∩T such that ϕi (T ) > ϕi (S) then there must be j ∈ S ∩T
such that ϕi (T ) < ϕi (S). Then T cannot be a weak deviation. In both cases
we ended up in a contradiction, hence T cannot be a weak deviation.
Let now S be a winning coalition such that (S,N \ S) is strictly core stable.
Assume that there is T ⊂ N such that equations (4) and (5) are satis�ed. If
there is i ∈ S ∩ T such that ϕi (S) < ϕi (T ) then T is a weak deviation of S.
This is a contradiction since S is strictly core stable. Hence, ϕi (S) = ϕi (T )
for all i ∈ S ∩ T . Since ∑

i∈S
ϕi (S) =

∑
i∈T

ϕi (T ) = 1

and because of equation (5) there must be k ∈ T \ S such that ϕk (T ) > 0.
Hence, T is a weak deviation of S. This is a contradiction since S is strictly
core stable. Thus, there cannot be T ⊂ N such that both equation (4) and
(5) are satis�ed.

�

Note that if (S,N \ S) lies in the (strict) core then every partition which contains
S does so. We therefore say that S lies in the (strict) core. However, this shows,
that it is not so easy to derive a similarly brief characterization of the semistrict
core since it depends on the partition of the players which are not included in the
winning coalition.

3.2 The Paradox of Smaller Coalitions

We can now interpret the role of Dimitrov and Haake's condition from a new point
of view and give a stricter version.
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Theorem 3.5 Let v ∈ V and ϕ be a solution which satis�es equal treatment of
minimal winning coalitions and which does not exhibit the strong paradox of smaller
coalitions on v.

1. A partition (S,N \ S) is core stable if and only if for all minimal winning
coalitions T ⊂ N there is i ∈ S ∩ T such that

ϕi (S) ≥ ϕi (T ) . (6)

2. A partition (S,N \ S) is strictly core stable if and only if there is a unique
minimal winning coalition S′ ⊂ S of minimal cardinality (with respect to N)
such that ϕi (S′) = ϕi (S) for all i ∈ S′.

3. A partition (S,N \ S) is semistrictly core stable if and only if there is a mini-
mal winning coalition S′ ⊂ S of minimal cardinality (with respect to N) such
that ϕi (S′) = ϕi (S) for all i ∈ S′.

Proof:

1. Let (S,N \ S) be core stable. By lemma 3.4 for all winning coalitions T ⊂ N
there is i ∈ T such that equation (6) is satis�ed. Particularly, it is for all
minimal winning coalitions.
Let equation (6) be satis�ed for all minimal winning coalitions and assume
that there is a winning coalitionW such that for all i ∈W∩S ϕi (W ) > ϕi (S).
W cannot be minimal, but because of the absence of the strong paradox of
smaller coalitions we can �nd a minimal winning coalition T ⊂ W such that
ϕi (T ) ≥ ϕi (W ) for all i ∈ T . Since T is minimal there is i ∈ S ∩ T such
that ϕi (S) ≥ ϕi (T ). Hence, we have ϕi (S) ≥ ϕi (T ) ≥ ϕi (W ) what is a
contradiction.

2. Let S be strictly core stable. If S is the only minimal winning coalition with
minimal cardinality then there is nothing to show. So, let S not be unique
or be minimal winning without minimal cardinality. Then there is a minimal
winning coalition of minimal cardinality T which is a (weak) deviation of S.
So, let S not be minimal winning. Then there is a minimal winning coalition
T ⊂ S such that ϕi (T ) ≥ ϕi (S) for all i ∈ T = T ∩S. There cannot be i ∈ T
such that ϕi (T ) > ϕi (S), else T would be a weak deviation of S. Hence,
ϕi (T ) = ϕi (S). This implies that ϕk (S) = 0 for all k ∈ S \ T . If T is
not the only minimal winning coalition with minimal cardinality then there is
again a (weak) deviation of T which is also a deviation of S. Hence, S must
contain the unique minimal winning coalition S′ of minimal cardinality and
ϕi (S′) = ϕi (S) for all i ∈ S′.
Now, let S be a winning coalition, S′ ⊂ be the unique minimal winning
coalition and of minimal cardinality and ϕi (S′) = ϕi (S) for all i ∈ S′. Assume
that there is a deviationW of S. W is also weak deviation of S′, soW cannot
be minimal. Hence, there is T ⊂ W such that ϕi (T ) ≥ ϕi (W ) for all i ∈ T .
From properness follows that S′ ∩ T 6= ∅. Consequently there is i ∈ S′ ∩ T
such that

1

|T |
= ϕi (T ) ≥ ϕi (W ) > ϕi (S′) =

1

|S′|
≥ 1

|T |
what is a contradiction.

3. Note that a minimal winning coalition with minimal cardinality cannot be de-
viated by another minimal winning coalition with minimal cardinality in sense
of semistrictly core stability. With this knowledge in mind we can proceed
the same steps as we did in 2 for each coalition S which contains a minimal
winning coalition S′ of minimal cardinality such that ϕi (S′) = ϕi (S) for all
i ∈ S′.

7



�

An interesting point is, that in this case the semistrict core stability of a partition
depends only on its winning coalition.

Corollary 3.6 If (S,N \ S) is (strictly, semistrictly) core stable, then each parti-
tion Γ which contains S is also (strictly, semistrictly) core stable.

4 Apex Games

In the last chapter we considered a su�cient condition for the existence of core
stable partitions in simple games. However, this property is not necessary. In this
section we investigate a class of games which does not satisfy the absence of the
strong paradox with respect to the Shapley value. We show which elements of the
class have a nonempty core and which have not. Before we start we brie�y introduce
the Shapley value and give some useful properties.

4.1 The Shapley Value

The most popular solution for TU games is the Shapley Value. For a proper mono-
tonic simple game (N, v) we de�ne

Shi (N, v) =
∑
S⊂N

(|N | − |S|)! (|S| − 1)!

|N |!
δi (S) .

Particularly, we can de�ne the Shapley Value on reduced games. In the following
we write Shi (S) = Shi (S, vS).

Lemma 4.1 Let (N, v) be a proper monotonic simple game, S ⊂ N , i, k ∈ S and i
be a vetoer in S. Then

Shi (S) ≥ Shk (S) +
1

|S|
.

Proof: Let T ( S. Then

vT (T )− vT (T \ {k}) ≤ vT (T )− vT (T \ {i}) ,

since whenever the left side is equal to 1 we have v (T ) = 1. But in this case the
right also equals 1 since i is a vetoer in T .
Consequently, we have

Shi (S) =
∑
T⊂S

(|S| − |T |)! (|T | − 1)!

|S|!
δSi (T )

=
1

|S|
+
∑
T(S

(|S| − |T |)! (|T | − 1)!

|S|!
δSi (T )

≥ 1

|S|
+
∑
T(S

(|S| − |T |)! (|T | − 1)!

|S|!
δSi (T )

=
1

|S|
+ Shk (S) .

The last equality follows from the fact that vS (S \ {k}) = 1 since k is per de�nition
no vetoer in S.

�
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A last lemma in this section shall focus on the in�uence of null players on the
Shapley value.

Lemma 4.2 Let N,M be sets of players and v be a proper monotonic game on
N ∪M such that all players in M are null players and all players in N are non null
players. Then for all S ⊂ N , T ⊂M and for all i ∈ S

Shi (S) = Shi (S ∪ T ) .

Proof: Can be found in the appendix.

�

4.2 The Core of Generalized Apex Games

A certain subclass of simple games are so called apex games. Hart and Kurz gave
an analysis of these games in [5]. An axiomatization of the Shapley value in apex
games can be found in van den Brink's article [2]. First, we want to give the formal
de�nition of those games.

De�nition 4.3 Let N be a set of agents, J ( N and i ∈ N \J . An apex-(i, J)-game
is a proper monotonic simple game (N, aiJ), such that

aiJ (S) =

{
1, if (i ∈ S and S ∩ J 6= ∅) or J ⊂ S
0, else.

If |J | = 1 then we call j ∈ J a dictator. This case is not very interesting since
Shj (S) = 1 for all S ⊂ N with j ∈ S and all other players are null players. Hence,
|J | ≥ 2 from here.

One result of van den Brink is the following:

Lemma 4.4 Let aiJ be an apex game. Then k ∈ N is a null player if and only if
k ∈ N \ (J ∪ {i}).

Our aim is to investigate the core of those games. Particularly, we will prove the
following lemma.

Lemma 4.5 The core of an apex-(i, J)-game (N, aiJ) with |J | ≥ 3 with respect to
the Shapley value is empty.

The proof is not di�cult. Since we want to give a more general version later, we
just give a short sketch of the proof here.
We can assume without loss of generality that J = N \{i}. Further, J is dominated
by {i, j} for some j ∈ J . Taking an arbitrary set S of the form S = {i} ∪ J ′ where
J ′ ⊂ J and |J ′| < 1

2 |J | we can �nd the deviation T = {i} ∪ J \ J ′. Finally, if
S = {i} ∪ J ′ where J ′ ⊂ J and |J ′| ≥ 1

2 |J |, we see that S is dominated by J .
The same idea with some more calculations will lead to a more general result. But
�rst, we give a new de�nition.

De�nition 4.6 Let N be a set of agents, I ( N and J ∈ N \ I. An apex-(I, J)-
game is a proper monotonic simple game (N, aIJ), such that

aIJ (S) =

{
1, if (I ⊂ S and S ∩ J 6= ∅) or J ⊂ S
0, else.

First, we have a closer look on players outside of I and J . Particularly, we are
interested in an analogon of van den Brink's lemma 4.4.
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Lemma 4.7 Let N be a set of players, I, J ⊂ N such that aIJ is an apex game on
N . Then all players k ∈ N \ (I ∪ J) are null players in N .

Proof: Let k ∈ N \ (I ∪ J) and T ⊂ N such that k ∈ T and aIJ (T ) = 1. Then
either J ⊂ T or I ⊂ T and T ∩ I 6= ∅. Assume that aIJ (T \ {k}) = 0 and consider
the �rst case. Since k /∈ J , J ⊂ T \ {k} and this coalition is winning, what is a
contradiction to the assumption. Hence, consider the second case. Since neither
k ∈ I nor k ∈ J , we still have I ⊂ T and T ∩ I 6= ∅. Hence, aIJ (T \ {k}) = 1,
again a contradiction. Our assumption must have been false, i.e. there is no such
coalition T ⊂ N in which k is a veto player. We can conclude, that k is null player.

�

The next lemma investigates the Shapley value of apex players. Its proof is quite
technical and can be found in the appendix.

Lemma 4.8 Let aIJ be an apex game and S′, T ′ ⊂ J such that |S′| > |T ′|. Let
further S = S′ ∪ I and T = T ′ ∪ I. Then for all i ∈ I

Shi (S) > Shi (T ) . (7)

Proof: See appendix.

�

We can now proof our main theorem about generalized apex games.

Theorem 4.9 Let (N, aIJ) be an apex-(I, J)-game.

1. If |J | > |I| + 1 then the core of (N, aIJ) with respect to the Shapley value is
empty.

2. If |J | ≤ |I|+ 1 then S is contained in the core of (N, aIJ) with respect to the
Shapley if and only if J ⊂ S and S 6= N . In this case semistrict core and
strict core are empty.

3. If |J | < |I| + 1 then the core of (N, aIJ) with respect to the Shapley value
conincides with the strong core.

Proof:

1. First we show, that we can assume without loss of generality that J = N \{I}.
Let (S,N \ S) be a core stable partition. De�ne N ′ as the subset of N which
does not contain any null players. Assume that S′ = N ′ ∩S is not core stable
in N ′. Then there is a winning coalition T ⊂ N such that for all k ∈ S′ ∩ T

Shk (T ) > Shk (S′)

and Shk (T ) > 0 for all k ∈ T \S. Let now k ∈ S ∩T . Then either k ∈ S′ ∩T
and consequently Shk (T ) > Shk (S) or k ∈ (S \ S′)∩ T leading to Shk (S) =
0 < Shk (T ). This means that T is a deviation of S, a contradiction to S
being core stable. Thus, the core of (N ′, aIJ) is nonempty. So, it is su�cient
to show that the core of (N ′, aIJ) is empty. But we know that N ′ = J ∪ I.
Let J = N \ I. We have to show that there is a deviation for each winning
coalition S. The case S = N is not very interesting since J ⊂ N would
be a deviation. So, let J ⊂ S 6= N . All i ∈ I ∪ S are null players in S
since they are not contained in any minimal winning coalition in S. Hence,
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Shj (S) = Shj (J) by lemma 4.2. Since this is a minimal winning coalition we
have

Shj (S) =
1

|J |
<

1

|I|+ 1
= Shj (I ∪ {j})

for j ∈ J and Shi (I ∪ {j}) = 1
|I|+1 > 0 for all i ∈ I. Hence, I ∪ {j} is a

deviation.
Let now S ⊂ J . In this case we know due to lemma 4.8 that Shi (S ∪ I) is
strictly increasing for all i ∈ I with increasing cardinality of |S|.
First let |S| < 1

2 |J |. Then I ∪ (J \ S) is a deviation since |J \ S| > |S|.
So, let |S| ≥ 1

2 |J |. We see that∑
j∈S

Shj (S ∪ I) = 1−
∑
i∈I

Shi (S ∪ I) = 1− |I|
(

1

|I|
− |S|! (|I| − 1)!

(|S|+ |I|)!

)

=

(
|S|+ |I|
|S|

)−1

By the equal treatment property of the Shapley value (see for instance [7]) we
see that for all j ∈ S

Shj (S ∪ I) =
1

|S|

(
|S|+ |I|
|I|

)−1

Since |I| , |S| ≥ 1 we get (
|S|+ |I|
|I|

)
≥ |S|+ |I|

Finally we see

Shj (S ∪ I) ≤ 1

|S|
1

|S|+ |I|
<

4

|J |2
<

1

|J |

since |S| ≥ 1
2 |J |, |I| > 0 and |J | > |I|+ 1 ≥ 2. Hence, J is a deviation since

by the equal treatment property Shj (J) = 1
|J| for all j ∈ J . At this point we

considered all winning coalitions and the proof is complete.

2. We see that the last two cases of the previous proof remain the same as before,
hence the only candidate for the core are coalitions which contain J . N is not
core stable as before since it can be deviated by J . So, let J ⊂ S 6= N . Again
all i ∈ I ∪ S are null players in S. Hence, Shj (S) = 1

|J| . Since |J | ≤ |I|+ 1,

for each j ∈ J

max
T⊂N,I⊂T,j∈T

Shj (T ) ≤ Shj (I ∪ {j}) =
1

|I|+ 1
≤ 1

|J |
= Shj (S) ,

thus, S cannot be deviated. However, this equation shows that S ∪ {j} is a
weak deviation of S, hence S cannot be part of the semistrict core.

3. Let J ⊂ S 6= N . We see for the same reason as before

max
T⊂N,I⊂T,j∈T

Shj (T ) ≤ Shj (I ∪ {j}) =
1

|I|+ 1
<

1

|J |
= Shj (J)

Hence, S is contained in the strong core.

�

Consider the last two cases of theorem 4.9. In both cases the core is nonempty.
However, if S ⊂ N is a winning coalition which is not minimal and J * S then
Shi (S) > 1

|I|+1 = Shi (I ∪ {j}) for each i ∈ I and j ∈ S ∩ J . This means that the

Shapley value exhibits the strong paradox of smaller coalitions on aIJ , since each
minimal winning subset W ⊂ S must contain I.
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4.3 Nash Stability

After the analysis of the core of generalized apex games, it is interesting to inves-
tigate their properties regarding noncooperative aspects. Therefore we introduce
Nash stability for these games

De�nition 4.10 Let (N, v) be a proper monotonic game and ϕ be a solution. A
partition Γ = (S1, . . . , Sk) is Nash stable with regard to ϕ if for all i ∈ N

ϕi

(
CΓ (i)

)
≥ ϕi (Sj ∪ {i})

for all j = 1, . . . , k.

We call a partition Γ trivial if v (S) = 0 for all coalitions S ∈ Γ. Note that in an
apex game the grand coalition N is always Nash stable.

Theorem 4.11 Let aIJ be an apex game on N .

1. Let |J | > |I|+ 1. Then a nontrivial partition Γ is Nash stable if and only if

(a) J is contained in the winning coalition, and

(b) I is not contained in a nonwinning coalition in Γ, and

(c) there are either zero or at least two players i, k ∈ I which are not con-
tained in the winning coalition.

2. Let |J | ≤ |I|+ 1. Then a nontrivial partition Γ is Nash stable if and only if

(a) J is contained in the winning coalition, and

(b) there are either zero or at least two players i, k ∈ I which are not con-
tained in the winning coalition.

Proof:

1. Let Γ be a partition with winning coalition S, which satis�es the conditions.
First, let I ⊂ S. Each player inside of S would deviate from a winning into a
nonwinning coalition and not improve. Each player k ∈ N \ S is null player
in N and remains null player in S ⊂ {k}. Consequently, he cannot improve.
Hence, Γ is Nash stable.
Let now I * S. If j ∈ J leaves S there is no winning coalition any more since
I * S. For all i ∈ S \J the coalition S \{i} is still winning. Hence, there is no
i ∈ S which could improve by deviating. Let k ∈ N \S. Either k ∈ I or k is a
null player in N . If k is null player, he cannot improve, since he remains null
player in S ∪ {k}. So, let k ∈ I. Then, the only minimal winning coalition
of S ∪ {k} is J since there is i ∈ I such that i ∈ N \ (S ∪ {k}). Thus, k is
null player in the winning coalition, i.e. he could not improve by deviating.
Hence, a partition which satis�es these conditions is Nash stable.
Let now Γ be a Nash stable partition with winning coalition S. Assume that
J * S. Then I ⊂ S and for all j ∈ J

Shj (S ∪ {j}) > 0 = Shj
(
CΓ (j)

)
.

This means that the partition cannot be Nash stable, what is a contradiction.
Hence, J ⊂ S.
Assume now that there is T in Γ such that I ⊂ T and v (T ) = 0. Then all
k ∈ T \ I are null players in N according to lemma 4.7. Hence, for all j ∈ J

Shj (T ∪ {j}) = Shj (I ∪ {j}) =
1

|I|+ 1
>

1

|J |
= Shj (J) .
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Consequently, Γ cannot be Nash stable. This is a contradiction and we con-
clude that I * T for all T ∈ Γ.
Assume now, that I \ S = {i}. Then, I ⊂ S ∪ {i} and for j ∈ J the coalition
I ∪ {j} ⊂ S is minimal winning and contains i. Thus, Shi (S ∪ {i}) > 0 =
Shi

(
CΓ (i)

)
. Since this is a contradiction of Γ being Nash stable we conclude

that the third condition must be satis�ed as well.

2. Let Γ be a Nash stable partition with winning coalition S. Assume that
J * S. Then S = I ∪ T where all k ∈ T are null players in N . In this
case Shj (S ∪ {j}) > 0 for j ∈ J . Hence, Γ cannot be Nash stable, what is a
contradiction.
Let now Γ be a partition with winning coalition S and J ⊂ S which satis�es
both conditions. Let j ∈ S. Without loss of generality let there be a coalition
T in Γ such that T ∪ {j} is winning. Then I ⊂ T and j ∈ J . Particularly,
I ∪ {j} is the only minimal winning coalition in T . Hence,

Shj (T ∪ {j}) =
1

|I|+ 1
≤ 1

|J |
= Shj (S) .

Hence, there is no j ∈ S which would deviate. Let now k ∈ N \ S. Without
loss of generality we can assume that k is not a null player in N . J is the only
minimal winning coalition in S ∪ {k} since I * S ∪ {k}. This implies that k
is null player in S ∪ {k}. Thus, k cannot improve his situation. We conclude
that Γ is Nash stable.

�

Although we can give this characterizations of Nash stable partitions it is not fully
satisfactory. We can neither say that a nontrivial Nash stable partition is core
stable nor the other way around. However, if the core is nonempty there is only
one class of core stable partitions which is not Nash stable: The winning coalition
must contain J and I \ {i} for some i ∈ I.

5 Conclusion

We have characterized strict and semistrict core in case of the absence of the strong
paradox of smaller coalitions. Unfortunately this condition is not necessary for
their existence. However, we characterized a class of games with nonempty core
on which the Shapley value exhibits the strong paradox. There remain two tasks:
First, a further relaxation of the condition, such that it is a necessary and su�cient
condition for the existence of core stable partitions. Second, a characterization of
core, strict and semistrict core in this case.

13



A Proofs

Proof of lemma 4.2 : It is su�cient to show that for all S ⊂ N ∪M , for all i ∈ S
and for all k ∈M

Shi (S) = Shi (S ∪ {k}) .

So, let S, i, and k as described. Since k is a null player we have δSi (T ) = δSi (T ∪ {k})
for all T ⊂ N and i ⊂ S. Then

Shi (S ∪ {k}) =
∑
T⊂S

(|S|+ 1− |T |)! (|T | − 1)!

(|S|+ 1)!
δSi (T )

+
∑
T⊂S

(|S| − |T |)! (|T |)!
(|S|+ 1)!

δSi (T )

=
∑
T⊂S

(|S|+ 1− |T |)! (|T | − 1)! + (|S| − |T |)! (|T |)!
(|S|+ 1)!

=
∑
T⊂S

((|S|+ 1− |T |) + (|T |)) (|S| − |T |)! (|T | − 1)!

(|S|+ 1)!
δSi (T )

=
∑
T⊂S

((|S|+ 1)) (|S| − |T |)! (|T | − 1)!

(|S|+ 1) |S|!
δSi (T )

= Shi (S)

�

Proof of lemma 4.8 : We start with the proof of the following lemma.

Lemma A.1 Let n ∈ N and m ∈ Z such that m ≥ −1. Then

n∑
k=1

(k +m)!

(k − 1)!
=

1

m+ 2

m+1∏
i=0

(n+ i) . (8)

Proof of lemma A.1 : Let n ∈ N and m ∈ Z, m ≥ −1. We prove the lemma via
complete induction over n. First, let n = 0 obviously both side of equation (8) are
0. So, we need to show the induction step. Let n ≥ 0 and equation (8) be true for
n. Then

n+1∑
k=1

(k +m)!

(k − 1)!
=

n∑
k=1

(k +m)!

(k − 1)!
+

(m+ n+ 1)!

n!

=
1

m+ 2

m+1∏
i=0

(n+ i) +
(m+ n+ 1)!

n!

=
1

m+ 2

(
m+1∏
i=0

(n+ i+ 1)− (m+ 2)

m+1∏
i=0

(n+ i)

)
+

(m+ n+ 1)!

n!

=
1

m+ 2

m+1∏
i=0

(n+ i+ 1) .

Thus, the lemma holds.

�
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We now come to the main part. Let �rst S be a winning coalition containing I. We
start with a calculation of the Shapley value.

Shi (S ∪ I) =
∑

T⊂S∪I

(|S|+ |I| − |T |)! (|T | − 1)!

(|S|+ |I|)!
(aIJ (T )− aIJ (T \ {i}))

=

|S|+|I|∑
k=|I|+1

(|S|+ |I| − k)! (k − 1)!

(|S|+ |I|)!

(
|S|

k − |I|

)

=

|S|+|I|∑
k=|I|+1

(|S|+ |I| − k)! (k − 1)!

(|S|+ |I|)!
|S|!

(k − |I|)! (|S| − (k − |I|))!

=

|S|+|I|∑
k=|I|+1

|S|!
(|S|+ |I|)!

(k − 1)!

(k − |I|)!

=
|S|!

(|S|+ |I|)!

|S|∑
k=1

(k + |I| − 1)!

k!

This formula is quite similar to the one of lemma A.1:

|S|∑
k=1

(k + |I| − 1)!

k!
=

|S|+1∑
k=1

(k + |I| − 2)!

(k − 1)!
− (|I| − 1)!

=
1

|I|

|I|−1∏
i=0

(|S|+ 1 + i)− (|I| − 1)!

=
1

|I|
(|I|+ |S|)!
|S!|

− (|I| − 1)!

and this leads to

Shi (S ∪ I) =
|S|!

(|S|+ |I|)!

(
1

|I|
(|I|+ |S|)!
|S!|

− (|I| − 1)!

)
=

1

|I|
− |S|! (|I| − 1)!

(|S|+ |I|)!

The last part of the right side is decreasing with an increasing |S|. So, the Shapley
value is increasing with the cardinality of |S|. This completes the proof since |I| is
constant.

�

References

[1] L. Billera, Some Theorems on the Core of an n-person Game without Side
Payments, SIAM Journal of Applied Mathematics, 18, pp.567-579, 1970

[2] R. van den Brink, The Apex Power Measure for Directed Networks, Soc.
Choice Welfare, 19, pp. 845-867, 2002

[3] D. Dimitrov, C.-J. Haake, Government versus Opposition: Who Should be
Who in the 16th German Bundestag, Journal of Economics, 89(2), pp. 115-
128, 2006

15



[4] D. Dimitrov, C.-J. Haake, A Note on the Paradox of Smaller Coalitions, Soc.
Choice Welfare, 30, pp. 571-579, 2008

[5] S. Hart, M. Kurz, Stable Coalition Structures, Coalitions and Collective Ac-
tions, Manfred J. Holler (Editor), Physica-Verlag, pp. 235-258, 1984

[6] A. Bogomolnaia, M. Jackson, The Stability of Hedonic Coalition Structures,
Games and Economic Behaviour, 38(2), pp. 201-230, 2002

[7] B. Peleg, P. Sudhölter, Introduction of the Theory of Cooperative Games,
Second Edition, Springer, 2007

[8] P. Shenoy, On Coalition Formation: A Game-theoretical Approach, Int. J.
Game Theory, 8, pp.133-164, 1979

16


