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Abstract

This paper studies a finite-horizon search problem in which two or more players

are involved. Players can agree upon a proposed object by a unanimous decision.

Otherwise, search continues until the deadline is reached, at which players receive

predetermined fixed payoffs. If players can benefit from the object of search as soon

as they agree, the payoff approximates the Nash bargaining solution in the limit

as the realizations of payoffs become frequent, and they reach an agreement almost

immediately in the limit. If the benefits are received only at the deadline, the limit

payoffs are efficient but sensitive to the distribution of possible payoff profiles. In

this case the limit expected duration of search relative to the length of time before

the deadline is more than a half, and approximates one in the limit as the number

of involved players goes to infinity.

1 Introduction

Search problems that arise in reality often have two common features: The decision to

“stop” is made by multiple individuals, and there is a predetermined deadline at which

a decision has to be made, whatever it is. For example, legislative committee members

may need amend a law proposal by a fixed deadline. A department of a university may

need to decide who to hire as a junior faculty. A husband and a wife may need to choose

an apartment to live in from September 1st.

Although there is a large body of literature on search problems with a single agent

over infinite horizon, there are very few works that diverge from these two assumptions.1

Recent works by Wilson (2001), Albrecht et al. (2010), Compte and Jehiel (2010), and
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Cho and Matsui (2011) analyze situations in which two or more individuals are involved

in search, in the context of infinite horizon. As far as our knowledge goes, there is appar-

ently no work that considers a multi-agent search problem in the presence of deadline,

despite that in the aforementioned examples and almost all other real-life search problems

deadlines seem to be present.

One may argue that infinite horizon is a “proxy for long finite horizon.” In this paper

we show that this may or may not be a valid argument, depending on the situation that

we want to analyze. We also show that, depending on the situations, the duration of

search does not shrink to zero even when the frequency of search becomes extreme. This

is an insight that we do not expect in an infinite horizon model, as in all the works

mentioned above, the search ends immediately when it becomes very frequent.

Specifically, we consider a continuous-time model with finite horizon, in which ac-

cording to a Poisson process a payoff profile is drawn iid from some a priori specified set

of possible payoff profiles. Upon each arrival of payoff profiles, involved players choose

either “accept” or “reject,” and if all players accept, the search ends, while otherwise

the search continues until the deadline is reached. At the deadline players obtain a fixed

a priori specified payoff. In the apartment-search example, this corresponds to the sit-

uation where a broker provides information about apartments to the couple, where the

market is a sellers’ market so that couples cannot negotiate with the broker about, say

the prices. Only when both husband and wife agree, they sign the contract, and otherwise

they discard this offer and wait for the next offer from the broker (since the market is a

sellers’ market a discarded apartment will be taken by some other potential tenant).

We show that (an appropriately defined) trembling-hand equilibrium of this game is

(essentially) unique. In the equilibrium, we analyze asymptotic behavior in the limit as

the realizations of payoffs become frequent. If players can benefit from the object of search

as soon as they agree (in the example this means the couple can rent the apartment as soon

as they sign the contract), the payoff approximates a point in the Nash set (Maschler et al.

(1988), Herrero (1989)) which generalizes the Nash bargaining solution (Nash (1950)) to

nonconvex domains. They reach an agreement almost immediately in the limit. If the

benefits are received only at the deadline (which corresponds to the situation in which

the couples can only rent an apartment only in September), the limit payoffs are efficient

but sensitive to the probability distribution of possible payoff profiles. In this case the

limit expected duration of search relative to the length of time before the deadline is

more than a half, and approximates one in the limit as the number of involved players

goes to infinity. We further investigate the structure of equilibrium and relate the forms

of equilibria in these two situations.

The multi-agent search problem is similar to the bargaining problem in that both

predict what outcome in a prespecified domain is chosen as a consequence of strategic

interaction between agents. On the other hand, the search model is distinguished from
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bargaining in which players have full control of the proposals, as discussed by Compte

and Jehiel (2004, 2010). As opposed to the well-known bargaining models in which a

player is chosen as a “proposer” and makes an offer to other players, we assume that

there is no “proposer” but rather all players are passive. This assumption captures the

feature of situations that we would like to analyze. For example neither the husband

nor the wife designs and builds their house for themselves, but looks for an apartment

which is already built. The distinction between these “active” and “passive” players

is also important when we consider the difference between our work and the standard

bargaining literature.2

Let us relate our work with the literature. First, some recent papers in economics

discuss search models in which a group of multiple decision-makers determine when to

stop. Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2011) consider

a search model in which a unanimous agreement is required to accept an alternative,

and show that the equilibrium outcome is close to the Nash bargaining solution when

players are patient. Compte and Jehiel (2010) analyze the general majority rule to

discuss the size of the set of limit equilibrium outcomes. Albrecht et al. (2010) also

consider the general majority rule, and show that cutoffs in their strategies are lower for

the decision-makers than for a player in the corresponding single-person search model,

and the expected duration search is shorter if they are patient. Alpern and Gal (2009),

and Alpern et al. (2010) analyze a search model in which an offer is chosen when one

of two decision-makers accepts it, unless one of them cast a veto which can be exercised

only finite times in the entire search process.3 Note that all of the above works consider

discrete-time infinite-horizon models.4

Second, there is an emerging new field on “revision games,” which concerns players’

interactions over continuous-time with finite horizon, where opportunities to “revise”

actions arise according to a Poisson process (Kamada and Kandori (2009), Kamada and

Sugaya (2010a,b), Calcagno and Lovo (2010)). An insight from these works is that when

action space is finite (as in our case) the set of equilibria is typically small and the solution

can be obtained by (appropriately implemented) backwards induction. Another insight

is that a differential equation is useful when characterizing the equilibrium. In our paper

we follow and extend these methods to characterize equilibrium.

Third, there are several papers discussing continuous-time bargaining models with

2Cho and Matsui (2011) present another view: A drawn payoff profile in the search process may be
considered as an outcome in a (unique) equilibrium in a bargaining game which is not explicitly described
in the model. From this viewpoint, every player is “active” although the “activeness” is hidden in the
model.

3Recent papers by Moldovanu and Shi (2010), and Bergemann and Välimäki (2011) analyze search
problems where each player receives a private signal in every period.

4There is large literature of search models in Operations Research. Fewer works, however, consider
multi-person decision problems (See Abdelaziz and Krichen (2007) for a survey). Sakaguchi (1978)
proposed a two-player continuous-time infinite-horizon stopping game in which opportunities arrive ac-
cording to the Poisson process as in our model.
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finite horizon, in which players have full control of proposals. Ma and Manove (1993)

argue continuous-time bargaining with deadline where two players propose alternately,

having options to wait with retaining the right of the proposal. They show that players

reach an agreement near the deadline as the delay of transmission of the proposal shrinks.

Imai and Salonen (2009) consider a similar setting as ours but in which players are

selected as a proposer with equal probability. They analyze two limits of equilibrium

payoffs: When the opportunities of proposals tend to be frequent, the payoff profile

is near the Raiffa bargaining solution, and as the deadline comes close to the present

date, the outcome converges to the Nash bargaining solution. Ambrus and Lu (2010a)

consider a model of coalitional bargaining in a similar context with ours.5 They show

general uniqueness of the Markov perfect equilibrium, and characterize the core as the

limit equilibrium outcomes in convex games.

Finally, the logic behind our result about the Nash bargaining solution is analogous

to that of Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2011). Our

objective in this paper is not to emphasize this perhaps surprising fact that the Nash

bargaining solution arises as the consequence of the dynamic interaction, but rather to

note the difference that arises when we consider two different situations about the timing

of payoff realization or relative importance of patience vs. frequency of search.

The paper is organized as follows. Section 2 provides a model. In Section 3 we

provide basic results. In particular, we show that trembling-hand equilibrium takes the

form of cutoff strategies, by which we mean each player at each moment of time has a

“cutoff” of payoffs below which they reject offers and otherwise accept. In Section 4 we

consider the case in which discounting is not so much important relative to the frequency

of search (the case corresponding to the situation where the couple can rent an apartment

only in September), and in Section 5 we consider the opposite case, that is, the case in

which discounting is important relative to the frequency of search (the couples can rent

an apartment as soon as they sign the contract). Section 6 concludes. All proofs are

provided in Appendix.

2 Model

There are n players who face a search problem (X, xd) where X ⊂ Rn is a set of possible

payoff profiles (which we call allocations), and xd ∈ Rn is a disagreement point assumed

to be xd = (0, . . . , 0) ∈ Rn. Let N = {1, . . . , n} be the set of players. As a usual

notation, a typical player is denoted by i, and the other players are denoted by −i. An

allocation x = (x1, . . . , xn) ∈ X is (strictly) Pareto efficient in X if there is no allocation

y = (y1, . . . , yn) ∈ X such that yi ≥ xi for all i ∈ N and yj > xj for some j ∈ N . An

5See Ambrus and Lu (2010b) for an application of their model to legislative process.
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allocation x ∈ X is weakly Pareto efficient in X if there is no allocation y ∈ X such that

yi > xi for all i ∈ N . A probability measure µ is defined on the Borel set of X. We make

mild assumptions about X and µ throughout the paper.

Assumption 1. 1. X is a compact subset of Rn.

2. There exists a profile (x1, . . . , xn) ∈ X with xi > 0 for all i ∈ N .

3. µ admits a continuous probability density function f whose support is X.6

4. f is bounded away from zero, i.e., minx∈X f(x) > 0.

The first assumption is standard. Note that we do not assume convexity of X.

The second is an assumption not to make the problem meaningless. The third and

the fourth are standard regularity conditions of the probability measure. Let xi =

max{xi | (xi, x−i) ∈ X for some x−i} be the maximum payoff attainable for player i in

X, fH = maxx∈X f(x) <∞ be the upper bound, and fL = minx∈X f(x) > 0 be the lower

bound of f in X. Let X̂ = {v ∈ Rn
+ | x ≥ v for some x ∈ X}.

Players search within a finite time interval [−T, 0], on which opportunities of agree-

ment arrive according to the Poisson process with arrival rate λ > 0. At each oppor-

tunity −t ∈ [−T, 0], nature draws an object which is characterized by an allocation

x = (x1, . . . , xn) ∈ X following an identical and independent probability measure µ. Af-

ter allocation x is provided, each player simultaneously responds by either accepting or

rejecting x without a lapse of time. Let B = {accept, reject} be the set of responses in

this search process. If all players accept x, then they reach the agreement and exit the

game, obtaining a payoff profile e−ρ(T−t)x where ρ ≥ 0 is a common discount rate. If at

least one of the players rejects the offer, then they continue search. If players reach no

agreement before the deadline at time 0, they obtain the disagreement payoff 0.

Let us define strategies in this game. A history at −t ∈ [−T, 0] consists of

1. a series of time (t1, . . . , tk) when there was an opportunity of Poisson arrival before

−t, where k ≥ 0 and −T ≤ −t1 < −t2 < · · · < −tk < −t,

2. allocations x1, . . . , xk drawn at opportunities t1, . . . , tk respectively,

3. allocation x ∈ X ∪ {∅} at −t (x = ∅ if no Poisson opportunity arrives at −t),

4. acceptance/rejection decision profiles (b1, . . . , bk), where each decision profile bl (l =

1, . . . , k) is contained in Bn \ {(accept, . . . , accept)}.

We denote a history at time −t by
(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
. Let H̃t be the set

of all such histories at time −t, and H̃ =
∪

−t∈[−T,0] H̃t. Let

Ht =
{(

(t1, x1, b1), . . . , (tk, xk, bk), (t, x)
)
∈ H̃t | x ̸= ∅

}
6In particular, this assumption implies that X ⊂ Rn is full-dimensional at all x ∈ X.
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be the history at time −t when players have an opportunity, and H =
∪

−t∈[−T,0] Ht. A

(behavioral) strategy σi of player i is a function from H to a probability distribution over

the set of responses B.7 Let Σi be the set of all strategies of i, and Σ =
∏

i∈N Σi. For

σ ∈ Σ, let ui(σ) be the expected payoff when players play σ. A strategy profile σ ∈ Σ is

a Nash equilibrium if ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ

′
i ∈ Σi and all i ∈ N . Let ui(σ |h)

be the expected payoff of player i given that a history h ∈ H̃ realized. A strategy profile

σ ∈ Σ is a subgame perfect equilibrium if ui(σi, σ−i |h) ≥ ui(σ
′
i, σ−i |h) for all σ′

i ∈ Σi,

h ∈ H, and all i ∈ N .

A strategy σi ∈ Σi of player i is a Markov strategy if for history h ∈ Ht at −t, σi(h)
depends only on the time −t, and the present allocation xki for player i himself. A strategy

profile σ ∈ Σ is a Markov perfect equilibrium if σ is a subgame perfect equilibrium, and σi

is a Markov strategy for all i ∈ N . We will later show that players play a Markov perfect

equilibrium (except for histories in a zero-measure set) if they follow a trembling-hand

equilibrium defined below. For ε ∈ (0, 1/2), let Σε be the set of strategy profiles which

prescribe probability at least ε for both responses in {accept, reject} after all histories in

H. A strategy profile σ ∈ Σ is a trembling-hand equilibrium if there exists a sequence

(εk)k=1,2,... and a sequence of strategy profiles (σk)k=1,2,... such that εk > 0 for all k,

limk→∞ εk = 0, σk ∈ Σεk , σk is a Nash equilibrium in the εk-constrained game with a

restricted set of strategies Σεk for all k, and limk→∞ σk(h) = σ(h).8

3 Preliminary Results

In this section, we present preliminary results which may be useful in the subsequent

sections. First we show that any trembling-hand equilibria yield the same continuation

payoff profile after almost all histories at time −t ∈ [−T, 0]. Therefore the trembling-hand

equilibrium is essentially unique and Markov.

Proposition 1. Suppose that σ, σ′ are two trembling-hand equilibria. Then ui(σ |h) =

ui(σ
′ |h′) for almost all histories h, h′ ∈ H̃t \ Ht and all i ∈ N .

Note that there exist subgame perfect equilibria in which all players reject any allo-

cations, since they move simultaneously.9 We introduced trembling-hand equilibrium to

rule out such trivial equilibria. In an ε-constrained game, a player will optimally accept a

favorable allocation for himself, expecting the others to accept it with a small probability.

7This function has to be measurable with respect to an appropriate measure on the set of histories
(to be defined).

8This equilibrium concept is not the normal-form trembling-hand equilibrium but the extensive-form
trembling-hand. Although our extensive-form game involves uncountably many nodes, we call this notion
a trembling-hand equilibrium defined as a limit of Nash equilibria in which players are unable to take a
pure action at any node.

9If players respond sequentially, we can show that any subgame perfect equilibrium consists of cutoff
strategies. Therefore our results are essentially independent of the timing of responses of players.
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A Markov strategy σi of player i ∈ N is a cutoff strategy with cutoff vi if player i

who is to respond at time −t accepts allocation x ∈ X whenever xi ≥ vi, and rejects

it otherwise. For a cutoff profile v = (v1, . . . , vn) ∈ X̂, we denote the acceptance set

by A(v) = {x ∈ X |xi ≥ vi for all i ∈ N}. The following argument will show that a

trembling-hand equilibrium exists that consists of cutoff strategies. Note that a cutoff

strategy profile is a trembling-hand equilibrium if it is a Markov perfect equilibrium.

Suppose that all players play Markov strategies σ, and there is no Poisson arrival at

time −t ∈ [−T, 0]. Then player i has an expected payoff ui(σ |h) at −t independent of
history h ∈ H̃t \ Ht played before time −t. We denote the continuation payoff at time

−t by vi(t, σ) = e−ρ(T−t)ui(σ |h).
We hereafter fix a cutoff strategy profile σ, and simply denote by vi(t) the continuation

payoff of player i at time −t. Let A(v(t)) ⊂ X be the set of allocations accepted by the

cutoff strategies with cutoff profile v(t) = (v1(t), . . . , vn(t)). We often denote this set

by A(t) with a slight abuse of notation. If σ is a subgame perfect equilibrium, vi(t) is

characterized by the following recursive expression: For i ∈ N ,

vi(t) =

∫ t

0

(∫
X\A(τ)

vi(τ)dµ+

∫
A(τ)

xidµ

)
λe−(λ+ρ)(t−τ)dτ

=

∫ t

0

(
vi(τ) +

∫
A(τ)

(
xi − vi(τ)

)
dµ

)
λe−(λ+ρ)(t−τ)dτ . (1)

After time −t, players find the first Poisson opportunity at time −τ with probability

density λe−λ(t−τ). If the drawn allocation x falls in A(τ), they reach agreement with x,

or otherwise, they continue search with continuation payoffs v(τ).

Bellman equality (1) implies that vi(t) is differentiable in t. Multiplying both sides of

(1) by e(λ+ρ)t and differentiating both sides yield

v′i(t) = −ρvi(t) + λ

∫
A(t)

(
xi − vi(t)

)
dµ

for i ∈ N . Therefore we obtain the following ordinary differential equation (ODE) of the

continuation payoff profile v(t) = (v1(t), . . . , vn(t)) defined in X̂:

v′(t) = −ρv(t) + λ

∫
A(t)

(
x− v(t)

)
dµ (2)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn. Let us make a couple of observations

about ODE (2). This equality implies that the velocity vector v′(t) is parallel to a convex

combination between v(t) and the vector from v(t) to the barycenter of the acceptance

set A(t) with respect to the probability measure µ. The absolute value the integral on the

right hand side is proportional to the weight µ
(
A(t)

)
. If ρ = 0, (2) immediately implies

v′i(t) ≥ 0 for all t and i ∈ N , and v′i(t) = 0 if and only if µ
(
A(t)

)
= 0.
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Now we see that a standard argument of ordinary differential equations shows that

the ODE (2) has a solution whenever Assumption 1 holds.10

Proposition 2. A trembling-hand equilibrium exists that consists of Markov cutoff strate-

gies.

By Proposition 1, the solution of ODE (2) is unique. Therefore the game has essen-

tially a unique trembling-hand equilibrium for given X and µ. Let us denote the unique

solution of (2) by v∗(t; ρ, λ), the continuation payoff profile in the trembling-hand equi-

librium. We simply denote this by v∗(t) as long as there is no room for confusion. Next

we observe the asymptotic behavior of v∗(t) when the arrival rate λ becomes large. First

we show a useful lemma which is directly derived from the form of ODE (2).

Lemma 3. For any α > 0, v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) if −αt ∈ [−T, 0].

Second we note that, under certain assumptions, v∗(t; ρ, λ) converges to an allocation

v∗ independent of t in the limit of λ → ∞. This convergence is obvious if ρ = 0.

Since v′(t) is always nonnegative and X̂ is compact, limT→∞ v∗(T ; 0, λ) clearly exists.

Since v∗(T ; 0, λ) = v∗(λT ; 0, 1) by Lemma 3, v∗ = limλ→∞ v∗(T ; 0, λ) also exists, and is

independent of T . If ρ > 0, existence of v∗ = limλ→∞ v∗(t) is not obvious since v′i(t) may

be negative. We postpone a proof of existence of this limit in the case of positive ρ until

Proposition 12 in Section 5. An intuition of the proof of independence of t is as follows:

By Lemma 3, as α gets larger, the marginal change of ρ/α becomes smaller. Since the

right hand side of (2) is continuous in v, v∗(αt; ρ/α, λ) does not move very much α is

large. Therefore v∗(αt; ρ/α, λ) is independent of t in the limit.

In the following two sections, we analyze the limit of the continuation payoffs in the

equilibrium and the expected duration that the search process continues, as the frequency

of Poisson arrival goes to infinity. This limit is considered in two cases: ρ = 0 in Section 4,

and ρ > 0 in Section 5.

4 Asymptotic Results when the Payoffs Realize at

the Deadline

In this section, we consider the case in which players receive benefits of the agreement

only at the deadline even when they stop searching earlier. Mathematically, we analyze

the limit of the continuation payoff profile limλ→∞ v∗(t) in the equilibrium when ρ = 0. In

this case, v∗(t) is characterized as the unique solution of the following ordinary differential

10This is because the right hand side of ODE (2) is continuous in v, and X̂ is compact. See a textbook
of ODE (e.g., Coddington and Levinson (1955, Chapter 1)) for a general discussion.
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equation given by letting ρ = 0 in ODE (2):

v′(t) = λ

∫
A(t)

(
x− v(t)

)
dµ (3)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn. We present asymptotic results of the

continuation payoffs v∗(t) as the arrival rate λ tends to infinity.

If λ is very large, it is considered that players have so many opportunities that they

can find a good allocation. We discuss efficiency of the limit v∗ = limλ→∞ v∗(t; 0, λ)

in X to show that the intuition is basically correct. Let us note that we sometimes

consider the limit limt→∞ v∗(t; 0, λ) with enlarging the time interval [−T, 0]. By Lemma 3,

v∗ == limt→∞ v∗(t; 0, λ) for all λ. This implies that we can consider the two limits

interchangeably; the limit of v∗(t) as t→ ∞, and the limit as λ→ ∞ for fixed t.

In general, v∗ is not necessarily Pareto efficient in X. There is an example of a

probability density function f satisfying Assumption 1 in which v∗(t) converges to an

allocation that is not strictly Pareto efficient.

Example 1. Let n = 2, X =
(
[0, 1/2] × [3/4, 1]

)
∪
(
[3/4, 1] × [0, 1/2]

)
, and f be the

uniform density function on X. By the symmetry with respect to the 45 degree line, we

must have v∗1(t) = v∗2(t) for all t. Therefore v
∗ = (1/2, 1/2), which is not Pareto efficient

in X̂.

Note that v∗ is weakly Pareto efficient, and that X is a non-convex set in this exam-

ple. In fact, we will show that v∗ is always weakly efficient for general X, and strictly

Pareto efficient if X is convex. Furthermore, even if X is not convex, we may say v∗ is

“generically” Pareto efficient, that is, v∗ is Pareto efficient in X for generic f that satisfy

Assumption 1.

First, we show that the limit v∗ of continuation payoff profile is weakly Pareto efficient

in X̂.

Lemma 4. The solution v∗(t) of equation (3) converges to a weakly Pareto efficient

allocation in X̂ as λ→ ∞.

Next we show that v∗ is (strictly) Pareto efficient for generic probability density

function f on X. Let F be the set of density functions that satisfy Assumption 1. We

consider a topology on F defined by the following distance in F : For f, f̃ ∈ F ,∣∣∣f − f̃
∣∣∣ = sup

x∈X

∣∣∣f(x)− f̃(x)
∣∣∣ .

Proposition 5. The set

{f ∈ F | v∗ is Pareto efficient in X}
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is open and dense in F .

This proposition only shows that v∗ is efficient for generic f . However, if X is convex,

then v∗ is efficient for all f .

Proposition 6. Suppose that X is a convex set. Then v∗ is Pareto efficient in X.

Weak Pareto efficiency leads to an observation that players reach an agreement almost

surely if t is very large. Let p(t) be the probability that players reach an agreement in the

equilibrium before the deadline given no agreement at time −t. Then the continuation

payoffs v∗(t) must fall in the set {p(t)v | v ∈ X̂}, which implies v∗(t)/p(t) ∈ X̂. We

have v∗i (t) > 0 for all t > 0 and i ∈ N since v∗i (t) is nondecreasing and v∗′i (0) > 0 by

equation 3. Since there is a positive probability that no opportunity arrives before the

deadline, p(t) is smaller than one. Therefore v∗(t)/p(t) ∈ X̂ strictly Pareto dominates

v∗(t). This implies limt→∞ p(t) = 1 since by Lemma 4 v∗ is weakly Pareto efficient in X̂.

Now we show the following proposition:

Proposition 7. The probability of agreement before the deadline converges to one as the

time interval becomes large.

In Propositions 5, 6, we showed that v∗(t) almost always converges to the Pareto

frontier of X. We consider the inverse problem. For any Pareto efficient allocation w in

X which is not at the edge of the Pareto frontier,11 we show that one may find density f

which satisfies Assumption 1 such that the limit of the solution v∗(t) of equation (3) is

w.

Proposition 8. Suppose that w is a Pareto efficient allocation in X such that wi > 0

for all i ∈ N , and w is not located at the edge of the Pareto frontier. Then there exists

a probability measure µ satisfying Assumption 1 such that the equilibrium continuation

payoff profile v∗(t) converges to w as λ tends to infinity.

In the proof, we construct a probability density function f to have a large weight near

w ∈ X, and show that the limit continuation payoffs is w if there is a sufficiently large

weight near w. Note that this claim is not so obvious as it seems. Indeed, we will see

in Section 5 that the limit is independent of density f if there is a positive discount rate

ρ > 0, as long as Assumption 1 holds.

In the rest of this section, we make assumptions on regularity of X around v∗ in

addition to Assumption 1.

Assumption 2. 1. The limit v∗ is Pareto efficient in X.

2. The Pareto frontier of X is smooth in a neighborhood of v∗.

11We formally define this property in the proof given in Appendix A.6.
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3. For the unit normal vector α ∈ Rn
+ at v∗, αi > 0 for all i ∈ N .

4. There exist ε > 0 and η > 0 such that {x ∈ Rn
+ | |v∗ − x| ≤ ε, α · (x− v∗) ≤ −η} is

contained in X, where “ ·” denotes the inner product in Rn.12

The next lemma shows that v∗(t) converges to v∗ with a speed of order (λt)−1/n. Let

α ∈ Rn
+ be the unit normal vector of the Pareto frontier of X at v∗.

Lemma 9. Suppose that Assumption 2 holds. As either t → ∞ or λ → ∞, (v∗i −
v∗i (t))(λt)

1/n converges to a positive and finite value which is written as

lim
t→∞

(v∗i − v∗i (t))(λt)
1
n =

( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj
αi

) 1
n

for all i ∈ N .

In the present model with finite λ, it always takes positive time for players to reach an

agreement. Then it may be interesting to consider the expected duration of search before

the agreement. The next proposition shows that if the Pareto frontier of X is smooth and

v∗(t) converges to the Pareto frontier, then the expected duration of the search process

in the time interval [−T, 0] is (n2T )/(n2 + n+ 1).

Proposition 10. Suppose that Assumption 2 holds. Then the expected duration of search

in the equilibrium is
n2

n2 + n+ 1
T .

The proposition implies that a positive fraction of time is spent on search, but players

do not spend all the time they have. This is a result of a tradeoff between two effects: On

one hand, players do not want to wait too much, as doing so would result in disagreement,

or the agreement in low payoffs which they would receive if it takes place close to the

deadline. On the other hand, players do not want to stop their search immediately, as

they are very picky when the deadline is very far away. Being picky is optimal for the

players, as there is no discounting. In the next section, we will see that if there is a

significant effect of discounting we expect the search to end immediately. Putting it

another way, there are two effects of making the arrival rates large. One is that there

exist many realizations of payoffs in a given time interval, which makes the possibility of

agreement more likely. The other is that as the result of the increase of opportunities,

players expect more opportunities in the future, which makes them pickier.

The solution of the expected duration provided in the theorem implies that, if only

two players are involved in search, the expected duration is 4
7
T , and it monotonically

increases to approach T as n gets larger. We do not think the reason for this is a simple

one, which would say that if there are many people it is difficult to all agree on something.

The result is rather the consequence of two distinct effects explained above.
12Only the second assumption is necessary if X is convex.
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5 Asymptotic Results when the Payoffs Realize upon

Agreement

In this section, we consider the limit of the continuation payoffs v∗(t) as λ → ∞ with

discount rate ρ > 0 fixed. This is the case in which players receive benefits of the

agreement as soon as they agree. Let us revisit the ordinary differential equation (2) that

characterizes the equilibrium continuation payoff profile v∗(t) as its unique solution:

v′(t) = −ρv(t) + λ

∫
A(t)

(
x− v(t)

)
dµ (2)

with an initial condition v(0) = (0, . . . , 0).

If λ is large, the right hand side of equation (2) is approximated by the right hand

side of equation (3). Therefore, v∗(t) is close to the solution of equation (3) in the case

of ρ = 0, for λ large relative to ρ. This resemblance of trajectories holds until v∗(t)

approaches the boundary of X̂. Let v0 be the limit of the solution of equation (3). Note

that v0 is weakly Pareto efficient by Lemma 4. In the extreme case, we show that v∗(t)

approaches v0 arbitrarily closely.

Proposition 11. For all ε > 0, there exists λ̄ > 0 such that for all λ ≥ λ̄,

∣∣v0 − v∗(t)
∣∣ ≤ ε for some t.

Before analyzing v∗ = limλ→∞ v∗(t; ρ, λ), let us consider another limit v∗(∞; ρ, λ) =

limt→∞ v∗(t; ρ, λ). Since the right hand side of equation (2) is not proportional to λ, these

two limits do not coincide for positive ρ > 0. If the limit v∗(∞) exists, this must satisfy

ρv∗(∞) = λ

∫
A

(
x− v∗(∞)

)
dµ (4)

where A = {x ∈ X |x ≥ v∗(∞)}. For ρ > 0, equality (4) shows µ(A) > 0. Equality (4)

also implies that v∗(∞) is parallel to the vector from v∗(∞) to the barycenter of A.

We assume simplifying conditions until the end of this section.13

Assumption 3. The boundary of X is smooth, and every component of the normal vector

at any boundary point of X is strictly positive.

Now suppose that λ is very large. Then µ(A) must be very small, which means that

v∗(∞) is very close to the Pareto frontier of X. By Assumption 1, the density f is

approximately uniform in A if A is a very small set. To obtain an intuition, suppose that

A is a small n-dimensional pyramid. In such a case, the vector in the right hand side of

13We can show basically the same results without this assumption. We avoid complications derived
from the indeterminacy of a normal vector on the boundary of X.
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equality (4) is parallel to the vector from v∗(∞) to the barycenter of the Pareto frontier

of A.

If v is the barycenter of A, it turns out that the boundary of A at x is tangent to

the hypersurface defined by
∏

i∈N xi is constant. Therefore the Nash product is stable at

x. We refer to such a point as a Nash point, and the set of all Nash points as the Nash

set of (X, 0) (Maschler et al. (1988), Herrero (1989)). The Nash set contains all local

maximizers and all local minimizers of the Nash product. If X is convex, there exists a

unique Nash point, which is called the Nash bargaining solution.

The above observation leads to the next proposition.

Proposition 12. Suppose that any Nash point is isolated in X. Then the limit v∗ =

limλ→∞ v∗(t) exists and belongs to the Nash set of the problem (X, 0). In particular, if X

is convex, this limit coincides with the Nash bargaining solution of (X, 0).

Therefore, the trajectory of v∗(t) for very large λ starts at v∗(t) = 0, approaches v0,

and moves along the Pareto frontier until reaching a point close to a Nash point. When

X is convex, the result of convergence to the Nash bargaining solution is basically the

same as Imai and Salonen (2009) who consider a bargaining model in which players are

selected as a proposer with even probability in every opportunity.

Remark 1. Although we consider a finite-horizon model, the threatening power of dis-

agreement at the deadline is quite weak for large λ, since the relative effect of discounting

grows as λ becomes large. In fact, the asymptotic result of Proposition 12 is essentially the

same as those shown by Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui

(2011), all of whom consider the limit as the discount factor goes to one in discrete-time

infinite-horizon models.

Nash (1953) himself provided a characterization of the Nash bargaining solution by

introducing a static demand game with perturbation.14 Suppose that X is convex. The

basic demand game is a one-shot strategic-form game in which each player i calls a demand

xi ∈ R+. Players obtain x = (x1, . . . , xn) if x ∈ X, or 0 otherwise. In the perturbed

demand game, players fail to obtain x ∈ X with a positive probability if x is close to the

Pareto frontier. Under certain conditions, he showed that the Nash equilibrium of the

perturbed demand game converges to the Nash bargaining solution as the perturbation

vanishes.

Let us compare the perturbed Nash demand game with the multi-agent search model

with discrete-time and infinite-horizon. Suppose that a probability measure µ on X is

given in the infinite-horizon search model with discount factor 0 < δ < 1. Let p(x) =

µ
(
{y ∈ X | y ≥ x}

)
be the probability that players come across an allocation which Pareto

dominates or equals x ∈ X in a period. Let x ∈ X be the cutoff profile in the stationary

14We here follow a slightly modified game considered by Osborne and Rubinstein (1990, Section 4.3).
Despite the difference, the model conveys the same insight as the original.
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subgame perfect equilibrium. Then player i’s continuation payoff is xi, and he loses

(1−δ)xi if players cannot agree in a period. Therefore his expected loss from discounting

is (1−p(x))(1−δ)xi. If we take a probability P (x) to satisfy 1−P (x) = (1−p(x))(1−δ),
player i loses the same amount when x ∈ X is demanded in the perturbed demand game

where probability of successful agreement is P (x).

The key tradeoff in this game, the attraction to larger demands or the fear of failure, is

parallel to that in the multi-agent search, to be pickier or to avoid loss from discounting.

Now we consider the duration of search in the equilibrium. In contrast to Proposi-

tion 10 in the case of ρ = 0, we show that players reach an agreement almost immediately

if λ is very large.

Proposition 13. For all −t ∈ (−T, 0] and all ε > 0, there exists λ̄ > 0 such that the

probability that players reach an agreement before time −t in the equilibrium is larger

than 1− ε for all λ ≥ λ̄.

6 Conclusion

We investigated an n-person search problem with deadline in which an agreement oppor-

tunity arrives according to the Poisson process, and the drawn object is adopted by a

unanimous acceptance. If players cannot reach any agreement before the deadline, they

obtain a predetermined payoff profile. We analyze the limit of the equilibrium contin-

uation payoffs as objects are drawn more and more frequently. First, if players receive

payoffs at the deadline, the continuation payoffs are efficient but sensitive to the distri-

bution of objects in search. The limit expected duration of search is longer than a half

of the length of the give time interval, increases in n, and converges to one as n goes to

infinity. Second, if players receive payoffs immediately after they agree, the continuation

payoffs converges to a Nash point, and the duration of search is almost zero in the limit.

Appendix

A.1 Proof of Proposition 1

Suppose that there exists at least one trembling-hand equilibrium. We show that the

continuation payoff of player i at time −t is unique in any trembling-hand equilibrium.

Let vεi (t) and v
ε
i (t) be the supremum and the infimum of the set of continuation payoffs

ui(σ |h) of player i after all histories h ∈ H̃t \ Ht at time −t in all Nash equilibria σ in

the ε-constrained game. Let wεi (t) = vi(t) − vi(t), w̄
ε(t) = maxi∈N w

ε
i (t). We will show

that w̄ε(t) = 0 for all ε > 0 for any time −t ∈ [−T, 0]. Note that w̄ε(0) = 0 for all ε.
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Let us consider the ε-constrained game. If player i accepts an allocation x ∈ X at

time −t, he will obtain xi with probability at least εn−1. Accepting x is a dominant

action of player i if the following inequality holds:

εn−1xi + (1− εn−1)vεi (t) > vεi (t),

which implies,

xi > vεi (t) +
1− εn−1

εn−1
wεi (t).

Let ṽεi (t) = vεi (t) +
1−εn−1

εn−1 wεi (t). Then ṽ
ε
i (t)− vεi (t) =

1
εn−1w

ε
i (t).

Let X1
i (t) = {x ∈ X |xi ≥ ṽεi (t)}, Xm

i (t) = {x ∈ X | vεi (t) ≤ xi ≤ ṽεi (t)}, and

X0
i (t) = {x ∈ X | xi ≤ vεi (t)}. Any player i accepts x ∈ X1

i (t) and rejects x ∈ X0
i (t) with

probability 1 − ε after almost all histories at time −t. Note that X =
(∪

j∈N X
m
j (t)

)
∪(∪

(s1,...,sn)∈{0,1}n
∩
j∈N X

sj
j (t)

)
(although not disjoint). Then

vεi (t) ≤
∫ t

0

(∑
j∈N

∫
Xm

j (τ)

xidµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−(λ+ρ)(t−τ)dτ ,

and

vεi (t) ≥
∫ t

0

( ∑
(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
(1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)xi

+ (1− (1− ε)
∑

j∈N sjε
∑

j∈N (1−sj))vεi (τ)
)
dµ
)
λe−(λ+ρ)(t−τ)dτ .
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Therefore wεi (t) = vi(t)− vi(t) is estimated as follows:

wεi (t) ≤
∫ t

0

(∑
j∈N

∫
Xm

j (τ)

xidµ

+
∑

(s1,...,sn)∈{0,1}n

∫
∩

j∈N X
sj
j (τ)

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wεi (τ)dµ

)
λe−(λ+ρ)(t−τ)dτ

≤
∫ t

0

(∑
j∈N

fHxi
1

εn−1
wεj(τ)

∏
k ̸=j

xk

+
∑

(s1,...,sn)∈{0,1}n

∫
X

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

)
wεi (τ)dµ

)
λe−(λ+ρ)(t−τ)dτ

≤
∫ t

0

(∑
j∈N

fH max
k∈N

{xk}
1

εn−1

∏
k ̸=j

xk

+
∑

(s1,...,sn)∈{0,1}n

(
1− (1− ε)

∑
j∈N sjε

∑
j∈N (1−sj)

))
wε(τ)λe−(λ+ρ)(t−τ)dτ .

Since the above inequality holds for all i ∈ N , there exists a constant L > 0 such that

the following inequality holds:

wε(t) ≤
∫ t

0

Lwε(τ)e−(λ+ρ)(t−τ)dτ .

Let W ε(t) =
∫ t
0
wε(τ)e(λ+ρ)τdτ . Then

W ε′(t) = wε(t)e(λ+ρ)t

≤ W ε(t).

Therefore we have d
dt

(
W ε(t)e−t

)
≤ 0, which implies wε(t) ≤ W ε(t) ≤ 0 since wε(0) = 0.

Hence, wε(t) = 0 for all t and all ε > 0. Any trembling-hand equilibria yield the same

continuation payoffs after almost all histories at time −t ∈ [−T, 0].

A.2 Proof of Lemma 3

Let w∗(t; ρ, λ) = v∗(αt; ρ/α, λ). By equation (3), w∗(t; ρ, λ) is the solution of

w′(t/α) = − ρ

α
w(t/α) + λ

∫
A(w(t/α))

(
x− w(t/α)

)
dµ,

which is equivalent to

d

dτ
w(τ) = −ρw(τ) + αλ

∫
A(w(τ))

(
x− w(τ)

)
dµ

16



where τ = t/α, w(t) = v(αt). The solution of the second equation is w∗(t;λ) = v∗(t;αλ).

Therefore we have v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) as desired.

A.3 Proof of Lemma 4

By Lemma 3, it suffices to show that v∗ = limt→∞ v∗(t) is weak Pareto efficient.

Let A = {x ∈ X |x ≥ v∗}. Suppose that there exists x = (x1, . . . , xn) ∈ A such

that x1 > v∗1, . . . , xn > v∗n. By Assumption 1, there exists a closed subset Y ⊂ A such

µ(Y ) > 0, and yi = inf{xi | (x1, . . . , xn) ∈ Y } > xi. By ODE (3), we have

v∗′i (t) = λ

∫
A(t)

(
xi − v∗i (t)

)
dµ

≥ λ

∫
W

(yi − v∗i )dµ

= λ(yi − v∗i )µ(Y ) > 0.

This inequality implies that v∗i (t) ≥ λ(yi − v∗i )µ(Y )t + v∗i (0), which tends to infinity as

t → ∞. This contradicts the fact that v∗i (t) is convergent. Hence x is weakly Pareto

efficient in X̂.

A.4 Proof of Proposition 5

Let v∗(t; f) be the solution of ODE (3) for density f ∈ F , and v∗(f) = limλ→∞ v∗(t; f) =

limt→∞ v∗(t; f).

First we show that the set is open, i.e., for all f ∈ F with v∗(f) Pareto efficient, ε > 0,

and a sequence fk ∈ F (k = 1, 2, . . . ) with |fk − f | → 0 (k → ∞), there exist δ > 0 and

k̄ such that

|v∗(fk)− v∗(f)| ≤ ε

for all k ≥ k̄.

Since limt→∞ v∗(t; f) = v∗(f), for all δ > 0 there exists t̄ > 0 such that |v∗(f) −
v∗(t; f)| ≤ δ for all t ≥ t̄. By Pareto efficiency of v∗(f), let δ > 0 be sufficiently small so

that A
(
v∗(t̄; f)− (δ, δ, . . . , δ)

)
is contained in the ε-ball centered at v∗(f). Since the right

hand side of ODE (3) is continuous in v, the unique solution of (3) is continuous with

respect to parameters in (3). Therefore, for a finite time interval [0, T ] including t̄, there

exists k̄ such that |v∗(t; fk)−v∗(t; f)| ≤ δ for all t ∈ [0, T ] and all k ≥ k̄. This implies that

v∗(t; fk) ∈ A
(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
, thereby v∗(fk) ∈ A

(
v∗(t̄; f) − (δ, δ, . . . , δ)

)
. Hence

we have |v∗(fk)− v∗(f)| ≤ ε.

Second we show that the set is dense, i.e., for all f ∈ F with v∗(f) not strictly Pareto

efficient in X and all ε > 0, there exists f̃ ∈ F such that |f − f̃ | ≤ ε and v∗(f̃) is Pareto
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efficient. Since v∗(f) is only weakly Pareto efficient in X̂, there exists Pareto efficient

y ∈ X which Pareto dominates v∗(f). Let I = {i ∈ N | yi = v∗i (f)} and J = N \ I. Since
y is Pareto efficient, there is δ > 0 such that if x ∈ X is weakly Pareto efficient, satisfies

|y − x| ≤ δ, and yi = xi for some i ∈ N , then there is no x̃ ∈ X such that x̃i > yi and

|y − x̃| ≤ δ.

By Assumption 1, for any small δ/2 > η > 0, there is a small ball contained in X

centered at ỹ with |y − ỹ| ≤ η. Let g be a continuous density function whose support is

the above small ball, takes zero on the boundary of the ball, and the expectation of g is

exactly ỹ. Let f̃ = (1 − ε
|f |+|g|)f + ε

|f |+|g|g ∈ F . Since f and g are bounded from above,

|f − f̃ | ≤ ε.

Since v∗(f) is weakly Pareto efficient, if v∗(f) ∈ A(v), then A(v) ⊂
∪
i∈N
(
[vi, v

∗
i (f)]×∏

j ̸=i[0, xj]
)
. If |v∗(f)− v| ≤ ξ where ξ > 0 is very small,∫

A(v)

(xi − vi)f(x)dx ≤ fH
∑
j∈N

(v∗j (f)− vj)
∏
k∈N

xk

≤ ξnfH
∏
k∈N

xk

If v∗(f) ∈ A(v), minj∈N(yj − vj) ≥ 2η and |v∗(f)− v| ≤ ξ, we have∫
A(v)

(xi − vi)f̃(x)dx−
∫
A(v)

(xi − vi)f(x)dx =

∫
A(v)

(xi − vi)(f̃(x)− f(x))dx

=
ε

|f |+ |g|

∫
A(v)

(xi − vi)(g(x)− f(x))dx

≥ ε

|f |+ |g|

(
(ỹi − vi)−

(
ξnfH

∏
k∈N

xk

))
.

If j ∈ J and |v∗(f)− v| ≤ ξ where ξ > 0 is very small, then∫
A(v)

(xj − vj)f̃(x)dx−
∫
A(v)

(xj − vj)f(x)dx ≥ ε

2(|f |+ |g|)
(ỹj − v∗j (f)).

Let w(t) = v∗(t; f̃) − v∗(t; f). Since ODE (3) is continuous in the parameters, for all

ζ > 0, there exists ε > 0 such that |w(t)| ≤ ζ for all t ∈ [0, T ]. Suppose that T and t are
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very large so that |v∗(f)− v∗(t; f)| ≤ ξ. For j ∈ J , w′
j(t) is estimated as follows:

w′
j(t) = λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f̃(x)dx− λ

∫
A(v∗(t;f))

(xj − v∗j (t; f))f(x)dx

= λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f̃(x)dx− λ

∫
A(v∗j (t;f̃)))

(xj − v∗j (t; f̃)))f(x)dx

+ λ

∫
A(v∗(t;f̃))

(xj − v∗j (t; f̃))f(x)dx− λ

∫
A(v∗(t;f))

(xj − v∗j (t; f))f(x)dx

≥ λε

2(|f |+ |g|)
(ỹj − v∗j (f))− λ

∫
A(v∗(t;f))∩A(v∗(t;f̃))

wj(t)f(x)dx

− λ

∫
A(v∗(t;f))\(A(v∗(t;f))∩A(v∗(t;f̃)))

(xj − v∗j (t; f))f(x)dx

≥ λε

2(|f |+ |g|)
(ỹj − v∗j (f)− ζ)− λζξ

∑
k∈N

∏
l ̸=k

xl − λξnfH
∏
k∈N

xk.

Therefore when ξ > 0 is sufficiently small, w′
j(t) is bounded away from zero:

w′
j(t) ≥

λε

4(|f |+ |g|)
(ỹj − v∗j (f)− ζ).

This implies that for small ε > 0 and large t, v∗j (t; f̃) > v∗(f) for all j ∈ J . Then the

similar method to Step 3 in the proof of Proposition 6 shows that v∗(t; f̃) converges to a

Pareto efficient allocation in X.

A.5 Proof of Proposition 6

Let A = {x ∈ X | x ≥ v∗}. Let I = {i ∈ N |xi = vi for all x ∈ A} ⊂ N , and J = N \ I.
Suppose that there exists x ∈ X which Pareto dominates v∗, thereby J ̸= ∅.

Step 1: We show that I is nonempty. If there is no such player, there exist y(1), . . . , y(n)

such that y(j) ∈ A and yj(j) > v∗j for all j ∈ N . This implies that y = 1
n

∑
j∈N y(j)

strictly Pareto dominates v∗. Since X is convex, y also belongs to A. This contradicts

the weak Pareto efficiency of v∗ shown in Lemma 4.

Step 2: Next we show that if v∗ is not Pareto efficient in X, and i ∈ I, then xi ≤ v∗i

for all x ∈ X.

Let i be the player in I. Suppose that there exists y ∈ X with yi > v∗i . Since X is

convex, αy + (1 − α)x ∈ X for all 0 ≤ α ≤ 1 and x ∈ X. Since we assumed that there

exists x ∈ X which Pareto dominates v∗, xj > v∗j for j ∈ J . Then there exists α > 0 such

that αy + (1− α)x ≥ v∗, and αyj + (1− α)xj > v∗j for some j. By Step 1, we must have

xi = v∗i . Therefore, αyi + (1− α)xi > v∗i , which contradicts the fact that i ∈ I.

Step 3: Finally we show that v∗(t) converges to a Pareto efficient allocation in X as

t→ ∞.
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By convexity of X, we may find yj, ȳj (j ∈ J) such that v∗j < yj < ȳj, and
∏

i∈I [v
∗
i −

ε, v∗i ] ×
∏

j∈J [yj, ȳj] is contained in X for small ε > 0. Let ε ∈ (0, 1/2) be sufficiently

small such that ε ≤
2fL

∏
j∈J(ȳj − yj)

fH
∏

j∈J xj
. Since v∗(t) converges to v∗ as t → ∞, there

exists t̄ such that maxi∈N{v∗i − v∗i (t)} ≤ ε whenever t ≥ t̄. Note that by Proposition ??,

v∗i − v∗i (t) > 0 for all t and i ∈ N . Let Y (t) =
∏

i∈I [v
∗
i (t), v

∗
i ]×

∏
j∈J [yj, ȳj] ⊂ A(t).

We have A(t) ⊂
∏

i∈I [v
∗
i (t), v

∗
i ]×

∏
j∈J [0, xj] since there is no x ∈ A(t) with xi > v∗i .

By equation (3), for i ∈ I,

v∗′i (t) = λ

∫
A(t)

(
xi − v∗i (t)

)
dµ

≤ λ

∫
∏

i′∈I [v
∗
i′ (t),v

∗
i′ ]

(
xi − v∗i (t)

) ∫∏
j∈J [0,xj ]

fH
∏
j∈J

dvj
∏
i′∈I

dvi′

≤ 1

2
λfH(v

∗
i − v∗i (t̄))

∏
i′∈I

(v∗i′ − v∗i′(t))
∏
j∈J

xj

for all t ≥ t̄. On the other hand, for j ∈ J ,

v∗′j (t) = λ

∫
A(t)

(
xj − v∗j (t)

)
dµ

≥ λ

∫
Y (t)

(yj − v∗j )dµ

= λ(yj − v∗j )µ(Y (t))

≥ λfL(yj − v∗j )
∏
i∈I

(v∗i − v∗i (t))
∏
j′∈J

(ȳj′ − yj′).

Then for i ∈ I and j ∈ J ,

v∗′i (t)

v∗′j (t)
·
v∗j − v∗j (t̄)

v∗i − v∗i (t̄)
≤
fH(v

∗
i − v∗i (t̄))(v

∗
j − v∗j (t̄))

∏
j∈J xj

2fL
∏

j′∈J(ȳj′ − yj′)

≤
(v∗i − v∗i (t̄))(v

∗
j − v∗j (t̄))

ε

≤ ε ≤ 1

2

for all t ≥ t̄. Therefore,
v∗′i (t̄)

v∗′j (t̄)
≤ v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)
holds for all t ≥ t̄. This inequality implies

v∗i (t)− v∗i (t̄) ≤
v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)(v∗j (t)− v∗j (t̄)
)

for all t ≥ t̄. By letting t → ∞ in the above inequality, we have 0 < v∗i − v∗i (t̄) ≤
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(
v∗i − v∗i (t̄)

)
/2, a contradiction. Hence v∗ is strictly Pareto efficient in X.

A.6 Proof of Proposition 8

First, we define the notion of the edge of the Pareto frontier. Suppose that w is Pareto

efficient in X, and wi > 0 for all i ∈ X. Let us denote an (n − 1)-dimensional subspace

orthogonal to w by D = {z ∈ Rn |w · z = 0}. For ξ > 0, let Dξ be an (n− 1)-dimensional

disk defined as

Dξ = {z ∈ D | |z| ≤ ξ},

and let Sξ be its boundary. We say that a Pareto efficient allocation w in X is not located

at the Pareto frontier of X if there is ξ > 0 such that for all vector z ∈ Dξ there is a

scalar α > 0 such that α(w + z) is Pareto efficient in X. We denote this allocation by

wz ∈ X.

Let Bε(x) = {x ∈ X | |w − x| ≤ ε} for y ∈ X and ε > 0. We denote the volume

of Bε(y) by Vε(y), and the volume of the n-dimensional ball with radius ε by Vε. Note

that miny∈X Vε(y) > 0 by Assumption 1. Let g be a continuous density function on n-

dimensional ball centered at 0 ∈ Rn with radius ε, assumed to take zero on the boundary

of the ball. Let f̃ be the uniform density function on X. For a Pareto efficient allocation

y, we define a probability density function fy on X by

fy(x) = ηf̃(x) + (1− η)g(y − x)
Vε

Vε(y)

where η > 0 is small. Note that fy(x) is uniformly bounded above and away from zero

in x and y.

For z ∈ Dξ, let φ̃(z) be the limit of the solution of ODE (3) with density fwz , and

φ(z) = φ̃(z) + δw ∈ D for some δ ∈ R. By the form of ODE (3), the solution of (3) with

density fwz is continuously deformed if z changes continuously. Since w is not at the edge

of the Pareto frontier, f̃wz is also Pareto efficient in X and comes close to w if ξ, ε, and

η are small. Therefore φ(z) is a continuous function from Dξ to D. The rest of the proof

consists of two steps.

Step 1: We show that |φ(z) − z| ≤ ξ/2 if ε > 0 and η > 0 are small. If a density

function has a positive value only in Bε(y), then the barycenter of A(t) is always contained

in Bε(y). In such a case, the limit allocation belongs to Bε(y). As η → 0, fy approaches

the above situation. Therefore, for sufficiently small η > 0, the distance between the

limit allocation and y is smaller than 2ε. For ε very small, we have |φ(z)− z| ≤ ξ/2.

Step 2: We show that there is z ∈ Dξ such that φ(z) = 0. If not, ψ(z) =
ξφ(z)

|φ(z)|
is a

continuous function from Dξ to Sξ. Let Φ : Dξ × [0, 1] → Sξ be a homotopy defined by

Φ(z, s) = ξ(sz+(1−s)ψ(z))
|sz+(1−s)ψ(z)| . (Note that the denominator is positive by Step 1.) This means
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that Sξ is a deformation retract of Dξ, which is not true. A contradiction.

Hence for fwz such that φ(z) = 0, the limit allocation coincides with w.

A.7 Proof of Lemma 9

Let fH(t) = maxx∈A(t) f(x), and fL(t) = minx∈A(t) f(x). Since f is continuous, both fH(t)

and fL(t) are continuous and converge to f(v∗) as t→ ∞. For ε > 0, there is t̄ such that

|v∗ − v∗(t)| ≤ ε for all t ≥ t̄. For η > 0, let

A(t) = {x ∈ Rn
+ |x ≥ v(t), α · (x− v∗) ≤ −η}, and

A(t) = {x ∈ Rn
+ |x ≥ v(t), α · (x− v∗) ≤ η}.

Then the volume of A(t) (with respect to the Lebesgue measure on Rn) is

V (A(t)) =
1

n

∏
j∈N

(α · (v∗ − v∗(t))

αj
− η
)
,

and the volume of A(t) is

V (A(t)) =
1

n

∏
j∈N

(α · (v∗ − v∗(t))

αj
+ η
)
.

By Assumption 2, there exists η > 0 such that A(t) ⊂ A(t) ⊂ A(t) for all t ≥ t̄. The rest

of the proof consists of two steps.

Step 1: We show that for any two players i, j ∈ N , limt→∞ v∗′j (t)/v
∗′
i (t) = αi/αj. The

ith coordinate of the right hand side of equation (3) is estimated as

fL(t)

∫
A(t)

(
xi − v∗i (t)

)
dx

≤
∫
A(t)

(
xi − v∗i (t)

)
f(x)dx ≤ fH(t)

∫
A(t)

(
xi − v∗i (t)

)
dx.

Therefore,

λfL(t)V (A(t))

n+ 1

(α · (v∗ − v∗(t))

αi
− η
)

≤ v∗′i (t) ≤
λfH(t)V (A(t))

n+ 1

(α · (v∗ − v∗(t))

αi
+ η
)

(A.1)

for all t ≥ t̄ and i ∈ N . By letting ε→ 0, η → 0, and t→ ∞, we have limt→∞ v∗′j (t)/v
∗′
i (t) =

αi/αj.
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Step 2: By Step 1, for i and small δ > 0, there exist t̃ such that such that

(1− δ)
αi
αj

≤
v∗j − v∗j (t)

v∗i − v∗i (t)
≤ (1 + δ)

αi
αj

for all t ≥ t̃ and j ∈ N . Therefore,

n(1− δ)(v∗i − v∗i (t)) ≤
α · (v∗ − v∗(t))

αi
≤ n(1 + δ)(v∗i − v∗i (t)).

By inequality (A.1), we have

λfL(t)

n(n+ 1)

(
n(1− δ)(v∗i − v∗i (t))− η

)2∏
j ̸=i

(
n(1− δ)

αi
αj

(v∗i − v∗i (t))− η
)

≤ v∗′i (t) ≤
λfH(t)

n(n+ 1)

(
n(1 + δ)(v∗i − v∗i (t)) + η

)2∏
j ̸=i

(
n(1 + δ)

αi
αj

(v∗i − v∗i (t)) + η
)

for all t ≥ t̃ and j ∈ N . Thus for large t, v∗i (t) is approximated by the solution of the

following ordinary differential equation:

v′i(t) =
λf(v∗)nn

n+ 1
(n(v∗i − v∗i (t)))

2
∏
j ̸=i

αi
αj

(v∗i − vi(t)).

By solving this, we have an approximation

v∗ − v∗i (t) =
(
C +

λf(v∗)nn+1t

n+ 1

∏
j ̸=i

αi
αj

)− 1
n

where C is a constant. Hence,

lim
t→∞

(v∗i − v∗i (t))(λt)
1
n =

( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj
αi

) 1
n
,

which is a positive constant.

A.8 Proof of Proposition 10

By Assumption 2, A(t) is approximated as

{x ∈ Rn
+ |x ≥ v∗(t), α · (x− v∗) ≤ 0}.
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By Lemma 9, µ(A(t)) is approximated as

µ(A(t)) = f(v∗)nn−1
∏
i∈N

(v∗i − v∗i (t))

= f(v∗)nn−1
∏
i∈N

(( n+ 1

f(v∗)nn+1

∏
j ̸=i

αj
αi

) 1
n
(λt)−

1
n

)

=
n+ 1

n2λt

if t is large. For s ∈ [0, T ], the probability that players reach an agreement before time

−(T − s) is

1− e
∫ T
T−s µ(A(t))λdt = 1−

(λn2(T − s) + n+ 1

λn2T + n+ 1

)n+1

n2

.

This probability is approximated by 1 −
(
T−s
T

)n+1

n2 . Therefore the expected duration of

the search process is ∫ T

0

s
d

ds

[
1−

(T − s

T

)n+1
n2

]
ds =

n2

n2 + n+ 1
T .

A.9 Proof of Proposition 11

Let v0(t;λ) be the solution of (3) for ρ = 0. Fix any t ∈ [0, T ]. Recall that v0(t;αλ) =

v0(αt;λ) for all α > 0. Since limλ→∞ v0(t;λ) = v0, there exists λ̄1 > 0 such that

∣∣v0 − v0(t;λ)
∣∣ = ∣∣v0 − v0(λt; 1)

∣∣
≤ ε/2 (A.2)

for all λ ≥ λ̄1.

Since the right hand side of ODE (2) is continuous in ρ, λ, and uniformly Lipschitz

continuous in v, the unique solution v∗(t; ρ, λ) is continuous in ρ, λ for all t ∈ [0, T ].15

Recall that v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) for all α > 0. Therefore by continuity in ρ, there

exists λ̄2 > 0 such that

∣∣v∗(t; ρ, λ)− v0(t;λ)
∣∣ = ∣∣v∗(λt; ρ/λ, 1)− v0(λt; 1)

∣∣
≤ ε/2 (A.3)

for all λ ≥ λ̄2. By adding (A.2) and (A.3), we obtain the desired inequality for λ̄ =

max{λ̄1, λ̄2}.

15See, e.g., Coddington and Levinson (1955, Theorem 7.4 in Chapter 1).
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A.10 Proof of Proposition 12

Let v(t) be the solution of ODE (2). The proof consists of five steps.

Step 1: We show that for any t > 0, µ(A(t)) → 0 as λ → ∞. If not, there exist

a positive value ε > 0 and an increasing sequence (λ̄k)k=1,2,... such that µ(A(t)) ≥ ε for

all λ̄k. Since X is compact and f is bounded from above, there exists η > 0 such that

µ
(
A(v(t) + (η, . . . , η))

)
≥ ε/2. In fact, since

µ
(
A(v(t)) \ A(v(t) + (η, . . . , η))

)
≤
∑
i∈N

µ
(
[vi(t), vi(t) + η]×

∏
j ̸=i

[0, xj]
)

≤ fH
∑
i∈N

η
∏
j ̸=i

xj,

we have µ
(
A(v(t)+ (η, . . . , η))

)
≥ ε/2 for η =

ε

2fH
∑

i∈N
∏

j ̸=i xj
. For this η, the integral

in ODE (2) is estimated as∫
A(t)

(
xi − vi(t)

)
dµ ≥

∫
A(v(t)+(η,...,η))

(
xi − vi(t)

)
dµ

≥
∫
A(v(t)+(η,...,η))

ηdµ

≥ ηε/2.

By ODE (2),

v′i(t) ≥ −ρxi + λ̄kηε/2,

which obviously grows infinitely as λ̄k becomes large. This contradicts compactness of

X.

Step 2: We compute the direction of
∫
A(t)

(
xi − vi(t)

)
dµ in the limit as λ → ∞. By

Step 1, the boundary of X contains all accumulation points of {vi(t) |λ > 0} for fixed

t > 0. Fix an accumulation point v∗(t). There exists an increasing sequence (λk)k=1,2,...

with v∗(t) = limk→∞ v(t). By Assumption 3, there exists a unit normal vector of X at

v∗(t), which we denote by α ∈ R++.

Step 1 implies that v(t) is very close to the boundary of X when λk is very large. By

smoothness of the boundary of X, A(t) looks like a polyhedron defined by convex hull

of {v(t), v(t)+ (z1(t), 0, . . . , 0), v(t)+ (0, z2(t), 0, . . . , 0), . . . , v(t)+ (0, . . . , 0, zn(t))} where

zi(t)’s are positive length of edges such that the last n vertices are on the boundary of X.

This vector z(t) is parallel to (1/α1, . . . , 1/αn). Let r(t) be the ratio between the length

of z(t) and (1/α1, . . . , 1/αn), i.e., r(t) = z1(t)α1 = · · · = zn(t)αn.

Since density f is bounded from above and away from zero, distribution µ looks almost

uniform on A(t) if λk is large. Then the integral
∫
A(t)

(
xi − vi(t)

)
dµ is almost parallel to

25



the vector from v(t) to the barycenter of the polyhedron, namely, z(t)/(n+1). Therefore∫
A(t)

(
xi − vi(t)

)
dµ is approximately parallel to (1/α1, . . . , 1/αn) when λk is large.

Step 3: We show that
∑

i∈N αiv
′
i(t) ≥ 0 for large λ. Let (λk)k=1,2,... be the sequence

defined in Step 2. For large λk, A(t) again looks like a polyhedron with the uniform

distribution. By Step 2, the ODE near vi(t) is written as

v′i(t) = −ρvi(t) + λk
zi(t)

n+ 1
· µ(A(t)). (A.4)

Note that vi(t) is close to v
∗
i (t) and µ(A(t)) is order n of the length of z(t). By replacing

the above equation by r(t), ODE (A.4) approximates

r′(t) = a− λkbr(t)
n+1 (A.5)

for some constants a, b > 0. Since r(t) is large when t is small, the above ODE shows

that r(t) is decreasing in t. Therefore µ(A(t)) is also decreasing in t. For large λk, this

implies that

α · v′(t) =
∑
i∈N

αiv
′
i(t) ≥ 0.

Step 4: We show that the Nash product is nondecreasing if λ is large. By ODE (A.4),

we have

αiv
′
i(t) = −ραivi(t) + β (A.6)

where β = λkµ(A(t))/(n+ 1) independent of i. Let us assume without loss of generality

that α1v
′
1(t) ≥ · · · ≥ αnv

′
n(t). Then we must have 1/α1v1(t) ≥ · · · ≥ 1/αnvn(t).

Let L(t) =
∑

i∈N log vi(t) be log of the Nash product. Then L′(t) =
∑

i∈N v
′
i(t)/vi(t).

By Chebyshev’s sum inequality,

L′(t) =
∑
i∈N

v′i(t)

vi(t)

≥ 1

n

(∑
i∈N

αiv
′
i(t)
)(∑

i∈N

1

αivi(t)

)
≥ 0.

Hence, L(t) is nondecreasing if λk is large. Moreover, equality holds if and only if

α1v
′
1(t) = · · · = αnv

′
n(t) or α1v1(t) = · · · = αnvn(t).

Step 5: We show that v(t) converges to a point in the Nash set as λ → ∞. Step 4

shows that L′(t) converges to zero as λ→ ∞. Then α1v
′
1(t) = · · · = αnv

′
n(t) or α1v1(t) =

· · · = αnvn(t) in the limit of λ → ∞. The former case implies v′i(t) = 0 for all i ∈ N by

Step 3. Then ODE (A.6) shows that the latter case holds. Therefore the latter case always

holds in the limit of λ → ∞. This implies that the boundary of X at v∗(t) is tangent
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to the hypersurface defined by “Nash product =
∏

i∈N v
∗
i (t).” Hence any accumulation

point v∗(t) belongs to the Nash set.

Since we assumed that the Nash set consists of isolated points, v∗(t) is isolated. If v(t)

does not converge to v∗(t), there is δ > 0 such that for any λ̄ there exists v(t) with λ ≥ λ̄.

Let δ > 0 be small such that there is no point in the Nash set in {x ∈ X | |v∗(t)−x| ≤ δ}.
Since v(t) is continuous with respect to λ, for any λ̄, there exists λ > λ̄ such that

δ/2 ≤ |v∗(t) − v(t)| ≤ δ. Since {x ∈ X | δ/2 ≤ |v∗(t) − x| ≤ δ} is compact, v(t) must

have an accumulation point in this set. This contradicts the fact that any accumulation

point is contained in the Nash set. Furthermore, v∗(t) does not depend on t since v∗(t)

is continuous in t.

A.11 Proof of Proposition 13

(Sketch of proof): The ODE (A.5) is approximated by a linear ODE, which has a solution

converging to v∗ with an exponential speed. Therefore for large λ, r(t) is approximated by

r(t) =
( a
λb

) 1
n+1

. Since µ(A(t)) is proportional to r(t)n, µ(A(t)) = cλ−
n

n+1 for a constant

c > 0. the probability that players reach an agreement before time −(T − s) is

1− e−
∫ T
T−s µ(A(t))λdt = 1− e−scλ

1
n+1

,

which converges to one as λ→ ∞.
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