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Abstract

This paper investigates a multi-stage model of informational control, i.e., cheap-talk
communication between an informed expert and an uninformed principal by Crawford
and Sobel (1982), such that the principal can a¤ect the quality of expert�s private
information without learning its content. We construct the two-stage procedure of
dynamic updating of expert�s information that allows the principal to elicit perfect
information from the expert about an unknown single- or multi-dimensional state and
reach his �rst-best outcome if the bias in preferences is not too large relative to the
size of the state space. If the state space is unbounded, full information extraction is
possible for an arbitrarily large bias under some regularity conditions.

JEL classi�cation: C72, D81, D82, D83
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1 Introduction

This paper focuses on the standard problem of facilitating cheap talk communication between
the parties, who are asymmetrically informed and have di¤erent decision-making powers.
In many situations, principals do not possess important information about the economic,
political, or military consequences of their decisions. Moreover, their possibilities of obtaining
relevant information and gaining expertise in necessary �elds are severely restricted by the
large volume, diverse range, and complexity of main responsibilities. As a result, high costs
of information acquisition and opportunity costs force the decision makers to consult the
experts, who have either more expertise in particular areas or signi�cantly lower costs of

�This paper supersedes my other paper, �Dynamic Information Revelation in Cheap Talk.�I am grateful
to Dirk Bergemann, Oliver Board, Kalyan Chatterjee, Paul Fischer, Seungjin Han, Vijay Krishna, Bart
Lipman, Robert Marshall, Tymo�y Mylovanov, Gregory Pavlov, Marek Pycia, and Neil Wallace for their
valuable suggestions and discussions on di¤erent versions of the paper. All mistakes are mine.

yDepartment of Economics, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S
4M4. E-mail: mivanov@mcmaster.ca.
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acquiring and processing new information.1 Legislators consult lobbyists about the costs and
bene�ts of proposed laws, patients seek advice from doctors about the impact of medical
procedures, and headquarters consult managers about numerous corporate issues.
Communication in such environments is typically characterized by two intrinsic features.

The �rst one is the con�ict of interest. Because the expert is not disinterested, she might
misrepresent information in an attempt to manipulate the decisions of the principal in her
favor. These manipulations reduce the quality of disclosed information and, therefore, induce
ine¢ cient decisions. The second feature is the imperfect primary information of the informed
party. Even the most knowledgeable expert may have noisy or insu¢ cient information.
While the con�ict of interest between the involved parties is generally exogenous, the

quality of expert�s information can be sometimes endogenized by the principal. That is,
though the expert observes her information privately, the precision of the information is
a¤ected by the principal. For instance, if obtaining new information requires conducting
a complex test or experiment, the principal may impose the restrictions on the testing
procedures performed by the expert. Also, if the parties interact through multiple stages, the
principal may in�uence the precision of the expert�s information before every round, whereas
the expert can update her report afterwards. In other words, the principal allows the expert
to acquire new information and send another message instead of making a decision on the
basis of a single report from the expert.
The major contribution of this paper is that it demonstrates how the principal can use

these factors� a¤ecting the quality of expert�s private information (hereafter, informational
control) and dynamic interaction� in order to extract perfect information from the expert
about an unknown single- or multi-dimensional issue in only two rounds of cheap talk
conversation. We construct the procedure of updating expert�s information over time, which
sustains truthful communication in both stages. According to this procedure, the expert
precisely learns the state of nature in the second stage and reports it truthfully to the
principal. The procedure does not require any commitment on the side of the principal,
who can change the quality of expert�s information and/or his decision at any moment. In
particular, this implies that the principal can in�uence how much new information the expert
can acquire in the second period depending on her previous report.
Dynamic informational control can be interpreted as follows. It is a situation in which the

expert conducts a sequence of experiments and reports their results to the principal while the
principal determines the precision of each experiment and makes a �nal decision. Applications
of informational control are restrictions on the procedures of acquiring information, which
is a subject of communication between parties with con�icting interests. Consider, for
example, the communication problem in the defense procurement.2 While the military is

1A natural question of the principal�s limited possibilities of obtaining information without involving
outside parties has been addressed in multiple works. For instance, Radner (1991) emphasizes: �The
decentralization of information-processing is dictated by the large scale of modern enterprises, which makes
it impossible for any single person to manage everything.�Similarly, Krishna and Morgan (2001a) note: �The
diverse range of problems confronted by decision makers, such as corporate CEOs or political leaders, almost
precludes the possibility that they themselves are experts in all relevant �elds, and hence, the need for outside
experts naturally arises.�Also, Austen-Smith (1994) states: �when the information has to be acquired, it
is natural to suppose the acquisition is costly; for otherwise, there is no reason why such information is
asymmetrically distributed.�

2I am especially thankful to Robert Marshall for sharing this example.
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an expert in evaluating the weapons characteristics, the budget for production is determined
by the Congress (principal). Moreover, the parties�interests are not necessarily aligned� it
is argued that the military can be biased toward weapons with excessive costs (Rogerson,
1990). Remarkably, the Department of Defense has received multiple accusations about
manipulating tests results to yield the most favorable interpretation.3

In this work, we o¤er a potential solution to such communication problems. In the
context of our model, the principal can impose proper restrictions on the sequence of
testing procedures, for example, by approving only particular certi�ed equipment, which
must be used by the expert to perform each test. We show that the communication protocol,
which elicits full information from the expert is quite simple. It consists of two experiments,
such that the precision of the second experiment depends on the expert�s report on the
�rst experiment. That is, the expert has to submit a separate report upon acquiring
new information instead of conveying all information simultaneously. The experiments are
designed as follows. The �rst experiment returns two signals� the true state and some
complement state, which is su¢ ciently distinct from the true one� but does not reveal which
signal contains relevant information. The second experiment allows the expert to distinguish
between her reported state and the complement state to the reported one. Otherwise, the
outcome of the experiment is identical to that in the previous stage. Thus, the expert�s
information is updated in the second period only if she tells the truth in the previous stage.
If the divergence in preferences is not large, then the expert prefers to report her information
truthfully in both stages.
Another application of dynamic informational control is communication through a

channel with strategic noise. This is a situation, in which two parties are interested in truthful
communication, but have to interact via a mediator with con�icting objectives. Consider, for
example, sharing information in the U.S. Congress. Due to the high volume and complexity
of its work, the Congress divides its tasks among committees and subcommittees, which
consider bills and issues and recommend measures for consideration by their respective
chambers. Thus, if a lobbyist (expert) needs to convey some information with legislators
(decision maker), she has to pass it to the specialized committee (mediator). In reality,
however, mediators are likely to have their own agenda (e.g., the composition of Congress
committees is generally determined by party leaders). In addition, though the activity of
the mediator can be often monitored by the expert, e.g., because the mediator�s reports
are publicly observable, the expert may not have instruments of punishing the mediator for
lying. We suggest a solution to the problem of communication via an interested mediator,
who can be monitored by the privately informed expert, but is not liable for distorting
information. In this case, the two-stage communication protocol that sustains truthful
information transmission via the mediator can be organized as follows. At the �rst stage, the
expert submits two reports to the mediator, one of which contains a piece of true information.
Then, upon observing that the mediator truthfully conveys obtained information to the
decision maker, the expert reveals which report is correct, and so does the mediator.
Intuitively, the e¢ ciency of the constructed algorithm of updating expert�s information

is driven by a combination of two crucial components. First, upon acquiring imprecise
information in the �rst round, the quality of expert�s information in round two and, therefore,
the bene�ts of updating information depend on the current report of the expert. Second, the

3See, for example, the U.S. General Accounting O¢ ce (1988, 1992).
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principal uses the �rst-stage report in order to (partially) verify the expert�s report in the next
period and makes only those decisions that are consistent with received information in both
stages. This signi�cantly restricts the expert�s possibilities of manipulating her information in
round two, because any �rst-stage message shrinks the set of feasible actions. Together, these
factors imply that before sending the �rst message, the expert faces the trade-o¤ between
the future informational bene�ts received in the case of truthful reporting and �exibility over
available actions, which can be induced by properly distorting her current information. If
the bias in player�s interests is not large, the informational bene�ts dominate the bene�ts of
inducing any decision by the partially informed expert. In addition, the smaller set of feasible
actions in stage two helps sustain truthful communication in that stage. In fact, the expert
can induce only the principal�s best responses to either the true state or the complement state.
If the latter option is unfavorable, the expert prefers to tell the truth. An important feature
of the introduced procedure of updating expert�s information is decomposing communication
about the continuous variable into the continuum of cheap-talk conversations about discrete
posterior realizations. This decomposition plays a dual role. First, it introduces substantial
uncertainty in the �rst-period information of the expert and, thus, motivates her to learn
the state precisely in the second round. Precise learning, however, occurs only after truthful
reporting of the interim information. Second, the discretization of the state space reduces
the expert�s possibilities of manipulating her information by claiming a di¤erent state in
the second period. Thus, though the number of expert�s types is smaller, each type fully
separates itself. In short, informational control gives a lot of freedom over decisions to the
expert, because the principal can be easily manipulated by the expert�s messages. However,
the value of such freedom is low if the expert is not well informed about the true situation.
We build the analysis on the extension of the classical model of Crawford and Sobel

(1982) (hereafter, CS), which incorporates the discussed ingredients: imperfect information
of the expert and communication in multiple stages. In this light, our work is related
to two areas in the literature on strategic communication that deal with each of these
features. Regarding the �rst area, Austen-Smith (1994) considers the situation, in which
the expert can observe information at some privately known cost and is able to prove the
fact of information acquisition. Though the information costs imply that the expert might
prefer to remain uninformed, they a¤ect the principal�s reaction to all expert�s messages
and facilitate information transmission from the informed expert. This increases the overall
quality of conveyed information. Green and Stockey (2007) �rst recognized the fact that
the principal�s expected payo¤ is not necessarily monotone in the quality of the expert�s
information. Fischer and Stocken (2001) demonstrate this result for the CS model. Ivanov
(2010a) extends this result by showing that informational control can provide the higher
payo¤ to the principal than optimally delegating authority to the expert. Our paper extends
this literature by allowing the expert to collect and report information over time.
Another way to improve information transmission between con�icting parties is to

organize communication through multiple stages. Aumann and Hart (2003) consider
two-person games with two-sided cheap talk, in which one side is better informed than
the other and the players communicate without time constraints. For the class of games
with discrete types and the bimatrix structure of strategies and payo¤s, they demonstrate
that the set of equilibrium outcomes can be signi�cantly expanded. Krishna and Morgan
(2004) investigate multi-stage communication with active participation of the principal in
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the communication process and show the existence of equilibria that almost always ex-ante
Pareto dominate all direct-talk equilibria. They also recognize that a simple extension of
the CS model to the setup with multiple reports of the expert does not a¤ect the set of
equilibrium outcomes and, therefore, cannot improve communication.4 The argument by
Krishna and Morgan (2004) can be directly applied to the case of the imperfectly informed
expert without information updating. In contrast, if the precision of expert�s information
can be improved over time, the consequences of multi-stage communication are qualitatively
di¤erent from outcomes in the single-stage setup.
Our work also complements a few papers on full disclosure of information in

communication games. These include cheap talk with multiple experts investigated by
Krishna and Morgan (2001a, 2001b), Battaglini (2002), and Eso and Fong (2008). Kartik
et al. (2007) consider the settings with lying costs of the expert. Golosov et al. (2010)
analyze dynamic cheap talk with multiple rounds of the expert�s reports and the principal�s
actions. Seidmann and Winter (1997) and Mathis (2008) consider the case of veri�able
expert�s messages. The main distinction of our paper is the endogenous and dynamic quality
of expert�s information, whereas the information structure of the informed party(s) in the
aforementioned works is exogenously given at the beginning of the game.
The rest of the paper is structured as follows. Section 2 presents the formal model. Section

3 highlights an illustrative example. The general analysis of the model is performed in Section
4. Section 5 concludes the paper.

2 The model

We consider the model of two-stage communication game with two players, the expert and the
principal, who interact about some issue of communication. It is represented by the state �,
which is distributed on the interval � = [�; ��];�1 � � < �� � 1, according to a distribution
function F (�) with a positive and continuous density f (�). The expert can privately observe
some information about �, whereas the principal makes a decision a that a¤ects the payo¤s of
both players. The players�payo¤ functions are of the form U (a; �; bi) ; i 2 fE;Pg where the
inherent bias parameter bi � 0 re�ects the divergence in players�interests. The principal�s
bias is normalized to be 0, whereas the expert�s bias is b > 0. The function U (a; �; b) is
twice-di¤erentiable and satis�es U 00aa < 0; U 00a� > 0, and U 00ab > 0. Due to these conditions,
U has a unique ideal decision a� (�; b) = argmaxa U (a; �; b), which is strictly increasing
in � and b. We assume that U 0b (a

� (�; b) ; �; b) � 0 for all � and b.5 Hereafter, we write
U (a; �) = U (a; �; 0) and V (a; �; b) = U (a; �; b) as the principal�s and the expert�s payo¤
functions, respectively. We also write ap (�) = a� (�; 0) and y (�; b) = a� (�; b) as the ideal
decisions of the principal and the expert, respectively. Since U 00ab > 0, then b > 0 implies
y (�; b) > ap (�), i.e., the expert always prefers a higher action than is ideal for the principal.

Actions. At the beginning of each period t, the principal determines the expert�s
information structure It = fFt (stj�) ; � 2 �g 2 I; t = 1; 2, which consists of a family of

4Because the expert possesses all available information before communication starts, she sends a sequence
of messages that induce the most preferable decision. As a result, the principal infers the same information
about the state as in the one-stage case. Thus, the set of induced decisions is also not a¤ected, and any
equilibrium in the multi-stage game is outcome-equivalent to that in the one-stage game.

5That is, there are no private bene�ts to the expert for simply being more biased.
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conditional distributions of signals. The expert then privately observes a signal st 2 S
drawn from an associated distribution Ft (stj�). At the end of the period t, the expert sends
amessage mt 2M to the principal. Finally, upon receiving messages fm1;m2g, the principal
makes a decision a 2 R.
Strategies. A behavioral pure strategy of the principal is: (1) a pair fI1; I2 (m1; I1)g,

where the second-period information structure I2 :M�I ! I is a function of the expert�s
messagem1 and the �rst-period information structure I1; and (2) a decision a :M2�I2 ! R,
which is a function of the principal�s history fm1;m2; I1; I2g.6 Hereafter, we call the pair of
the information structures fI1; I2 (m1; I1)g communication schedule. The behavioral strategy
of the expert is a pair of functions f�1; �2g, where �1 : I � S ! �M and �2 : I2 �
S2 � M ! �M, which map the expert�s private histories h1 = fI1; s1g 2 I � S and
h2 = fh1; I2; s2;m1g 2 I2 � S2 �M in the �rst and the second periods, respectively, into
the space of probability distributions on the message setM.

Beliefs. The principal�s belief � :M2�I2 ! �� determines the probability distribution
of � given the principal�s history fm1;m2; I1; I2g. We call the belief system consistent, if it is
derived from the player�s strategies on the basis of Bayes�rule where applicable.7 A decision
a is called rationalizable if there is some belief, for which a is a best response. Clearly, the
set of rationalizable decisions is A = [ap (0) ; ap (1)].
Equilibrium. For a �xed communication schedule fI1; I2 (m1; I1)g, a perfect Bayesian

equilibrium (hereafter, equilibrium) is the belief � and a pair of the player�s strategies, a (:)
and f�1 (:) ; �2 (:)g, such that � is consistent with the strategies and the strategies satisfy
the following conditions.
(1) given fI1; I2; a (:) ; s1; s2;m1g, �2 (:) maximizes the expert�s 2nd-period payo¤. That

is, if m2 2 supp �2 (:), then

m2 2 argmax
x

E� [V (a (m1; x; I1; I2) ; �; b) jI1; I2; s1; s2] .

(2) given fI1; I2 (m1; I1) ; a (:) ; s1g and �2 (:), �1 maximizes the expert�s 1st-period payo¤.
That is, if m1 2 supp �1 (:), then

m1 2 argmax
x

E�;s2 [V (a (x;m2 (I1; I2 (x; I1) ; x; s1; s2) ; I1; I2 (x; I1)) ; �; b) jI1; s1] .

(3) given m1;m2; I1; I2, and �, a maximizes the principal�s payo¤:

a = argmax
y

E� [U (y; �) j� (m1;m2; I1; I2)] :

6Since a mixture of distribution functions is a distribution function, we do not need to consider
randomizing over information structures. Also, because of the strict concavity of the principal�s preferences,
he never mixes over decisions.

7For all experts�s messages m0
t =2 M; t = 1; 2, we de�ne the receiver�s beliefs in such a way that he

interprets them as some mt 2M.
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3 Example: the uniform-quadratic case

We start with an illustrative example that outlines the two-stage procedure of updating
information of the expert, which induces her to fully reveal the state at the end of
communication. For that purpose, we consider the uniform-quadratic speci�cation of the
CS model. It is known for its tractability and the possibility to obtain closed-form solutions
in various modi�cations of the basic CS model and broadly used in the literature on strategic
communication.8 In this setup, the distribution of � is uniform on [0; 1] and the preferences
are of the quadratic form:

U (a; �; bi) = � (a� � � bi)2 ; i 2 fE;Pg :

Because bP = 0 and bE = b, the ideal decisions of the principal and the expert are ap (�) = �
and y (�; b) = �+b, respectively. Suppose that b � �b = 1=4, where �b is the largest bias, which
sustains informative communication in the CS model.
De�ne the communication schedule as follows. If the state � < 1=2, the expert privately

observes the signal s = �. If 1=2 � � < 1, the expert observes s = �� 1=2. For example, if �
is equal to 1=5 or 7=10, the expert observes the signal s = 1=5. Because each pair of states
f�; �0g = f�; � + 1=2g ; � < 1=2 maps into the same signal s = �, the expert is not able to
distinguish between the state � = s and the complement state �0 = ' (s) = s + 1=2 for all
s 2 [0; 1=2). Such a partitioning of the state space into two-point sets generates the binary
posterior distribution of � conditional on s, Pr f� = sjsg = Pr f� = s+ 1=2jsg = 1=2.
Depending on the report of the expert in the �rst stage, her information can be updated

in the next period. In particular, given the �rst-stage message m1 < 1=2, the expert can
distinguish between � = m1 and the complement state �0 = m1 + 1=2. For all other �, the
information structure remains unchanged. Thus, the expert learns � in the second stage if
and only if she truthfully reports her information in the �rst stage. Reporting m1 6= s does
not update the expert�s information in the second stage, since she observes the signal s
again. Upon receiving the expert�s message m2 2 fm1;m1 + 1=2g in the second period, the
principal interprets it as truthful and makes a decision a (m2) = m2.
According to such a communication schedule, the expert in the �rst stage faces the

trade-o¤ between the informational bene�ts and the �exibility over available actions. On the
one hand, the expert can induce any action y in the set of rationalizable decisions A = [0; 1]
by sending eitherm1 = y orm1 = y�1=2 in the �rst period, depending on whether y is below
or above 1=2, respectively, and then reporting m2 = y in the second period. However, if the
expert distorts her information by sending m1 6= s, she remains imperfectly informed in the
next round. On the other hand, truthful reporting m1 = s in the �rst stage allows the expert
to learn � precisely, but shrinks the set of feasible actions to two. These are the principal�s
best-responses to the posterior realizations s and ' (s): ap (s) = s and ap (s+ 1=2) = s+1=2.
From the expert�s prospective in round one, distorting information and inducing the

8See, for example, Blume et al. (2007), Gilligan and Krehbiel (1987, 1989), Goltsman et al. (2007), Ivanov
(2010b), Krishna and Morgan (2001a, 2001b, 2004, 2008), Melumad and Shibano (1991), and Ottaviani and
Squintani (2006).
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decision y 2 A results in the payo¤:

E [V (y; �; b) js] = 1

2
V (y; s; b) +

1

2
V (y; ' (s) ; b) = �1

2
(y � s� b)2 � 1

2

�
y � s� 1

2
� b
�2
;

which is maximized at y1 (s; b) = min fs+ 1=4 + b; 1g. Since b � 1=4, it follows that
y1 (s; b) = s+ 1=4 + b < ap (1) = 1 if s < 1=2. This decision provides the payo¤:

E [V (y1 (s; b) ; �) js] = �
1

4
(' (s)� s)2 = � 1

16
; s < 1=2:

In the second case, truthful reporting in both stages results in the expert�s payo¤:

E [V (ap (�) ; �; b) js] =
1

2
V (ap (s) ; s; b) +

1

2
V (ap (' (s)) ; ' (s) ; b)

= �1
2
(s� s� b)2 � 1

2
(' (s)� ' (s)� b)2 = �b2; s < 1=2:

Finally, the second-stage incentive compatibility constraints must prevent the positively
biased expert from distorting information in period two. That is, inducing ap (�) = � upon
learning � < 1=2 must be more bene�cial than inducing ap (' (�)) = ' (�) > ap (�), or

V (s; s; b) � V (' (s) ; s; b) ; (1)

for all s < 1=2. These constraints are satis�ed if and only if ' (s)� s = s+ 1=2� s � 2b, or
b � 1=4. Therefore, if b � 1=4, then the inequalities (1) and

E [V (ap (�) ; �; b) js] = �b2 � �
1

16
= E� [V (y1 (s; b) ; �) js] ;

imply that the expert conveys her information truthfully in both periods and, hence, reveals
� in the second stage.
It is worth noting that it is impossible to expand the range of biases that sustain

full information extraction by choosing another complement state function ' (�). This is
because the minimum distance between the points in set fs; ' (s)g does not exceed 1=2.9
That is, the maximum of E [V (y1 (s; b) ; �) js] over s is not less than � 1

16
that is above

E [V (ap (�) ; �; b) js] = �b2 if b > 1=4. In addition, the second stage incentive-compatibility
constraints (1) are violated for signals s, such that ' (s)� s < 2b.
While the detailed discussion of dynamic informational control is left to the remaining

sections, a brief intuition is as follows. The �rst-stage information structure decomposes
cheap talk communication about the continuous state into the continuum of single-stage
communication subgames over the binary posterior realizations that are su¢ ciently distant
from each other. If the expert is willing to convey truthfully her imprecise information in the
�rst period, the second-period information structure rewards her by perfectly informing
about the state. By that moment, however, the principal knows the particular binary
distribution of posteriors, which sustains truthful conversation if the bias is not large.

9For any partition of [0; 1) into two-point sets f�0; �g, we have j�0 � �j � 1=2 for � = 1=2 and all �0 2 [0; 1).
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4 Dynamic information extraction

As shown by Fischer and Stocken (2001) and Ivanov (2010a), the principal can improve
communication by restricting the quality of the expert�s primary information. It is achieved
by partitioning the state space into a collection of intervals �k = [�k; �k+1] ; k = 1; 2; :::; N ,
such that the expert privately observes the subinterval �k that contains the state. The
partitional information structure signi�cantly limits the expert�s possibilities of distorting
information in her favor. For example, a claim that the posterior valuation E [�js] is m =2
fE [�j� 2 �k]gNk=1 is not credible, because the principal knows that this information is not
available to the expert. As a result, though the expert knows less, she is willing to report
her information truthfully. Moreover, the overall e¤ect of expert�s coarse information on the
principal�s ex-ante payo¤ is positive.
In this section, we extend the example above to the general settings and show that the

principal can extract full information about the state in only two stages by properly de�ning
the expert�s communication schedule. Our main focus is the class of truthtelling equilibria, in
which the expert truthfully reports her signal in each period, that is,mt(ht) = st;8ht; t = 1; 2.
Also, we say that the communication schedule sustains the fully informative equilibrium, if
the expert truthfully reveals the state upon perfectly learning it in the second stage.

4.1 Information structures

Consider �rst the case of the bounded state space � = [0; 1]. Hereafter, we restrict
the analysis to a particular class of communication schedules. In this class, the expert�s
information structure in the �rst period is determined by the partition of � into the
continuum of two-point sets and a singleton at � = 1:

I1 =
n
� (�)�2[0;1=2) ; 1

o
, (2)

where � (�) = f�; ' (�)g is the joint-state set, and ' : [0; 1=2] ! [1=2; 1] is the complement
state function, which is continuous, strictly increasing, ' (0) = 1=2 and ' (1=2) = 1. We
show below that the choice of the function ' (�) does not a¤ect the results qualitatively.
According to the information structure (2), if � = 1, the expert learns it perfectly. If

� < 1, the expert observes the signal s = � if � < 1=2, and s = '�1 (�) if 1=2 � � < 1.
That is, both � < 1=2 and the complement state �0 = ' (�) � 1=2 map into the same
signal s = �, so the expert cannot distinguish between s and ' (s) upon observing s.
Hereafter, we call a pair of posterior realizations � and �0 = ' (�) the joint states. The
information structure (2) generates the family of the �rst-stage posterior distributions
fF (�js) ; s 2 [0; 1=2); � 2 fs; ' (s)gg and the degenerated distribution at � = 1, such that
each F (�js) is the two-point distribution on fs; ' (s)g with the probabilities:10

ps = Pr f� = sjsg =
f (s)

f (s) + f (' (s))
; s 2 [0; 1=2), and

pcs = Pr f� = ' (s) jsg = 1� ps =
f (' (s))

f (s) + f (' (s))
.

10Distributions F (�js) ; s 2 [0; 1=2) are non-degenerated, since f (s) > 0; s 2 � means ps > 0 and pcs > 0.
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After conveying the message m1 2 [0; 1=2) to the principal, the expert�s second-stage
information structure is modelled as follows. It re�nes the joint-state set fm1; ' (m1)g into
separate points, m1 and ' (m1), but preserves the other sets unre�ned. In other words,
sending message m1 allows the expert to distinguish between the states � = m1 and �0 =
' (m1) only and does not update her information about other states. That is,

I2 (m1; I1) =

�
fm1; ' (m1) ; I1n fm1; ' (m1)gg if m1 < 1=2;

I1 if m1 = 1:
: (3)

In order to see how the communication schedule determined by (2) and (3) in�uences
the expert�s motives to convey information in both stages, consider �rst the procedure of
updating expert�s information over time. The particular choice of the expert�s information
structure in the �rst stage is driven by two factors. The �rst factor is related to the quality
of expert�s information in the �rst stage� it is very imprecise. In order to demonstrate this,
�x an interval [�1; �2] and consider the class of all distributions of a random variable X
with the support L � [�1; �2] and a given mean value E [X] 2 (�1; �2). In this class, the
two-point distribution on f�1; �2g with the probabilities p�1 = Pr fX = �1g = �2�E[X]

�2��1 and
p�2 = 1 � p�1 , respectively, is dominated by any other distribution by the second-order
stochastic dominance.11 By putting X = [�js], this dominance implies that the risk-averse
expert is the most uncertain about the posterior value of � if it takes one of the boundary
points, �1 or �2. Applying this intuition to our context, the principal is interested in keeping
expert�s information su¢ ciently imprecise in round one. This increases the expert�s bene�ts
from perfectly learning the state in the next round and, thus, forces her to communicate
truthfully in the �rst period. At the same time, the principal is interested in limiting the set
of posterior values of � for each signal s. This is necessary in order to prevent the expert
from claiming a distinct posterior value �0 6= � after perfectly learning � in round two.
The other factor is related to both the quality of expert�s information in the �rst stage

and her incentives to communicate truthfully in the second stage. In particular, it is the
distance between the joint states s and ' (s). A larger distance ' (s)�s between the posterior
realizations leads to two e¤ects. First, it increases expert�s uncertainty about the state after
observing the signal in the �rst stage, and thus, her bene�ts from updating information in the
future. Second, it suppresses the expert�s incentives to distort information in the second stage.
The positively biased expert may have the incentive to distort her information by claiming
the higher complement state ' (�) > � after learning � < 1=2. If ' (�) is distant from �,
then the induced decision ap (' (�)) is substantially di¤erent from the expert�s ideal decision
y (�; b), and, therefore, is unfavorable. However, the principal is limited in maximizing the
distance ' (s)�s for all s. This is because for any partition of [0; 1) consisting of the joint-state
sets, the minimum distance between the joint states is bounded by 1=2:

4.2 Bounded state space

We show now how the constructed communication schedule allows the principal to elicit full
information from the expert. Suppose that the expert acquires information according to the
information structures (2)�(3) and sends the sequence of messages fm1;m2g. If m1 2 [0; 1=2)
11The proof follows, for instance, from (3.A.8) in Shaked and Shanthikumar (2007).
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andm2 2 fm1; ' (m1)g, the principal interprets them as truthful and implements the decision
ap (m2). If m1 = 1, the principal makes a decision ap (1) unconditionally on m2.12

Let y1 (s; b) 2 A be the expert�s optimal decision given her interim �rst-stage information:

y1 (s; b) = argmax
a2A

psV (a; s; b) + (1� ps)V (a; ' (s) ; b) ; s 2 [0; 1=2): (4)

That is, y1 (s; b) is the most pro�table decision in the case of manipulation of �rst-stage
information. The expert can induce y = y1 (s; b) by sending the message:

m1 =

(
a�1p (y) if y < ap (1=2) or y = ap (1) , and
'�1

�
a�1p (y)

�
if ap (1=2) � y < ap (1) ;

in the �rst stage and m2 = a
�1
p (y) in the second stage. Because her information will not be

updated in the second stage, inducing y1 (s; b) results in the payo¤:

E [V (y1 (s; b) ; �; b) js] = max
a2A

psV (a; s; b) + (1� ps)V (a; ' (s) ; b) (5)

= psV (y1 (s; b) ; s; b) + (1� ps)V (y1 (s; b) ; ' (s) ; b) ; s 2 [0; 1=2).

If the expert reveals her information truthfully by sending m1 = s, her interim
information will be updated in the second stage, but the set of feasible actions shrinks
to fap (s) ; ap (' (s))g. In this case, reporting the truth in both periods results in the payo¤:

E [V (ap (�) ; �; b) js] = psV (ap (s) ; s; b) + (1� ps)V (ap (' (s)) ; ' (s) ; b) . (6)

Because the expert can induce only ap (s) or ap (' (s)) in the second period, her
second-stage incentive-compatibility constraints are given by:

V (ap (s) ; s; b) � V (ap (' (s)) ; s; b) ; s 2 [0; 1=2). (7)

That is, fully informative communication is sustainable if (7) holds and

E [V (ap (�) ; �; b) js] � E [V (y1 (s; b) ; �; b) js] ; s 2 [0; 1=2):

The following theorem demonstrates that the trade-o¤between the informational bene�ts
and the �exibility over available actions is in favor of the former option if the bias in
preferences is not large. All proofs are collected in the Appendix.

Theorem 1 There exists �b such that if b � �b, there is the fully informative equilibrium in
the game with the communication schedule determined by (2) and (3).

The proof follows directly from the construction of the communication schedule. If the
players�interests do not di¤er signi�cantly, the ideal decisions of the expert and the principal,
y (�; b) and ap (�), respectively, are su¢ ciently close for each realization of the state. Since
expert�s information in the �rst stage is substantially imprecise, she is more interested in

12If the expert reportsm1 =2 [0; 1=2)[f1g and/orm2 =2 fm1; ' (m1)g, the principal interprets such messages
as, for instance, m1 = m0 2 [0; 1=2) and m2 = m1, respectively.

11



learning the state perfectly at the cost of inducing the principal�s ideal decision than inducing
the optimal decision y1 (s; b) at the cost of losing new information. Because the expert
can learn the state only by revealing her �rst-stage information, the principal knows the
distribution of posteriors at the beginning of the second period. This discrete distribution
sustains truthtelling communication at that period if the bias is not large.
A few comments are necessary. First, there are two key di¤erences between the

truthtelling equilibria in the dynamic and single-shot versions of the model. The main
distinction of the multi-stage setup is that the principal can use the expert�s message in the
�rst period in order to re�ne her information in the second one. However, the information
structure in the second period re�nes only the set of posterior values of the state, which
have been reported by the expert. It is clear that such a procedure of updating the expert�s
information over time cannot be applied to the static model. Also, any message of the
expert in period one reduces the set of feasible decisions in the second period.13 This is
because the principal uses the �rst-stage message in order to partially verify the second-stage
report, and makes a decision consistent with the messages in both stages. In the case of
�inconsistent�messages, the principal relies on the �rst-period report only. Because of such
out-of-equilibrium beliefs, the expert cannot rebut the previous report in the second round.14

Second, dynamic informational control demonstrates some similarity to other instruments
facilitating information transmission in cheap talk environments. Comparing it to multi-stage
communication investigated by Krishna and Morgan (2004), one may notice that the expert�s
incentives to provide more information in both models are driven by active participation of
the principal in the communication process. This active interaction between the players
entails some uncertainty for the risk-averse expert, which is, nevertheless, might be a¤ected
by the expert�s messages in the �rst round of communication. The nature of uncertainty in
these models, however, is completely di¤erent. In Krishna and Morgan�s model, the expert is
imperfectly informed about future decisions of the principal because of a random binary
outcome of the simultaneous dialog in the �rst round. In particular, if the outcome of
the dialog is �success�, the expert may update her information in the next stage. Thus,
even though the expert might not be allowed to improve her report in the second round,
the uncertainty about future interaction a¤ects the expert�s incentives in the �rst stage.
Moreover, in the case of �success�, the expert actually updates her �rst-round message by
revealing more precise information in the second round. Together, these factors provide an
overall improvement over single-stage direct communication. In the model of informational
control, uncertainty arises directly from expert�s imprecise information about the true
realization of the state. The principal may in�uence this uncertainty by amending the

13Otherwise, if the set of feasible decisions did not change over time, the multi-period game would be
equivalent to the single-stage game.
14This intuition is somewhat similar to that used in simultaneous communication with multiple experts

by Krishna and Morgan (2001a). In the case of consulting two experts with opposing biases, the principal
uses each of the two messages in order to verify the other one and believes one of the experts only after
receiving �inconsistent�messages. In particular, the credible expert is the one who bene�ts less from sending
her message under the assumption that the second message is truthful. This makes pro�table rebuttal of
the message of the rival expert impossible. In our model, there is a rivalry between the imperfectly informed
expert in the �rst stage, who is interested in learning more information, and the expert with updated
information in the second stage, who wants to manipulate the principal�s decision. These factors make the
expert�s report in period one more credible.
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second-stage information structure, which depends on the �rst-period report of the expert.
Dynamic informational control also inherits some features of the more general class of

mediated communication protocols introduced by Myerson (1991) and studied by Blume
et al. (2007), Goltsman et al. (2009), and Ivanov (2010b) in the cheap talk context. In
mediated communication, the expert faces the message-contingent lottery over induced
actions controlled by the mediator, who privately requests information from the expert
and gives recommendations to the decision maker. In our model, the expert faces the
message-contingent lottery over her own posterior types generated by the information
structure in period one. The natural question to ask is why such a lottery over the expert�s
types is more e¤ective than the lottery over the principal�s decisions. The intuition is based
on two factors. First, because the set of types is a continuum, the mediated protocol of
communication has to be delicate in punishing the expert for lying. Suppose that the
mediator aims to punish the expert of type � for placing some spin on information and
claiming type �0 close to � by inducing some unfavorable distribution over actions. By the
continuity of the expert�s payo¤ function, such a lottery also punishes type �0 for telling the
truth and motivates this type to distort information. In contrast, the lottery over posterior
types is able to separate the magnitudes of expert�s punishment for distorting information
across �rst-stage types (signals). As a result, each type of the expert can be punished even for
slight distortions of information without damaging the incentives of arbitrarily close types
to communicate their information. Reporting a message s0 di¤erent from the observed signal
s in the �rst period does not provide new information to the particular type s only. These
informational losses may lead to the lower payo¤ to the expert even in the case of inducing
the most favorable decision y1 (s; b). This e¤ect, however, does not in�uence the expert�s
type s0, who can still get high informational bene�ts after telling the truth.
Second, the incentives of the risk-averse expert to provide more information to the

mediator are purely driven by the randomness in the mediator�s recommendations to the
principal. Because each expert�s message maps into several actions, which cannot be the
ideal principal�s decisions together, inducing the ideal decision for each state is not feasible.
In the case of dynamic informational control, there is no need to introduce randomness over
actions after the expert learns the state precisely in the second period. By that time, the
principal knows the distribution of posterior types, which are distant enough to separate
themselves without additional incentives.
In the light of Theorem 1, an important question to examine is whether full information

extraction is monotone in b. In other words, what are the conditions on the primitives, i.e.,
the players�payo¤ functions and the distribution of states, which sustain full information
extraction if and only if the magnitude of the expert�s bias is below some cut-o¤? To address
this issue, consider the di¤erence between the payo¤s in the cases of truthful communication
and inducing an arbitrary decision y 2 R:

�V (y; s; b) = E [V (ap (�) ; �; b) js]� E [V (y; �; b) js]
= psV (ap (s) ; s; b) + (1� ps)V (ap (' (s)) ; ' (s) ; b)
� psV (y; s; b)� (1� ps)V (y; ' (s) ; b) :

Suppose that y�1 (s; b) 2 R is the expert�s optimal, but possibly non-feasible decision given

13



her �rst-stage information:

y�1 (s; b) = argmax
a2R

E [V (a; �; b) js]

= argmax
a2R

psV (a; s; b) + (1� ps)V (a; ' (s) ; b) ; s 2 [0; 1=2):

Then, if the di¤erence in the payo¤s in the cases of truthful communication and
inducing the (non-feasible) decision y�1 (s; b) is not increasing in b, then the fully informative
equilibrium exists if and only if the bias is below some cut-o¤.

Lemma 1 If �V 0b (y = y
�
1 (s; b) ; s; b) � 0; s < 1=2, then there is the fully informative

equilibrium in the game with the communication schedule determined by (2) and (3) if and
only if b � �b.

The main reason for using y�1 (s; b) instead of y1 (s; b) is that it is not necessary to check if
the boundary condition y1 (s; b) � ap (1) is binding for all s and b. As a result, verifying the
sign of �V 0b (y = y

�
1 (s; b) ; s; b) is a signi�cantly less complicated exercise than checking it for

�V 0b (y = y1 (s; b) ; s; b). The following corollary is a straightforward implication of Lemma 1
for a special class of preferences.

Lemma 2 If V (a; �; b) = V (a� � (b; �) ; �), where � (0; �) = 0; �0b � 0, and �00b� � 0,
then there is the fully informative equilibrium in the game with the communication schedule
determined by (2) and (3) if and only if b � �b.

The payo¤ functions of type V (a; �; b) = V (a� � (b; �) ; �) are broadly used in the
literature on strategic communication and the mechanism design.15 The �rst pair of
conditions implies that the expert�s interests coincide with those of the principal if the
bias parameter b = 0, and that the magnitude of the expert�s bias is increasing in b. The
third condition implies that the marginal magnitude of the bias is not increasing in �.
In general, the relationship between the marginal bene�ts of inducing y1 (s; b) or reporting

truthfully is not monotone in the expert�s bias. As b falls, the di¤erence in the payo¤s
E [V (ap (�) ; �; b) js] and E [V (y1 (s; b) ; �; b) js] may either increase or decrease. On many
occasions, however, �V (y1 (s; b) ; s; b) satis�es a weaker condition. The following lemma
gives the details.

Lemma 3 If �V (y1 (s; b) ; s; b) is quasi-monotone in b on [0; b0 (s)] ; s 2 [0; 1=2), where
b0 (s) is uniquely given by ap (' (s)) = y1 (s; b0 (s)), then there is the fully informative
equilibrium in the game with the communication schedule determined by (2) and (3) if and
only if b � �b.16

15Besides the quadratic payo¤function with a constant bias, this class includes, for example, the generalized
quadratic functions V (a; �; b) = � (a� y (�; b))2 used by Alonso and Matouschek (2008) and Kovác and
Mylovanov (2009), and the symmetric functions V (a; �; b) = V (ja� (� + b)j) exploited by Dessein (2002).
Krishna and Morgan (2004) use a special case of the symmetric functions, V (a; �; b) = � ja� (� + b)j�.
16The function H (b) is quasi-monotone in b on [0; b0] if H (b1) � 0 for some b1 2 [0; b0] implies H (b) �

0; b 2 [0; b1).
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According to Lemma 3, the quasi-monotonicity of �V (y1 (s; b) ; s; b) is required only
for relatively small values of the bias. Otherwise, we show that if either the bias or the
probability of the higher posterior ' (s) is so large that the most pro�table �deviating�
decision y1 (s; b) exceeds ap (' (s)), then �V (y1 (s; b) ; s; b) is monotone in b. Also, note that
the conditions in Lemmas 1 and 3 are related to the monotonicity of ranking of the expert�s
payo¤s E [V (ap (�) ; �; b) js] and E [V (y1 (s; b) ; �; b) js] only. In fact, the monotonicity of the
expert�s second-stage incentive-compatibility constraints does not require extra conditions
on the payo¤ function V (a; �; b) or the distribution F (�). The following example highlights
the di¤erences in the conditions on �V (y1 (s; b) ; s; b) used in Lemmas 1 and 3.

Example 2. Suppose V (a; �; b) = � (a� � � b�)2 and ' (�) = � + 1=2. Then, ap (s) = s
and y�1 (s; b) = (1 + b) (pss+ (1� ps) (s+ 1=2)) ; s � 1=2. If b � ba (s) =

ps
2�ps , then

y�1 (s; b) � ap (1) = 1. That is, y1 (s; b) = y�1 (s; b) and

�V (y1 (s; b) ; s; b) = �b2
 
pss

2 + (1� ps)
�
s+

1

2

�2!
+
ps (1� ps) (1 + b)2

4

= �(1 + 2s� ps)
2

4
b2 +

ps (1� ps)
2

b+
ps (1� ps)

4
:

This function is not monotone in b � 0. It is, however, concave in b. This property, along
with �V (y1 (s; 0) ; s; 0) =

ps(1�ps)
4

> 0, implies that �V (y1 (s; b) ; s; b) is quasi-monotone in
b for all s, and �V (y1 (s; b) ; s; b) � 0 if and only if

b � by (s) =
ps (1� ps) + (ps (1� ps) (4s� ps + 4s2 � 4pss+ 1))1=2

(1 + 2s� ps)2
.

Let f (�) = �e���

1�e�� ; � 2 [0; 1], where � = ln 4 ' 1:386. Then, ps =
�
1 + exp

�
� ln 4

2

���1
=

2=3; s � 1=2. This results in ba (s) = 1=2 and

by (s) =
2 + (6 + 24s+ 72s2)

1=2

(1 + 6s)2
,

which is decreasing in s and by (1=2) = 1=2.
Finally, the second-stage incentive-compatibility constraints require

ap (' (s))� ap (s) = ' (s)� s =
1

2
� 2sb for all s < 1=2; or b � 1

2
.

Therefore, the fully informative equilibrium is sustainable if and only if b � 1=2.

4.3 Unbounded state space

If the state space is unbounded, the expert�s �rst-stage information structure can be
partitioned into two-point sets, such that the distance between any joint states � and �0 =
' (�) is arbitrarily large. This might suppress the expert�s incentive to distort her information
because of two factors. First, a large distance between the joint states implies that the optimal
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decision y1 in the case of observing the signal s and deviating from truthtelling in period
one would di¤er signi�cantly from at least one of the ideal decisions y (s; b) and y (' (s) ; b).
As a result, the expected losses from distorting information should increase. Second, upon
communicating truthfully in the �rst stage and observing s < s0 = ' (s) in the next period,
inducing ap (s0) results in high losses of the expert if s0 is su¢ ciently distant from s. These
observations suggest that the principal can potentially extract all information from the expert
for an arbitrary magnitude of the expert�s bias.
The intuition above, however, misses one subtlety. The value of updated information

in the second stage is high if the joint states are quite distinct and approximately equally
likely. For a �xed state �, if the distance between the joint states � and �0 > � increases,
then the density f (�0) eventually converges to 0 and the posterior probability p� =

f(�)
f(�)+f(�0)

converges to 1. Thus, the expert infers that the posterior realization � = s is more likely than
�0 = ' (s). This decreases her bene�ts of being perfectly informed in the second stage and, as
a result, the incentives to truthfully convey information in the �rst stage. These arguments
imply that truthtelling can be sustained only if the magnitude of f (�) is comparable to that
of f (�0). The example below highlights this logic.

Example 3. Suppose f (�) = �e���; � � 0 and the payo¤ functions are quadratic,
U (a; �; bi) = � (a� � � bi)2, ap (�) = �, and y (�; b) = � + b.
We design the algorithm of updating expert�s information by replicating the

communication schedule in the case of the bounded state space. First, split � = R+ into
intervals [kd; kd+d); k 2 N0 = f0; 1; :::g of a �xed length d > 0. Then, partition each interval
[kd; kd+d) into the joint-state sets f�; ' (�)g =

�
�; � + d

2

	
; � 2 [kd; kd+ d

2
). For each pair of �

and �0 = ' (�), the expert observes the signal s = �. The second-stage information structure
is constructed in a similar fashion. After sending the �rst-period messagem1 2 [kd; kd+ d

2
) for

some k 2 N0, the expert can separate m1 from ' (m1), but does not acquire new information
if the state is not in the set fm1; ' (m1)g.
Given the �rst-stage signal s 2 [kd; kd + d

2
) for some k 2 N0, reporting the truth in

both stages results in the payo¤ to the expert E [V (ap (�) ; �; b) js] = �b2. At the same time,
inducing the expert�s optimal decision conditional on the �rst-stage information:

y1 (s; b) = argmax
y2R+

ps (a� s� b)2 � (1� ps) (a� ' (s)� b)2

= pss+ (1� ps)' (s) + b = s+ b+
d

2

e��
d
2

1 + e��
d
2

;

where ps =
�
1 + e��

d
2

��1
, provides the payo¤:

E [V (y1 (s; b) ; �; b) js] = �ps (1� ps) (' (s)� s)2 = �
e��

d
2

1 + e��
d
2

d

4

2

= � z2e�z

�2 (1 + e�z)2
; (8)

where z = �d
2
> 0. Because e�z 2 (0; 1) ; z > 0, it easily follows from (8) that

� (z�) � � (z) < E [V (y1 (s; b) ; �; b) js] <
� (z)

4
;
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where � (z) = � z2e�z

�2
and z� = argmin

z�0
� (z) = 2. If �b � 4=e, then

E [V (y1 (s; b) ; �; b) js] > � (z�) = �
4

�2e2
� �b2 = E [V (ap (�) ; �; b) js] . (9)

In contrast, if �b � 1=e, then taking d = 2z�=� = 4=� results in

E [V (ap (�) ; �; b) js] = �b2 �
� (z�)

4
= � 1

�2e2
> E [V (y1 (s; b) ; �; b) js] : (10)

Finally, the second-stage incentive-compatibility constraints (1) require

' (s)� s = s+ d
2
� s � 2b;

or equivalently, d � 4b. This inequality holds if �b � 1=e, because d = 4=� � 4be > 4b.
The intuition behind (9) is gained from the following observation. For a �xed bias b, if

� is su¢ ciently large, the density f (�0) falls quickly as the distance between the joint states
� and �0 > � increases. Because of that e¤ect, the expert knows almost surely that the true
realization of the state is � = s rather than �0 = ' (s) after observing signal s. In this case,
her bene�ts of learning � perfectly and inducing the principal�s ideal action in stage two are
relatively low. It is more pro�table for the expert to remain imperfectly informed, but induce
the optimal decision y1 (�; b), which is close to her ideal point y (�; b). On the other hand, (10)
means that if the prior distribution is smooth enough (i.e., � � 1=be), moving the joint states
su¢ ciently apart relatively to the magnitude of the bias preserves the expert�s uncertainty
about each posterior realization. As a result, full information extraction is sustainable for an
arbitrary bias if the density is su¢ ciently smooth.

In order to formalize the logic above, consider the distribution of states with a positive
density f (�) > 0 on � = R+ and the payo¤ function U (a; �), such that the set of
rationalizable decisions is unbounded, A = [ap (0) ;1). (The case of � = R is identical). Let
y�1 (�; �

0; b) be the expert�s optimal decision upon learning that the state is either � or �0 with
equal probabilities p� = p�0 = 1=2:

y�1 (�; �
0; b) = argmax

a2A
V (a; �; b) + V (a; �0; b) : (11)

We suppose that V (a; �; b) satis�es the following three conditions.

A1: For any b, there exists � (b) > 0, such that y (�; b)� ap (�) � � (b) ;8�.
A2: For any b and � > 0, there exists ~� (b; �) > 0, such that V (y (�; b)� �; �; b) >

V
�
y (�; b) + ~� (b; �) ; �; b

�
;8�.

A3: For any b and � > 0, there exists d (b; �) > 0, such that y (�; b) + � <
y�1 (�; � + d (b; �) ; b) < y (� + d (b; �) ; b)� �;8�.
The �rst condition states that there is a uniform bound on the expert�s bias. The second

one requires that the expert is not in�nitely more sensitive to the actions below her ideal
decision than to the actions above it. Finally, (A3) is the �betweenness� condition, which
establishes that moving the joint states � and �0 su¢ ciently apart from each other guarantees
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that the expert�s optimal decision given her information that the true state is either � or �0

is not too close to the ideal decisions for either realization. These conditions do not impose
strong restrictions on the shape of the expert�s payo¤ function. In fact, imposing only (A1)
might be su¢ cient for satisfying the other two assumptions.17 Given these preliminaries,
the following theorem characterizes the scenarios, in which the principal can extract full
information from the expert with an arbitrarily large bias.

Theorem 2 If V (a; �; b) satis�es conditions A1�A3, then for any b, there exist d (b) > 0 and
" (�; b) 2 (0; 1), such that if " (�; b) � f(�+d(b))

f(�)
� 1

"(�;b)
;8�, then there is the communication

schedule that sustains the fully informative equilibrium.

In order to prove this result, we employ the communication schedule similar to that
used in Example 3. First, the state space is divided into the sequence of half-open intervals
of a �xed length, which depends on the expert�s bias. Then, each interval is partitioned
into joint-state sets, such that the distance between the joint states is equal to a half of
the interval�s length. After observing the joint-state set that contains the state in the �rst
stage, the expert can either reveal it truthfully and learn the state precisely in the second
stage or induce any rationalizable decision by manipulating her information. The conditions
(A1)�(A3) imply that if the probabilities of posterior realizations in each joint-state set
are equal, then moving the joint states su¢ ciently apart from each other by increasing the
length of intervals forces the expert to communicate truthfully. Because it is impossible to
keep the identical posterior probabilities for any distribution with an unbounded support,
the condition in Theorem 2 means that the likelihood ratio between any states � and � + d
must not vary signi�cantly, where d depends on the magnitude of the bias. In this case, the
signal that the state is in some joint-state set f�; � + dg does not provide much information
to the expert, because she is su¢ ciently uncertain about both posterior realizations. This
guarantees that the expert�s bene�ts from perfectly learning the state in the second period
still exceed the bene�ts of optimal manipulation of imprecise �rst-stage information.
To demonstrate how Theorem 2 can be applied to the particular payo¤functions, consider

now the family of generalized quadratic functions V (a; �; b) = � (a� � � � (b; �))2, and
suppose that the distribution function F (�) satis�es the following regularity condition.

A4: There exist � > 0 and d > 0, such that

e��d � f (� + d)

f (�)
� e�d; � � 0:

The regularity condition (A4) states that the likelihood ratio in densities f (�) and
f (� + d) varies less rapidly than exponentially with the rate � for all states. That is, for
any pair of states � and � + d, the prior distribution varies more �smoothly� than the
exponential distribution with the parameter �. Clearly, if (A4) holds for some d and �0,

17Consider the symmetric payo¤ function V (a; �; b) = V (ja� � � � (b; �)j), where V 0 (x) < 0; V 00 (x) <
0; x � 0; � (0; �) � 0, and �0b (b; �) > 0. That is, ap (�) = �; y (�; b) = �+� (b; �), and y�1 (�; � + d; b) = �+ d

2 +
�(b;�)+�(b;�+d)

2 . For a �xed b, (A1) requires that � (b; �) � � (b) ;8�. This implies V (y (�; b)� �; �; b) = V (�) >
V
�
~�
�
= V

�
y (�; b) + ~�; �; b

�
if ~� > �, so (A2) holds. Also, y (�; b) + � < y�1 (�; � + d; b) < y (� + d; b) � � if

d > � (b) + 2�, so (A3) holds as well.
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then it also holds for d and � > �0. The following lemma establishes the su¢ cient conditions
for full information extraction under the above assumptions.

Lemma 4 If V (a; �; b) = � (a� � � � (b; �))2 ; � (b; �) � �; and F (�) satis�es (A4) for
d = 2� (2=z� + 1) and � = z�=�, where z� = exp (�z�=2� 1) ' 0:314, then there exists the
communication schedule, which sustains the fully informative equilibrium.

This lemma highlights the relationship between the magnitudes of the expert�s bias and
the smoothness in the density. In particular, for any upper bound on the bias, there exists
an upper bound on the absolute value of the variation in the likelihood ratio between any
two states, such that the distance between these states is �xed and proportional to the bias.
These conditions are required to move the joint states apart from each other while keeping
the expert su¢ ciently uncertain about each state after receiving the �rst-period signal.

4.4 Multi-dimensional state space

In this section, we extend the above results to the N�dimensional state space. Suppose
that the state space and the decision set are N�dimensional: a = (a1; :::; aN) 2 RN and
� = (�1; :::; �N) 2 � = [0; 1]N ; N � 2. The density function of the state f (�) is bounded
and positive on �. The players� payo¤ functions are of the form U (a; �; bi) ; i 2 fP;Eg,
where bP = 0, and bE = b > 0. Similarly to the one-dimensional case, the function
U (a; �; b) is twice-di¤erentiable in (a; �; b), strictly concave in a for all (�; b), and has a
unique ideal decision a� (�; b) = argmaxa U (a; �; b) for each (�; b). Also, U (a; �) = U (a; �; 0)
and V (a; �; b) = U (a; �; b) stand for the principal�s and the expert�s payo¤ functions, and
ap (�) = a� (�; 0) and y (�; b) = a� (�; b) stand for the ideal decision of the principal and
the expert, respectively. We assume that each ideal decision of the principal corresponds
to a single state, or ap (�) 6= ap (�

0) ; �0 6= �.18 Finally, the expert of the highest type in
each dimension �1 = f1gN has no incentives to distort her information: V (ap (�1) ; �1; b) �
V (a; �1; b) ; a 2 A.
We construct the communication schedule by extending the expert�s information

structures (2) and (3) to the multi-dimensional state space. De�ne the sequence of the
�low-state�subsets of �:

Qk = f� 2 �j�1 = ::: = �k�1 = 1; 0 � �k < 1=2g ; k = 1; :::; N;

and the sequence of the complement state functions:

'k (�) = (�1; :::; �k�1; ' (�k) ; �k+1; :::; �N) ; � 2 Qk; k = 1; :::; N;

where function ' (�) is similar to the one-dimensional case: it is continuous, strictly
increasing, ' (0) = 1=2 and ' (1=2) = 1. Then, the union of sets �1 (�) = f�; '1 (�)g over Q1:

�1 =
[
�2Q1

�1 (�) ;

18In the one-dimensional case, it is guaranteed by the strict monotonicity of ap (�) in �.
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Figure 1: Two-dimensional communication schedule

�lls the N�dimensional cube � = [0; 1]N up to the zero-measure set

��1 = �n�1 = f� 2 �j�1 = 1g ;

which is the (N � 1)�dimensional cube. Then, we can apply the same algorithm of
partitioning ��1 into the joint-state sets �2 (�) = f�; '2 (�)g ; � 2 Q2. The set �2 =

S
�2Q2

�2 (�)

�lls ��1 up to the set
��2 = ��1n�2 = f� 2 �j�1 = �2 = 1g ;

which is the (N � 2)-dimensional set. Repeat this procedure until it converges to ��N = f1gN .
By construction, it follows that

� = �1 [ ��1 = �1 [�2 [ ��2 = ::: = �1 [ ::: [�N [ ��N =
[

k=1;:::;N

�k [ f1gN :

De�ne the expert� �rst-stage information structure as follows. Partition � into the
collection of the joint-state sets

I1 =
n
f�k (�) ; � 2 QkgNk=1 ; f1g

N
o
: (12)

If � 2 �k (s) for some k and s 2 Qk, the expert observes signal s. That is, she
cannot distinguish between the joint states � = s and �0 = 'k (s). (Fig. 1 illustrates the
communication schedule for N = 2 and ' (�) = � + 1=2.) By sending a message m 2 Qk in
the �rst stage, the expert is able to distinguish only between the states m and 'k (m) in the
second period:
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I2 (m; I1) = fm;'k (m) ; I1n�k (m)g ;m 2 Qk: (13)

If � = f1gN , then the expert perfectly knows � in the �rst period. The following theorem
demonstrates that the communication schedule characterized by (12) and (13) sustains the
fully informative equilibrium if the expert�s bias is not large.

Theorem 3 There exists �b > 0 such that if b � �b, there is the communication schedule
determined by (12) and (13), which sustains the fully informative equilibrium.

The logic behind the proof of Theorem 3 is a reminiscent of the result for the
single-dimensional case. Because the principal�s ideal decisions are di¤erent across the states,
partitioning � into two-point joint-state sets guarantees that there is no pair of states, which
map into the same ideal decision of the expert as long as the bias in preferences is small.
From the expert�s perspective, this implies that she is interested in learning the particular
realization of the state upon observing the joint-state set. In other words, telling the truth in
the �rst round provides her with the informational bene�ts in the second stage. If the bias
is not large, these informational gains outweigh the bene�ts of inducing any rationalizable
decision under imperfect �rst-stage information.

5 Conclusion

In this paper, we have demonstrated how simple dynamic management of information
assessed by a privately informed agent can completely remove the informational asymmetry
between the agent and an uninformed decision maker. Though the parties have con�icting
interests and interact by means of cheap-talk communication, providing proper access to
information allows the principal to elicit perfect information about an unknown issue of
communication and reach his �rst-best decision after only two rounds of communication.
A few comments are in order. First, the analysis and the results are equally applicable

to the situation, in which the expert�s information structure in the �rst stage is given by the
partition, consisting of a collection of the two-interval sets �i = f(�i1; �i2] [ (zi1; zi2]gi2J ; z1i >
�2i indexed by i. This partition can sustain the (approximately) fully informative equilibria
if the density is zero for some states or signi�cantly varies across the states. Suppose, for
example, that the density is concentrated at high and/or intermediate states and virtually
disappears if the state is near the lower bound of the support. In this case, partitioning the
state into two-point sets collapses truthful communication, because the imbalance between
the probabilities of states reduces the expert�s uncertainty about posterior realizations in
the �rst period. However, by locally partitioning the subinterval of states around points
with zero or rapidly varying density into two-interval sets, it is possible to keep the expert
su¢ ciently uncertain. This provides her the incentive to communicate truthfully in order to
learn the particular interval, which contains the state, in the next round (see Appendix B
for an example).
In some circumstances, full information extraction can be achieved by expanding the class

of the complement state functions ' (�). This is especially e¤ective in the case of symmetric
distributions with zero density at some states. Consider, for example, the symmetric triangle
distribution supported on the unit interval. If the class of the complement state functions is
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restricted to increasing functions that map from the lower half into the upper half of the unit
interval, then there is no fully informative equilibrium for any positive bias because of the
aforementioned imbalance between the probabilities of posterior realizations. In contrast, if
the �rst-stage information structure partitions the boundary subintervals [0; �1) and (1��1; 1]
into the joint-state sets f�; 1� �g, then the posterior realizations of the state in each set are
equally likely. Because the density is positive on the subinterval [�1; 1� �1], it is possible to
fully extract information for some range of biases by using an increasing complement state
function for partitioning this subinterval.

Appendix A
In this section we provide the proofs of the results.

Proof of Theorem 1. Because f (s) > 0; s 2 [0; 1], we have ps = f(s)
f(s)+f('(s)) > 0

and 1 � ps > 0. The continuity of f (�), the di¤erentiability of V (a; �; b) and y (�; b) and the
continuity of ' (�) in (a; �; b) imply that V (ap (s) ; s; b)� V (ap (' (s)) ; s; b) ; E [V (y1 (s; b) ; �; b) js],
and E [V (ap (�) ; �; b) js] are continuous in (s; b). Also, V 00a� > 0 and ' (s) � s > 0 imply
y (s; b) < y(' (s) ; b) ; s 2 [0; 1=2].

Consider the case of s = 1, so the expert infers that � = 1. Thus, her information will not
be updated in the second stage unconditionally on the message m1. Sending m1 = 1 induces
the principal�s decision ap (1) for any message m2 in t = 2. Sending m1 < 1=2 results in the
principal�s decision a 2 fap (m1) ; ap (' (m1))g depending on m2. Because ap (m1) < ap (' (m1)) <
ap (1) < y (1; b) and V 0a (a; �; b) > 0; a < y (�; b), we have V (ap (1) ; 1; b) > V (ap (' (m1)) ; 1; b) >
V (ap (m1) ; 1; b) ;m1 < 1=2, so the expert reveals � = 1 truthfully.

Given s 2 [0; 1=2) in t = 1, the expert has two options. First, she can induce the optimal
decision y1 (s; b) given her current information. Second, she can learn � perfectly in the second stage
by reporting s truthfully. In the latter case, the expert can induce only a 2 fap (s) ; ap (' (s))g in
the second period.

Consider the expert�s second-stage incentive compatibility constraints (7) given truthful
reporting in t = 1. If b = 0, then ap (s) = y (s; 0) ;8s. Because V (y (s; b) ; s; b) > V (a; s; b) ; a 6=
y (s; b), and U 00a� > 0 implies ap (' (s)) > ap (s), it follows that

V (ap (s) ; s; 0)� V (ap (' (s)) ; s; 0) = V (y (s; 0) ; s; 0)� V (y (' (s) ; 0) ; s; 0) > 0; s 2 [0; 1=2] :

That is, (7) is strictly satis�ed for all s 2 [0; 1=2]. By the continuity of V (ap (s) ; s; b) �
V (ap (' (s)) ; s; b) in (s; b), it follows that there is bc > 0, such that

V (ap (s) ; s; b) � V (ap (' (s)) ; s; b) ; s 2 [0; 1=2] ; b � bc:

In the case of inducing y1 (s; b), suppose that b = 0. Then, y (' (s) ; 0) = ap (' (s)) > ap (s) =
y (s; 0) implies that y1 (s; 0) 6= y (s; 0) and/or y1 (s; 0) 6= y (' (s) ; 0). Thus,

E [V (y1 (s; 0) ; �; 0) js] = psV (y1 (s; 0) ; s; 0) + (1� ps)V (y1 (s; 0) ; ' (s) ; 0)
< psV (y (s; 0) ; s; 0) + (1� ps)V (y (' (s) ; 0) ; ' (s) ; 0)
= psV (ap (s) ; s; 0) + (1� ps)V (ap (' (s) ; 0) ; ' (s) ; 0)
= E [V (ap (�) ; �; 0) js] ; s 2 [0; 1=2] ;
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where E [V (ap (�) ; �; b) js] is the expert�s payo¤ in the case of truthful reporting in both stages.
Because E [V (y1 (s; b) ; �; b) js] and E [V (ap (�) ; �; b) js] are continuous in (s; b), there exists by > 0,
such that

E [V (ap (�) ; �; b) js] � E [V (y1 (s; b) ; �; b) js] ; s 2 [0; 1=2] ; b � by:

Thus, taking b � �b = min fbc; byg sustains the fully informative equilibrium.

Proof of Lemma 1. Suppose that there exists the fully informative equilibrium for some �b > 0.
That is:

V
�
ap (s) ; s;�b

�
� V

�
ap (' (s)) ; s;�b

�
� 0; (14)

and

�V
�
y1
�
s;�b
�
; s;�b

�
= E

�
V
�
ap (�) ; �;�b

�
js
�
� E

�
V
�
y1
�
s;�b
�
; �;�b

�
js
�

= psV
�
ap (s) ; s;�b

�
+ (1� ps)V

�
ap (' (s)) ; ' (s) ;�b

�
�psV

�
y1
�
s;�b
�
; s;�b

�
� (1� ps)V

�
y1
�
s;�b
�
; ' (s) ;�b

�
� 0;

for all s 2 [0; 1=2). We prove that there exists the fully informative equilibrium for any b < �b.
Because ap (' (s)) > ap (s) and V 00ab > 0, then V 0b (ap (s) ; s; b) � V 0b (ap (' (s)) ; s; b) < 0; s 2

[0; 1=2). This implies that the second-stage incentive-compatibility constraints are satis�ed for b < �b:

V (ap (s) ; s; b)� V (ap (' (s)) ; s; b) > V
�
ap (s) ; s;�b

�
� V

�
ap (' (s)) ; s;�b

�
� 0; b < �b: (15)

This also means ap (' (s)) > y (s; b) ;s 2 [0; 1=2); b < �b. (Otherwise, if ap (' (s)) � y (s; b),
then ap (s) < ap (' (s)) � y (s; b) and V 0a (a; �; b) > 0; a < y (�; b) result in V (ap (s) ; s; b) <
V (ap (' (s)) ; s; b)).

Since V 00ab > 0, then V
0
b (a; s; b) is increasing in a. Because ap (s) < y (s; b) ;8s; b > 0, we have:

V 0b (ap (s) ; s; b) < V
0
b (y (s; b) ; s; b) � 0:

This leads to the inequality:

E
�
V 0b (ap (�) ; �; b) js

�
= psV (ap (s) ; s; b) + (1� ps)V (ap (' (s)) ; ' (s) ; b) < 0: (16)

Because y1 (s; b) > ap (0), we need to consider two cases: y1 (s; b) < ap (1) and y1 (s; b) =
ap (1). First, let y1 (s; b) < ap (1). In this case, y1 (s; b) = y�1 (s; b) and �V (y1 (s; b) ; s; b) =
�V (y�1 (s; b) ; s; b). This implies �V

0
b (y1 (s; b) ; s; b) = �V

0
b (y

�
1 (s; b) ; s; b) � 0. Second, let y1 (s; b) =

ap (1), which means y1 (s; b) > ap (' (s)) > ap (s). Since V 00ab > 0, then V 0b (ap (s) ; s; b) <
V 0b (ap (1) ; s; b) and V 0b (ap (' (s)) ; ' (s) ; b) < V 0b (ap (1) ; ' (s) ; b). By the envelope theorem,
d
dbE [V (y1 (s; b) ; �; b) js] = E [V

0
b (y1 (s; b) ; �; b) js] results in:

d

db
�V (y1 (s; b) ; s; b) = psV

0
b (ap (s) ; s; b) + (1� ps)V 0b (ap (' (s)) ; ' (s) ; b)

�psV 0b (y1 (s; b) ; s; b)� (1� ps)V 0b (y1 (s; b) ; ' (s) ; b) = ps
�
V 0b (ap (s) ; s; b)� V 0b (ap (1) ; s; b)

�
+(1� ps)

�
V 0b (ap (' (s)) ; ' (s) ; b)� V 0b (ap (1) ; ' (s) ; b)

�
< 0:

Thus, �V 0b (y1 (s; b) ; s; b) � 0 and �V (y1 (s; b) ; s; b) � �V
�
y1
�
s;�b
�
; s;�b

�
� 0; b < �b.
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Proof of Lemma 2. If V (a; �; b) = V (a� � (b; �) ; �), then y�1 (s; b) is given by the FOC:

psV
0
a (y

�
1 (s; b)� � (b; s) ; s) + (1� ps)V 0a (y�1 (s; b)� � (b; ' (s)) ; ' (s)) = 0;

where V 0a (y
�
1 (s; b)� � (b; s) ; s) < 0 < V 0a (y�1 (s; b)� � (b; ' (s)) ; ' (s)) due to V 00a� > 0.

Because V 0b (a� � (b; �) ; �) = �V 0a (a� � (b; �) ; �)�0b (b; �) and �0b (b; s) � 0, this implies
�V 0a (y�1 (s; b)� � (b; s) ; s)�0b (b; s) � 0, and

E
�
V 0b (y

�
1 (s; b) ; �; b) js

�
= �psV 0a (y�1 (s; b)� � (b; s) ; s)�0b (b; s)

� (1� ps)V 0a (y�1 (s; b)� � (b; ' (s)) ; ' (s))�0b (b; ' (s))
� ��0b (b; ' (s))

�
psV

0
a (y

�
1 (s; b)� � (b; s) ; s) + (1� ps)V 0a (y�1 (s; b)� � (b; ' (s)) ; ' (s))

�
= 0;

where the inequality follows from �0b (b; s) � �0b (b; ' (s)) due to �00b� (b; �) � 0. Thus,
E [V 0b (ap (�) ; �; b) js] < 0 and E [V 0b (y1 (s; b) ; �; b) js] � 0, which gives

�V 0b (y1 (s; b) ; s; b) = E
�
V 0b (ap (�) ; �; b) js

�
� E

�
V 0b (y

�
1 (s; b) ; �; b) js

�
< 0:

Proof of Lemma 3. Suppose that there is the fully informative equilibrium for some �b. We
show now that there exists the fully informative equilibrium for any b < �b. First, according to
(15), the second-stage incentive-compatibility constraints hold for b < �b. Compare now the expert�s
payo¤s in the case of inducing y1 (s; b) and being truthful in both stages. The di¤erentiability of
V (a; �; b) in (a; b) and y (�; b) in b implies the di¤erentiability of �V (y1 (s; b) ; s; b) in b. By the
envelope theorem, d

dbE [V (y1 (s; b) ; �; b) js] = E [V
0
b (y1 (s; b) ; �; b) js], and

d

db
�V (y1 (s; b) ; s; b) = ps

�
V 0b (ap (s) ; s; b)� V 0b (y1 (s; b) ; s; b)

�
+ (1� ps)

�
V 0b (ap (' (s)) ; ' (s) ; b)� V 0b (y1 (s; b) ; ' (s) ; b)

�
:

Note that y1 (s; b) > ap (s). Otherwise, if y1 (s; b) � ap (s) � y (s; b) < y (' (s) ; b), then
V 0a (a; s; b) > 0; a < y (s; b) implies V

0
a (y1 (s; b) ; s; b) � 0; V 0a (y1 (s; b) ; ' (s) ; b) < 0, and

E
�
V 0a (a; �; b) js

�
ja=y1(s;b) = psV

0
a (y1 (s; b) ; s; b) + (1� ps)V 0a (y1 (s; b) ; ' (s) ; b) > 0;

which contradicts that y1 (s; b) < ap (1) is the solution to (5). By the same argument, y1 (s; b) <
ap (1) implies y1 (s; b) > y (s; b). Therefore, y1 (s; b) < ap (1) is given by the FOC:

� (a; b) ja=y1(s;b) = psV
0
a (a; s; b) + (1� ps)V 0a (a; ' (s) ; b) = 0:

Because V 00ab > 0 and V
00
aa < 0, the implicit function theorem leads to:

dy1 (s; b)

db
= ��

0
b (a; b)

�0a (a; b)
ja=y1(s;b) = �

psV
00
ab (a; s; b) + (1� ps)V 00ab (a; ' (s) ; b)

psV 00aa (a; s; b) + (1� ps)V 00aa (a; ' (s) ; b)
ja=y1(s;b) > 0:

Suppose that y1 (s; b0 (s)) = ap (' (s)) < ap (1) for some b0 (s). Because y1 (s; b) <
y1 (s; b0 (s)) ; b < b0 (s), then b0 (s) is uniquely determined. Consider two cases: y1 (s; b) � ap (' (s))
or, equivalently, b � b0 (s) and y1 (s; b) < ap (' (s)), or b < b0 (s). If y1 (s; b) � ap (' (s)) > ap (s),
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then V 00ab > 0 means

V 0b (ap (s) ; s; b)� V 0b (y1 (s; b) ; s; b) < 0, and
V 0b (ap (' (s)) ; ' (s) ; b)� V 0b (y1 (s; b) ; ' (s) ; b) � 0:

This leads to:

�V 0b (y1 (s; b) ; s; b) = ps
�
V 0b (ap (s) ; s; b)� V 0b (y1 (s; b) ; s; b)

�
+ (1� ps)

�
V 0b (ap (' (s)) ; ' (s) ; b)� V 0b (y1 (s; b) ; ' (s) ; b)

�
< 0; b � b0 (s) :

Because�V (y1 (s; b) ; s; b) is quasi-monotone in b on [0; b0 (s)], it follows that�V (y1 (s; b) ; s; b) � 0
is quasi-monotone for all b > 0. That is, if�V

�
y1
�
s;�b
�
; s;�b

�
� 0, then�V (y1 (s; b) ; s; b) � 0; b < �b.

Proof of Theorem 2. According to (A1), there exists � (b) > 0, such that ap (s) �
y (s; b) � � (b) ;8s. By (A2), there exists ~� (b; � (b)) > 0, such that V (y (s; b)� � (b) ; s; b) >
V
�
y (s; b) + ~� (b; � (b)) ; s; b

�
;8s. Take �� (b) = max

n
� (b) ; ~� (b; � (b))

o
. By (A3), there exists

d(b;��(b))
2 > 0, such that y (s; b) + �� (b) < y�1

�
s; s+ d(b;��(b))

2 ; b
�
< y

�
s+ d(b;��(b))

2 ; b
�
� �� (b) ;8s.

Take d = d (b; �� (b)) and construct the communication schedule as follows:

I1 =

�
�; � +

d

2

�
�2[kd;kd+ d

2
);k=0;1;:::

, and

I2 (I1;m1) = fm1; ' (m1) ; I1n fm1; ' (m1)gg ;

where

' (m1) = m1 +
d

2
:

Consider the expert�s second-stage incentive compatibility constraints given truthful reporting
of s in the �rst period and observing � = s < ' (s) in the second period. The condition (A1) implies
that y (s; b)� � (b) � ap (s) � y (s; b). Also, we have

ap

�
s+

d

2

�
� y

�
s+

d

2
; b

�
� � (b) � y

�
s+

d

2
; b

�
� �� (b)

> y (s; b) + �� (b) � y (s; b) + ~� (b; � (b)) ;8s;

where the �rst inequality follows from (A1) and the third inequality follows from (A3). This gives

V (ap (s) ; s; b) � V (y (s; b)� � (b) ; s; b) (17)

> V
�
y (s; b) + ~� (b; � (b)) ; s; b

�
> V

�
ap

�
s+

d

2

�
; s; b

�
;8s;

where the �rst and the last inequalities follow from V 0a (a; s; b) ? 0; a 7 y (s; b), and the second
inequality follows from (A2).

Consider now the expert�s payo¤ in the �rst stage. Note that (A3) implies

y (b; s) + ~� (b; � (b)) � y (b; s) + ~�� (b) < y�1
�
s; s+

d

2
; b

�
;8s;
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that results in

V (ap (s) ; s; b) > V
�
y (s; b) + ~� (b; � (b)) ; s; b

�
� V (y (s; b) + �� (b) ; s; b) > V

�
y�1

�
s; s+

d

2
; b

�
; s; b

�
;8s;

where the �rst inequality follows from (17), and the other inequalities follow from V 0a (a; s; b) <
0; a > y (s; b). Also, (A1) and (A3) imply

y�1

�
s; s+

d

2
; b

�
< y

�
s+

d

2
; b

�
� �� (b) � y

�
s+

d

2
; b

�
� � (b) � ap

�
s+

d

2

�
� y (s; b) ;8s;

which gives

V

�
ap

�
s+

d

2

�
; s; b

�
> V

�
y�1

�
s; s+

d

2
; b

�
; s; b

�
;8s;

where the inequality holds because V 0a (a; s; b) > 0; a < y (s; b). As a result,

V (ap (s) ; s; b) + V

�
ap

�
s+

d

2

�
; s+

d

2
; b

�
(18)

> V

�
y�1

�
s; s+

d

2
; b

�
; s; b

�
+ V

�
y�1

�
s; s+

d

2
; b

�
; s+

d

2
; b

�
:

Note that (17) does not depend on ps. Also, the optimal decision in the case of deviation from
truthtelling in the �rst stage,

y1

�
s; s+

d

2
; b

�
= argmax

a2A
ps

�
V (y; s; b) +

1� ps
ps

V

�
y; s+

d

2
; b

��
;

is continuous in ps > 0 and y1
�
s; s+ d

2 ; b
�
= y�1

�
s; s+ d

2 ; b
�
if ps = 1

2 . Because (18) holds strictly,

there exists an "�neighborhood of 1 for each (s; b), such that if it contains 1�psps
=

f(s+ d
2 )

f(s) , then

E [V (ap (�) ; �; b) js] = ps

 
V (ap (s) ; s; b) +

f
�
s+ d

2

�
f (s)

V

�
ap

�
s+

d

2

�
; s+

d

2
; b

�!

> ps

 
V

�
y1

�
s; s+

d

2
; b

�
; s; b

�
+
f
�
s+ d

2

�
f (s)

V

�
y1

�
s; s+

d

2
; b

�
; s+

d

2
; b

�!

= E

�
V

�
y1

�
s; s+

d

2
; b

�
; �; b

�
js
�
:

Proof of Lemma 4. First, construct the communication schedule as that in the proof of
Theorem 2 with the distance d

2 between the joint states, where the value of dis determined below.
Given the signal s 2 [kd; kd+ d

2); k 2 N0 in the �rst stage, truthtelling in both periods provides the
payo¤ to the expert:

E [V (ap (�) ; �; b) js] = �ps�2 (b; s)� pcs�2
�
b; s+

d

2

�
� ��2:
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Inducing the optimal decision

y1

�
s; s+

d

2
; b

�
= ps (s+ � (b; s)) + p

c
s

�
s+

d

2
+ �

�
b; s+

d

2

��
;

provides the payo¤:

E

�
V

�
y1

�
s; s+

d

2
; b

�
; �; b

�
js
�
= �pspcs

�
d

2
+ �

�
b; s+

d

2

�
� � (b; s)

�2
:

Because ap
�
s+ d

2

�
� ap (s) = s+ d

2 � s =
d
2 and V (a; s; b) is symmetric in a around y (s; b) =

s+ � (s; b), the second-stage incentive compatibility constraints are given by:

ap

�
s+

d

2

�
� ap (s) =

d

2
� 2� (b; s) : (19)

Since � (b; s) � �, (19) are satis�ed if d � 4�. Also, (19) implies d2 � � (b; s) � � (b; s) > 0 and

E

�
V

�
y1

�
s; s+

d

2
; b

�
; �; b

�
js
�
< �pspcs

�
d

2
� �
�2
= �

f (s) f
�
s+ d

2

��
f (s) + f

�
s+ d

2

��2 �d2 � �
�2
:

Suppose f (s) � f
�
s+ d

2

�
. (The case of f (s) < f

�
s+ d

2

�
is symmetric). If f (�) satis�es condition

(A4) for � > 0 and d > 0, then

f (s) f
�
s+ d

2

��
f (s) + f

�
s+ d

2

��2 = f
�
s+ d

2

�
f (s)

1�
1 +

f(s+ d
2 )

f(s)

�2 � e��
d
2�

1 +
f(s+ d

2 )
f(s)

�2 � e��
d
2

4
:

This implies

E

�
V

�
y1

�
s; s+

d

2
; b

�
; �; b

�
js
�
< �e

�� d
2

4

�
d

2
� �
�2
= � (d; �) ;

where � (d; �) attains the minimum � (d� (�) ; �) = � e�2���

�2
at d� (�) = 4

� + 2� for each � > 0.
Equivalently, each d > 2� is the minimizer of � (x; �) over x for �� (d) = 4

d�2� > 0.
Because (A4) holds for � = z�

� and d = d� (�) = 2�
�
2
z� + 1

�
, where z� ' 0:314 is a unique

solution to the equation z = e�1�
z
2 , we have

�� = z� = e�1�
z�
2 = e�1�

��
2 ;

and e�2��� = �2�2. This results in

E [V (ap (�) ; �; b) js] � ��2 = �
e�2���

�2
= � (d� (�) ; �) = � (d; �) > E

�
V

�
y1

�
s; s+

d

2
; b

�
; �; b

�
js
�
:

Finally, (19) holds, because z� < 1 implies d = 2�
�
2
z� + 1

�
> 4�:

Proof of Theorem 3. Because f (�) > 0; � 2 �, the probabilities of the joint states conditional
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on observing s 2 Qk for some k = 1; :::; N in the �rst period are

ps = Pr [� = sjs] =
f (s)

f (s) + f ('k (s))
> 0, and Pr [� = 'k (s) js] = 1� ps > 0.

The di¤erentiability of V (a; �; b) and y (�; b) and the continuity of 'k (�) in (a; �; b) imply
that y1 (s; b) ; V (ap (s) ; s; b) � V (ap ('k (s)) ; s; b);E [V (y1 (s; b) ; �; b) js], and E [V (aP (�) ; �; b) js]
are continuous in (s; b).

First, consider the expert�s second-stage incentive compatibility constraints (7) given
truthtelling in t = 1. That is, upon reporting s 2 Qk for some k = 1; :::; N , the expert can
induce ap (s) or ap ('k (s)) in the second stage. Suppose that the expert observes � = s 2 Qk
for some k = 1; :::; N in the second period. If b = 0, then ap (s) = y (s; 0) ; s 2 �. Because
ap (�) 6= ap (�0) ; �0 6= �, then the strict concavity of V (a; �; b) in a results in

V (ap (�) ; �; 0)� V (ap ('k (�)) ; �; 0) = V (y (�; 0) ; �; 0)� V (y ('k (�) ; 0) ; �; 0) > 0; � 2 Qk. (20)

Similarly, if the expert observes � = 'k (s) 2 �knQk for some s 2 Qk, then

V (ap (�) ; �; 0)� V (ap (s) ; �; 0) = V (y (�; 0) ; �; 0)� V (y (s; 0) ; �; 0) > 0; � 2 �knQk: (21)

Due to the continuity of V (ap ('k (s)) ; s; b) � V (ap (s) ; s; b) in (s; b), it follows that there exists
bck > 0, such that (20) and (21) hold for all b � bck and � 2 �k.

In the �rst period, the expert has two options upon observing s 2 Qk. First, she can induce
the optimal decision y1 (s; b) 2A given her current information. Second, the expert can learn �
perfectly in the second stage by reporting s truthfully. In the latter case, the expert can induce
only a 2 fap (s) ; ap ('k (s))g in the second period.

In the case of inducing y1 (s; b), suppose �rst that b = 0. Then, ap (�) 6= ap (�
0) ; �0 6= �

implies y (s; 0) = ap (s) 6= ap ('k (s)) = y ('k (s) ; 0). Thus, y1 (s; 0) 6= y (s; 0) and/or y1 (s; 0) 6=
y ('k (s) ; 0), which gives

E [V (y1 (s; 0) ; �; 0) js] = psV (y1 (s; 0) ; s; 0) + (1� pk)V (y1 (s; 0) ; s; 0)
< psV (y (s; 0) ; s; 0) + (1� pk)V (y (�k (s) ; 0) ; �k (s) ; 0)
= psV (ap (s) ; s; 0) + (1� pk)V (ap (�k (s)) ; �k (s) ; 0)
= E [V (ap (�) ; �; 0) js] ; s 2 Qk:

where E [V (ap (�) ; �; b) js] is the expert�s payo¤ in the case of truthful reporting in both stages.
Because E [V (y1 (s; b) ; �; b) js] and E [V (ap (�) ; �; b) js] are continuous in (s; b), there exists byk > 0,
such that

E [V (ap (�) ; �; b) js] � E [V (y1 (s; b) ; �; b) js] ; s 2 Qk; b � byk:

Thus, taking b � �b = min
k=1;:::;N

�
bck; b

y
k

	
sustains truthtelling of the expert in both stages.

Finally, the expert has no incentives to deviate from reporting � = f1gN in both stages, since
V (ap (�) ; �; b) � V (a; �; b) ; � = f1gN ; a 2 A.

Appendix B
This section highlights an example, which demonstrates how the principal can extract information
from the expert with an arbitrary precision for a range of biases if the density function is zero for
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some states.
Suppose that U (a; �) = � (a� �)2 ; V (a; �; b) = � (a� � � b)2, and f (�) = 2�; � 2 [0; 1]. In

this case, there is no communication schedule (2) and (3), which sustains the fully informative
equilibrium for any b > 0. This is because the second-stage incentive-compatibility constraints
require ' (s)� s � 2b, which implies ps = s

s+'(s) �
s

2(s+b) . As s! 0, it follows that ps ! 0 and

E [V (y1 (s; b) ; �; b) js] = �ps (1� ps) (' (s)� s)2 > �b2 = E [V (ap (�) ; �; b) js] ; b > 0:

It is, however, possible to elicit information from the expert with an arbitrary precision. For
that purpose, �x �d 2 (0; 1=2) and split the interval

�
0; �d
�
into N > 0 equal subintervals of length

d = �d=N . For each subinterval �i = [(i� 1) d; id); i = 1; :::; N , assign the complement subinterval
Zi = [1=2 + zi�1; 1=2 + zi), where z0 = 0 and zi is determined recursively:

zi =

�
4z2i�1 + 4zi�1 + 8d

2i� 4d2 + 1
�1=2 � 1

2
:

The complement intervals are chosen to preserve the expert�s uncertainty over states � 2 �i [ Zi:

Pr [� 2 �i] =
Z
�i

dF (�) =

Z
Zi

dF (�) = Pr [� 2 Zi] ; i = 1; :::; N: (22)

De�ne the expert�s information structure as follows. Suppose �rst that � 2 �� = [0; �d) [
[1=2; 1=2 + zN ). Note that [0; �d) \ [1=2; 1=2 + zN ) = ? and �� � [0; 1], since �d < 1=2 and
zN ! �d2 < 1=2 as N ! 1. If � 2 �i [ Zi for some i = 1; :::; N , the expert observes the signal
si = �i in the �rst stage. From (22), the posterior probabilities of the intervals �j and Zj are equal:

Pr [� 2 �ijsi] = Pr [� 2 Zijsi] = 1=2; i = 1; :::; N:

For each � 2 [ �d; 1=2), assign the complement state ' (�) 2 [1=2 + zN ; 1), such that

' (�) =
1� 2zN
1� 2 �d

�
� � �d

�
+ zN +

1

2
.

In the second stage, the expert is able to distinguish between the intervals �j and Zj only upon
sending the message sj 2 f�igNi=1 and between states s and ' (s) only upon sending the message
s 2 [ �d; 1=2). By construction, ��[f�; ' (�)g�2[ �d;1=2) [f1g = [0; 1]. If N ! 1, then zi ! �2i , and the
lengths of intervals �i and Zi, �i � �i�1 = �d=N ! 0 and zi � zi�1 ! �2i � �2i�1 ! 0, respectively.
That is, the optimal decision given si = �i:

y1 (si; b) =
1

2
E [�j� 2 �i] +

1

2
E [�j� 2 Zi] + b;

converges to yi1 =
1
2�i +

1
2

�
1
2 + �

2
i

�
+ b. Also, the principal�s best responses upon learning �i and

Zi are ap (�i) = E [�j�i] ! �i and ap (Zi) = E [�jZi] ! 1=2 + zi ! 1=2 + �2i , respectively. Hence,
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the expert�s payo¤ in the case of inducing y1 (si; b):

E [V (y1 (si; b) ; �; b) jsi] =
1

2
E [V (y1 (si; b) ; �; b) j�i] +

1

2
E [V (y1 (si; b) ; �; b) jZi]

!
N!1

�1
2

�
yi1 � �i � b

�2 � 1
2

�
yi1 �

1

2
� �2i � b

�2
= � 1

16

�
1� 2�i + 2�2i

�2
< � 1

16

�
1� 2 �d

�2
:

Similarly, the expert�s payo¤ in the case of truthful reporting in both stages,

E [V (ap (�) ; �; b) jsi] =
1

2
E [V (ap (�i) ; �; b) j�i] +

1

2
E [V (ap (Zi) ; �; b) jZi]

!
N!1

�1
2
(�i � �i � b)2 �

1

2

�
1

2
+ �2i �

1

2
� �2i � b

�2
= �b2:

The second-stage incentive-compatibility constraints hold if ap (Zi) � ap (�i) � 2b. Note that
ap (Zi)� ap (�i)! 1=2+ �2i � �i > 1=2� �d as N !1. It follows then that E [V (ap (�) ; �; b) jsi] >
E
�
V
�
yi1; �; b

�
jsi
�
and ap (Zi)� ap (�i) � 2b if b � b̂ = 1

4 �
�d
2 and N is su¢ ciently large.

Suppose now that � 2 [ �d; 1=2) [ [1=2 + zN ; 1). Because f (�) � 2 �d > 0 if � � �d, and

' (s)� s � '
�
�d
�
� �d =

1

2
+ zN � �d >

1

2
� �d > 0; s 2 [ �d; 1=2);

by Theorem 1 there exists �b, such that

E [V (y1 (s; b) ; �; b) js] � E [V (ap (�) ; �; b) js] ;

and ' (s) � s � 2b for all s 2 [ �d; 1=2) and b � �b. Therefore, if b � minf�b; b̂g, then there is an
equilibrium, in which the expert fully reveals � 2 [ �d; 1=2) [ [1=2 + zN ; 1] and approximately fully
reveals � 2 [0; �d) [ [1=2; 1=2 + zN ) as N !1.
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