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Abstract

We study how the structure of moves influences equilibrium predictions in the con-
text of revision games, as termed by Kamada and Kandori (2009). In our variant of re-
vision games, two players prepare their actions at times that arrive stochastically before
playing a coordination game at a predetermined deadline, at which time the finally-
revised actions are implemented. The revisions are either synchronous or asynchronous.
The coordination game we study is a 2 × 2 game with two strict Pareto-ranked Nash
equilibria. We identify the condition under which the Pareto-superior payoff profile is
the unique outcome of the dynamic game. Specifically, we find that uniqueness of this
outcome is more easily obtained when the degree of asynchronicity is sufficiently high
relative to the risk of taking the action corresponding to the Pareto-superior profile.
We further show that when this degree is low the set of payoffs attainable in equilibria
expands considerably.

1 Introduction

A multitude of recent papers have shown the sharp distinction in equilibrium predictions
between dynamic games in which players always move asynchronously and in which moves
∗We thank Drew Fudenberg and Attila Ambrus for helpful discussions.
†Department of Economics, Harvard University, email: ishii2@fas.harvard.edu
‡Department of Economics, Harvard University, email: ykamada@fas.harvard.edu
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arrive simultaneously. Such assumptions seem particularly stark in many economic applica-
tions. We examine whether such results are maintained when the synchronicity of moves is
neither perfectly synchronous nor perfectly asynchronous.

We study this question in the context of revision games, as termed by Kamada and
Kandori (2009). More precisely, we study a model in which two players prepare their actions
at times that arrive stochastically before playing a coordination game at a predetermined
deadline, at which time the finally-revised actions are implemented. The coordination game
we study is a 2×2 game with two strict Pareto-ranked Nash equilibria. Revision opportunities
arise according to a poisson process upon whose arrival, a player revises his action alone with
probability p and simultaneously with probability 1− 2p. When making a revision decision,
players do not know whether the opponent has also received an action revision opportunity or
not. Therefore our model encapsulates both purely asynchronous and perfectly synchronous
move revision games as special cases. Furthermore our model allows us to vary the level
of synchronicity of the dynamic game to study the effect of changes in synchronicity on
equilibrium predictions.

Our paper is motivated mainly by a result due to Calcagno and Lovo (2010) and Kamada
and Sugaya (2010), hereafter referred to respectively as CL and KS, that demonstrates the
impact that asynchronous moves has on equilibrium outcomes in revision games. More
specifically, their main results show that in a revision game in which the stage game is
a coordination game with a Pareto-dominant action profile, the payoffs corresponding to
the Pareto dominant action profile is selected as the unique equilibrium payoff as the time
horizon until the deadline approaches infinity. However their reasoning relies crucially on
action revision opportunities arriving to each player in a purely asynchronous fashion. Our
main question asks whether such selection results are an artifact of the purely asynchronous
nature of moves in their models. Of course if revision moves are purely synchronous then
any infinite repetition of a static Nash equilibrium constitutes a sequential equilibrium.
Therefore, at least initially, it is unclear whether unique selection can still be obtained in
games in which moves are not perfectly asynchronous.

With additional assumptions about the Pareto dominant action profile, we find that
equilibrium selection can still be maintained even in revision games in which moves are not
purely asynchronous. This additional assumption necessary for unique equilibrium selection
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comes in the form of a criterion termed q-dominance introduced first by Morris, Rob, and
Shin (1995). More precisely, we find that Pareto dominant equilibrium selection in these
games is driven by µ-dominance of the Pareto dominant Nash equilibrium where µ is an
increasing function in p. This additional assumption furthermore becomes easily obtained
when the structure of moves approaches that of purely asynchronous moves. For games with
purely synchronous moves, it is never satisfied.

Moreover in the class of games that we analyze, µ-dominance of the Pareto dominant
Nash equilibrium is not only sufficient but a necessary condition for unique selection of the
Pareto dominant payoff profile. We show that whenever this condition is violated, there
exists an equilibrium in which both players always play the action profile corresponding to
the Pareto inferior equilibrium. This result generalizes proposition 2.1 of CL in the context
of the games that we consider.1

On a more practical level, our model is motivated by the fact that in many repeated
interactions, even if we model interactions as occurring simultaneously, players’ action re-
visions aren’t always realized with certainty. As CL suggests, this inertia of actions exists
due to technological errors or simply human mistakes in implementing the action change.
For example, consider two firms that must meet over time to simultaneously revise their
actions on a project. Revision opportunities arrive stochastically due to constraints in the
availability of attention and time for the project for the two firms. However upon meeting
each other to revise actions simultaneously, action revisions of either one of the firms may
not become realized due to technological failure in processing the action revision. 2 Such
errors in action revision processing generate arrivals that look like asynchronous moves as
well as opportunities that look like a synchronous move opportunity.

The rest of the paper is organized as follows. In section 2 we introduce the model and
framework to be analyzed. Section 3 presents the main unique selection results including
definitions of q-dominance that lie at the heart of our proofs. In section 4, we illustrate that
the conditions for unique selection are both necessary and sufficient.

1However their result is more general in that it applies to component games beyond the cases that we
consider here in our paper.

2CL describe how such technological failures actually arise in many financial markets such as the NASDAQ
or Euronext.
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2 The Model

Consider a two-player 2 x 2 normal-form game in Figure 2.1, referred to as a component
game:

α2 β2

α1 1, 1 y, z
β1 z, y 0, 0

with y ≤ 0 and z < 1.

Figure 2.1: The Component Game

We let the action space for player i be Ai = {αi, βi}, and let A = A1 × A2. Player i’s
payoff function is denoted by ui : A→ R.

We consider a revision game with the component game specified above, in which players
prepare their actions before they actually play actions in the component game. Specifically,
time is continuous, −t ∈ [−T, 0], and the component game is played once and for all at time
0. Notice that t denotes the time left until time 0, the deadline. First, at time −T , players
simultaneously choose actions. Between time −T and 0, there is a Poisson process P with
arrival rate λ > 0. At each arrival, there are three possible events: With probability p1,
player 1 is allowed to revise her prepared action while player 2 is not. With probability p2,
player 2 is allowed to revise her prepared action while player 1 is not. With the remaining
probability 1− p1− p2, both players are allowed to revise their actions. At t = 0, the action
profile that has been prepared most recently is actually taken and each player receives the
payoff that corresponds to the payoff specification of the component game.

We will define a strategy as a map from histories to distributions over actions. To this
end, we first formalize the notion of history. Roughly, a history for player i at time −t
includes all the information about what has happened until time −t and whether or not i
has obtained an revision opportunity at −t, but it does not include any other information.
This means that we assume whether or not a player is allowed to make a revision at time
−t is a private information at −t. That is, upon receiving an opportunity to revise, player i
does not know whether player −i is obtaining the opportunity at the same moment.
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Formally,3 let ti,k ≤ t be the time when player i has received the k’th revision opportunity
until time −t and xi,k be the action prepared by player i at ti,k.4 A history for player i at t
is

hi(t) =
{(
{ti,k}k, ti,k≤t , {ai,k}k, ti,k<t

)
,
(
{tj,k}k, tj,k<t

, {aj,k}k, tj,k<t

)
, t
}
,

where j 6= i. Let Hi(t) denote the set of all possible histories for player i at t.5 A strategy
for player i is a mapping σi : ∪0

−t=−THi(t) → {∅} ∪ ∆(Ai) where σi(hi(t)) ⊆ ∆(Ai) if
there exists k such that ti,k = t (i.e. at t player i receives a revision opportunity) and
σi(hi(t)) = ∅ otherwise (i.e. at −t player i does not receive a revision opportunity). For
any given history hi(t), let ai(t) := ai,k∗, ∈ Ai with k∗ := arg max

k
{ti,k < t} be player i’s

prepared action resulting from his last revision opportunity (strictly) before t. We shall
denote a(t) := {ai(t)}i=1,2 the last prepared action profile before time t (time −t “PAP"
henceforth). Note that ai(t) will be player i’s payoff relevant action in t = 0 in the event i
receives no further revision opportunities from time t included, until time 0.

A strategy profile σ∗ forms a sequential equilibrium of the revision game if for all t and
hi(t),6

σ∗i ∈ arg max
σi

E
[
ui(x(0))|hi(t), σi, σ∗−i

]
.

Our main results will concern the case when T is high. We note that the model with
arrival rate λ and horizon length T is essentially equivalent to the model with arrival rates
λ and horizon length T

a
, for any positive constant a. Hence our results for high T can be

reinterpreted as those for high λ.
3The formalism here borrows largely from an ongoing research by Calcagno, Kamada, Lovo and Sugaya,

with appropriate modificaitons.
4Notice that −T = −ti,1 < · · · < −ti,k ≤ −t, that is, we count the revision opportunities from the first

one k = 1 after the beginning of the revision game.
5Note that Hi(T ) is defined to be a singleton.
6Strictly speaking, x(0) is the last action profile prepared before time 0, thus in this formulation play-

ers do not maximize the expected payoff prepared exactly at 0. However, since the probability that any
player obtains a revision opportunity exactly at time 0 is nil, this issue does not affect the solution of the
maximization problem.
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3 Unique Selection of the Pareto Dominant Profile

We show in this section that even when the game is not purely asynchronous, when stronger
restrictions are imposed on the action profile α beyond just pareto dominance, unique se-
lection of the pareto dominant payoff profile can be obtained. This additional restriction is
trivially obtained when the game is purely asynchronous and never satisfied when the moves
are purely synchronous.

This additional restriction necessary for unique selection is the concept of q-dominance
introduced first by Morris, Rob and Shin (1995) that was initially used in the literature on
global games.

Definition 3.1. An action profile (a1, a2) is called strictly q-dominant for player i if for any
action σ−i,

qui(a) + (1− q)ui(ai, σ−i) > qui(a
′
i, α−i) + (1− q)ui(a′i, σ−i)

for any pair of actions a′i ∈ Ai with ai 6= a′i.

3.1 Synchronicity Relatively Likely

Before we proceed, let us define the following parameter µ:

µ =
p

1− p
.

In words, µ represents the probability that a player assigns to having arrived asynchronously
upon an arrival. In this section we characterize sufficient conditions for unique equilibrium
selection when µ ≤ 1/2. This corresponds to the case in which the move structure is relatively
close to purely synchronous moves.

Theorem 3.2. Suppose µ ≤ 1/2 and that α is strictly µ-dominant for both players. Then
in any equilibrium when at least one person is currently playing αi both players will play αj.

Proof. Suppose an arrival occurs at t for player 1 and suppose that the currently prepared
action profile is either (α) or (β1, α2). Then player 1 places probability probability (1 − µ)
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on player 2 also arriving at time t. Thus the expected payoff of playing α1 is equal to at
least

µe−λtu1(α) + (1− µ)e−λtu1(α1, σ2(t)) + (1− e−λt)u1.

However the payoff from playing β1 is at most

µe−λtu1(β1, α2) + (1− µ)e−λtu1(γ1, σ2(t)) + (1− e−λt)u1(α).

By strong µ-dominance of α and the symmetry of the problem, there exists some t∗ > 0

such that at all times t ≤ t∗, both players will strictly prefer playing αi to any other strategy
when the opponent’s current prepared profile is αj no matter the history of play.

Then consider the play of player 1 at time t ≤ t∗ when player 1’s prepared action is
α1 but player 2’s prepared action β2 is not necessarily α2. Note that player 2 if he arrives
simultaneously will play α2. Therefore playing α1 guarantees a payoff of

µe−λtu1(α1, β2) + (1− µ)e−λtu1(α) + (1− eλt)u1,

while preparing β1 yields at most a payout of

µe−λtu1(β) + (1− µ)e−λtu1(β1, α2) + (1− eλt)u1(α).

Since 1−µ ≥ µ, µ-dominance implies (1−µ)-dominance of α. Then by (1−µ)-dominance of
α for player 1 to conclude that for all t ≤ t∗ player 1 will always choose to play α1 whenever
at least one player is playing αi. A similar argument holds for player 2.

Now consider the following time. Let T ∗ be the supremum over all times t > 0 with the
property that in any equilibrium, both players always play α whenever the currently played
action profile has at least one α for all t̃ ≤ t. In other words if T ∗ is finite, then for any
t > T ∗, there exists some equilirium in which at least one player plays some action σi(t̃) 6= αi

at time t̃ < t. However consider some time t > T ∗. Now consider an equilibrium and let
σ′1(t) ∈ arg maxσ1 u1(σ1, σ2(t)).
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Let us define the following continuation value functions

V1(α1, β2) = e−λ(1−p)T ∗u1(α1, β2) + (1− e−λ(1−p)T ∗)u1(α)

V1(β1, α2) = e−λ(1−p)T ∗u1(β1, α2) + (1− e−λ(1−p)T ∗)u1(α)

V1(β1, β2) ≤ e−λ(1−p)T ∗u1(β) + (1− e−λ(1−p)T ∗)u1(α)

Note that the continuation value bounds do not have to specify the history of play since
from time T ∗ on, the play at histories in which at least one αi is played is given no matter
the history. Furthermore note that the second continuation value assumes that player 2

continues to play α2 whenever he has done so after time T ∗. This uses the assumption that
µ ≤ 1/2.

Consider a time t > T ∗ and suppose that the PAP is (·, α2). If player 2 upon arrival at
such a history plays α2, then clearly it is a strict best response for player 1 to play α1 for
t sufficiently close to T ∗. Therefore consider the situation in which player 2 plays β2 upon
simultaneous arrival at t.7

Playing α1 when the opponent is currently playing α2 gives a payout of at least

e−λ(t−T ∗) (µu1(α) + (1− µ)V1(α1, β2)) + (1− e−λ(t−T ∗))u1,

whereas playing some σ1 6= α1 gives a payout of

e−λ(t−T ∗) (µV1(β1, α2) + (1− µ)V1(β1, β2)) + (1− e−λ(t−T ∗))u1(α).

Note that

µu1(α) + (1− µ)V1(α1, β2(t))

=
(
µ+ (1− e−λ(1−p)T ∗)(1− µ)

)
u1(α) + (1− µ)e−λ(1−p)T ∗u1(α1, β2)

7Note that this is without loss of generality since if the inequalities hold strictly in this situation as well
as when player 2 plays α2 upon simultaneous arrival, the inequalities will also hold strictly for any convex
combination and thus for when player 2 potentially plays a mixed strategy upon arrival at t.

8



However

µV1(β1, α2) + (1− µ)V1(β1, β2)

≤
(
µ(1− e−λ(1−p)T ∗) + (1− e−λ(1−p)T ∗)(1− µ)

)
u1(α)

+ µe−λ(1−p)T ∗u1(β1, α2) + (1− µ)e−λ(1−p)T ∗u1(β1, β2)

Note that

µe−λ(1−p)T ∗u1(α) + (1− µ)e−λ(1−p)T ∗u1(α1, β2)

> µe−λ(1−p)T ∗u1(β1, α2) + (1− µ)e−λ(1−p)T ∗u1(β1, β2)

by strong µ-dominance. We then have

µu1(α) + (1− µ)V1(α1, β2) > µV1(β1, α2) + (1− µ)V1(β1, β2).

Therefore there exists some T̃ > T ∗ such that at all times t < T̃ , player 1 strictly prefers
to play α1 when the currently prepared action of player 2 is α2. Similarly, we can choose T̃
such that both players strictly prefer to play αi when the currently prepared action of the
opponent is α−i. Using exactly the same argument as before we can also show that given
these strategies, both players would continue to play αi whenever they are currently playing
αi. However this contradicts the definition of T ∗ and hence we are done.

An easy consequence of the above theorem is the following corollary.

Corollary 3.3. Suppose µ ≤ 1/2. Suppose further that α is strictly µ-dominant for both
players. Then the set of payoffs shrinks to {u(α)} as the time horizon approaches infinity.

The proof is a simple consequence of the above theorem. Theorem 3.2 implies that by
always playing αi from time T on, player i can guarantee himself a payoff of

(1− e−λ(1−p)T )ui(α) + e−λ(1−p)Tui.

Note that this converges to ui(α) as T →∞.
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3.2 Synchronicity Relatively Unlikely

We investigate the question of whether the above selection result can be extended to the
case of µ > 1/2. Note that the above discussion shows that when α is strictly (1 − µ)-
dominant, unique selection of the Pareto dominant payoff profile is obtained. However,
(1 − µ)-dominance is a very strong assumption in the case of µ close to 1. We would like
selection criteria that approximates those that are necessary for unique selection in the purely
asynchronous case which is simply that α is Pareto dominant for µ close to 1.

Since we already have a selection theorem for when α is strictly (1−µ)-dominant as well
as µ-dominant, it remains to analyze the case in which α and β are both strictly µ-dominant.
In this case, near the deadline both players want to match the opponent’s currently played
action no matter what the opponent does.

Theorem 3.4. Suppose µ > 1/2 and that α and β are both strictly µ-dominant. Then there
exists a time T ∗ such that at all times t < T ∗, players always match the play of the opponent’s
PAP in any equilibrium. Furthermore in any equilibrium at any time t > T ∗, players play α
when at least one of the players is currently playing α in the PAP.

Proof. As in the previous proofs, note that there exists some t∗ > 0 such that for all t < t∗,
players strictly prefer to match the currently played action of the opponent in any equilib-
rium. Let T ∗ be the sup of all such times. Then we can calculate the value functions at such
a time. Note that the T ∗ above must be finite. It is easy to see this from looking at the
payoffs after a history in which the PAP is (α, β). Let the following continuation values be
defined at time T ∗.

V (α) = 1

V (β, α) = e−2λpT ∗(q(T ∗)u(β, α) + (1− q(T ∗))u(α, β)) +
1− e−2λpT ∗

2

V (α, β) = e−2λpT ∗(q(T ∗)u(α, β) + (1− q(T ∗))u(β, α)) +
1− e−2λpT ∗

2
V (β) = 0
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where q(t) is the following probability:

q(t) =
1 + e−2λ(1−2p)t

2

representing the probability of an even number of simultaneous arrivals. This calculation
can easily be seen in the following way. The probability of an even number of simultaneous
arrivals conditional on the event that all arrivals are simultaneous over a time interval t is
the following:

∞∑
k=0

e−λ(1−2p)t(λ(1− 2p)t)2k

(2k)!
= e−λ(1−2p)t e

λ(1−2p)t + e−λ(1−2p)t

2

=
1 + e−2λ(1−2p)t

2
.

The particular functional form of this probability does not matter. The important thing
here for the proof is that q(0) = 1, q(t) > 1/2 for all t, and that q(t) → 1/2 monotonically
as t→∞.

First we prove the following:

Lemma 3.5.
µu(α) + (1− µ)V (α, β) > µV (β, α) + (1− µ)V (β).

This means that both players will strictly prefer to play α for some time a little bit for
T ∗ when the currently played action of the opponent is α.

Proof. First assume that 0 ≥ u(α, β) ≥ u(β, α). Then

q(T ∗)u(β, α) + (1− q(T ∗))u(α, β) ≤ 1

2
(u(β, α) + u(α, β)) ≡ ū

q(T ∗)u(α, β) + (1− q(T ∗))u(β, α) ≥ 1

2
(u(β, α) + u(α, β)) ≡ ū.

Therefore

µV (α) + (1− µ)V (α, β) ≥ µ+ (1− µ)e−2λT ∗ū+ (1− µ)
1− e−2λpt

2
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whereas

µ(V (β, α) + (1− µ)V (β) ≤ µe−2λpT ∗ū+ µ
1− e−2λpt

2
.

However note that
µ > (µ− 1/2)(1− e−2λpT ∗)

and therefore since ū ≤ 0,

µ > (2µ− 1)(
1− e−2λpt

2
+ e−2λpT ∗ū)

which implies that

µ+ (1− µ)e−2λT ∗ū+ (1− µ)
1− e−2λpt

2
> µe−2λpT ∗ū+ µ

1− e−2λpt

2
,

which then implies that

µV (α) + (1− µ)V (α, β) > µV (β, α) + (1− µ)V (β).

Now case 2, in which we assume that u(β, α) > u(α, β). Then notice that

q(T ∗)u(β, α) + (1− q(T ∗))u(α, β) ≤ u(β, α)

q(T ∗)u(α, β) + (1− q(T ∗))u(β, α) ≥ u(α, β).

Therefore

µV (α) + (1− µ)V (α, β) ≥ µ+ (1− µ)

(
e−2λpT ∗u(α, β) +

1− e−2λpt

2

)
,

and

µV (β, α) + (1− µ)V (β) ≤ µ

(
e−2λpT ∗u(β, α) +

1− e−2λpt

2

)
.

But note that

µ+ (1− µ)e−2λpT ∗u(α, β)− µe−2λpT ∗u(β, α) > (2µ− 1)
1− e−2λpT ∗

2
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by µ-dominance of α and this concludes our proof.

So there exists some T ∗1 > T ∗ such that for all t ≤ T ∗1 , both players play α when the
opponent’s PAP is α in any equilibrium. Now consider a history at which the PAP is (α, β)

at some t ≤ T ∗1 . Then the player will know that the opponent will play α. Suppose by way
of contradiction that

µV (β) + (1− µ)V (β, α) > µV (α, β) + (1− µ)V (α).

Then at t sufficiently close to T ∗, both players prefer to play β after such histories.
Furthermore the above inequality implies that

V (β) > V (α, β)

This implies that no matter what the opponent does upon simultaneous arrival, both play-
ers prefer to strictly play β in any equilibrium at times sufficiently close to T ∗ when the
opponent’s PAP is β.

This however contradicts the definition of T ∗. Therefore we must have

µV (β) + (1− µ)V (β, α) = µV (α, β) + (1− µ)V (α).

Note the above pins down T ∗ exactly and consequently V (β, α) and V (α, β). Furthermore
the above indifference condition implies that V (β) > V (α, β).

Now consider time t ≤ T 1. At such a time, we know behavior of both players when the
PAP is such that the opponent is playing α. We need to determine behavior when the PAP
is (α, β). By playing α we can calculate the lower bound:

A.1. if no other arrivals occur

e−λ(t−T ∗)(µV (α, β) + (1− µ)V (α))

A.2. if exactly one arrival occurs and the first arrival was asynchronous and the player
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decides to play α in the second arrival

λµe−λ(t−T ∗)(t− T ∗)(pV (α, β) + pV (α) + (1− 2p)V (α))

A.3. if exactly one arrival occurs and the first arrival was asynchronous and the player
decides to play β in the second arrival

λµe−λ(t−T ∗)(t− T ∗)(pV (β) + pV (α) + (1− 2p)V (β, α))

A.4. if exactly one arrival occurs and the first arrival was simultaneous then

λ(1− µ)e−λ(t−T ∗)(t− T ∗)V (α)

A.5. if two or more arrivals arrives

(1− e−λ(t−T ∗)(1 + t− T ∗))u

Note that (3.2) and (3.2) are equal because of the indifference condition.
Now consider an upper bound on the payoff from playing β:

B.1. if no other arrivals occur

e−λ(t−T ∗)(µV (β) + (1− µ)V (β, α))

B.2. if exactly one arrival occurs and the first arrival was asynchronous:

λµe−λ(t−T ∗)(t− T ∗)U
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where U is the maximum of the following four terms:

V (β) (3.1)

pV (β) + pV (α, β) + (1− 2p)V (α, β) (3.2)

pV (β, α) + pV (β) + (1− 2p)V (β, α) (3.3)

pV (β, α) + pV (α, β) + (1− 2p)V (α) (3.4)

B.3. if exactly one arrival occurs and the first arrival was simultaneous then

λ(1−µ)e−λ(t−T ∗)(t−T ∗) max{pV (β)+pV (α)+(1−2p)V (α, β), pV (β, α)+(1−p)V (α)}

B.4. if two or more arrivals arrives

(1− e−λ(t−T ∗)(1 + t− T ∗))V (α)

The case in which two or more arrivals comes is negligible since it is a second order term
for t sufficiently close to T ∗. So we ignore that term for now. Also note that terms (A.1) and
(B.1) are exactly the same because of the indifference condition. Moreover (A.2) and (A.3)
are again exactly the same because of the indifference condition. So the relevant terms for
the calculation are (A.2),(A.3), (A.4) versus (B.2) and (B.3). Therefore if we can show that

(A.2) + (A.4) > (B.2) + (B.3)

then we have shown that there exists some T ∗∗ > T ∗ such that whenever t ∈ (T ∗, T ∗∗], if an
arrival comes at t and the PAP is such that at least one person is playing α, then the player
will choose to play α. Let us prove the above statement.

First consider the expressions (3.2) - (3.4). Note that each of these expressions is dom-
inated by either pV (α, β) + pV (α) + (1 − 2p)V (α)) or (pV (β) + pV (α) + (1 − 2p)V (β, α).
Since (A.4) > (B.3), we have the above statement for when U is equal to one the expressions
(3.2) - (3.4). So to prove the above statement all we have left to check is the case in which
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U = V (β). Consider first the case in which

(B.3) = λ(1− µ)e−λ(t−T ∗)(t− T ∗)(pV (β, α) + (1− p)V (α)).

In this case we have

(A.2) + (A.4) > (B.2) + (B.3)

⇔ µ(p+ (1− 2p)V (β, α)) + (1− µ) > (1− µ)(pV (β, α) + (1− p))

⇔ µp+ µ(1− 2p)V (β, α) + (1− µ)p > (1− µ)pV (β, α)

⇔ µ2 + µ(1− µ)V (β, α) + (1− µ)µ > (1− µ)µV (β, α)

⇔ µ > 0.

Therefore for this case the above is satisfied. Finally let us check the case in which

(B.3) = λ(1− µ)e−λ(t−T ∗)(t− T ∗)(pV (β) + pV (α) + (1− 2p)V (α, β)).

In this case,

(A.2) + (A.4) > (B.2) + (B.3)

⇔ 1 > (1− 2µ)V (α, β)

Using the indifference condition, we can rewrite the above inequality as

1 > (1− µ)V (α, β)− µV (α, β)

⇔ 1 > (1− µ)V (α, β) + (1− µ)− (1− µ)V (β, α)

⇔ µ > (1− µ)(V (α, β)− V (β, α))

⇔ µ > (1− µ)e−2λpT ∗(2q(T ∗)− 1)(u(α, β)− u(β, α)).

Note that one of the two inequalities above is satisfied trivially when µ is sufficiently
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close to 1/2 or when µ is sufficiently close to 1. More precisely, when

1 > (u(α, β) + u(β, α))

(
1

2
− µ

)
(3.5)

⇔ 1

2
− 1

u(α, β) + u(β, α)
> µ (3.6)

and u(α, β) > u(β, α) then the first inequality is satisfied, and when

µ

1− µ
> u(α, β)− u(β, α) (3.7)

the second inequality is satisfied.
The result above then allows to us to continue the backward induction in the same way

that we did in the previous section. Note that the above discussion establishes the existence
of some T ∗∗ > T ∗ such that at all times t ≤ T ∗∗, both players play α when the opponent’s
PAP is α. Furthermore at all times t ∈ (T ∗, T ∗∗], players continue to play α when their own
PAP is α. As in the arguments previously, take T ∗∗ to be the supremum over all such times.

Then the continuation values at t ≤ T ∗∗ are given by the following:

W (α, t) = 1

W (β, α, t) = e−λ(1−p)(t−T ∗)V (β, α) + (1− e−λ(1−p)(t−T ∗))V (α)

W (α, β) = e−λ(1−p)(t−T ∗)V (α, β) + (1− e−λ(1−p)(t−T ∗))V (α)

Let t > T ∗∗ and consider a history at which the PAP of player 2 is α2. It is easy to show
after such histories that player 1 will strictly prefer to play α1. Because of symmetry, so will
player 2.

Now consider a history at which the PAP of player 1 is α1. By playing α1, player 1 can
guarantee himself a payoff of:

e−λ(t−T ∗∗)(µW (α1, β2, T
∗∗) + (1− µ)W (α, T ∗∗)) + (1− e−λ(t−T ∗))u1
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whereas playing β1 gives him a payoff at most:

e−λ(t−T ∗∗)(µW (β, T ∗∗) + (1− µ)W (β1, α2, T
∗∗)) + (1− e−λ(t−T ∗))u1(α).

We obtain a contradiction of the definition of T ∗∗ if

µW (α1, β2, T
∗∗) + (1− µ)W (α, T ∗∗) > µW (β, T ∗∗) + (1− µ)W (β1, α2, T

∗∗).

Therefore we must have

µW (α1, β2, T
∗∗) + (1− µ)W (α, T ∗∗) = µW (β, T ∗∗) + (1− µ)W (β1, α2, T

∗∗).

But in this case we can use the exact same argument that started the induction at T ∗ again
contradicting the definition of T ∗∗. Therefore such a T ∗∗ must be infinite. This means that
in any equilibrium, both players must play α when either player’s PAP is α at all times
t > T ∗. At times t ≤ T ∗, both players match the opponent’s PAP.

We conclude this discussion with the statement of the main theorem.

Theorem 3.6. Suppose that α is strictly µ-dominant and that either µ ≤ 1/2 or that either
condition 3.5 or 3.7 is satisfied. Then the set of payoffs shrinks to {u(α)} as the time horizon
approaches infinity. If α is (1 − µ)-dominant, we obtain the same conclusion without any
additional assumptions.

Note that the theorem above leaves open cases in which both α and β are strictly µ-
dominant but neither conditions 3.5 nor 3.7 are satisfied. Our conjecture thus far is that
even in this region of parameters, a unique selection theorem obtains. However it currently
remains an open question.

4 Non-selection

In the previous section, we developed sufficient conditions for unique selection of the Pareto
dominant payoff profile. We show in this section that those conditions are necessary and
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sufficient. Before we begin the discussion, note first that the construction of an equilibrium
in which the Pareto dominant payoff profile of u(α) is an easy exercise. The question that
we answer in this section is whether other payoff profiles can be obtained in equilibrium for
arbitrarily large time horizons when α is no longer strictly µ-dominant.

Theorem 4.1. If β is (1 − µ)-dominant, then there exists an equilibrium in which both
players always choose βi regardless of the history and time of arrival.

Note that proposition 2.1 in CL proposes a very similar statement. The proposition in the
context of our model and notation states that for any generic game, there exists some µ̄ such
that for all µ ≤ µ̄, the infinite repetition of any static Nash equilibrium is an equilibrium
outcome. Note that in the context of our model, this statement is a consequence of the
theorem above. Therefore our theorem is more general when attention is restricted to the
class of games that we consider in our paper. However their result applies to to any revision
game with a component game that is not of the form considered in this paper.

Proof. We use the one stage deviation principle adapted to these games to prove the above
proposition. Consider a history at which the currently prepared action profile is such that
the opponent has prepared α−i and suppose that at such a history player i obtains an arrival
at time t. Now suppose that the opponent is playing the strategy of always playing βi

regardless of the history and time of arrival. Then a "one-stage" deviation of playing αi at
time t and playing βi upon further arrivals in the future gives a payout of

Vµ(t) ≡
(
e−λtu1(α) + e−λ(1−p)t(1− e−λpt)(u1(βi, α−i) + u1(αi, β−i)) + (1− 2e−λ(1−p)t + e−λt)u1(β)

)
with probability µ and

V1−µ(t) ≡
(
e−λ(1−p)tu1(αi, β−i) + (1− e−λ(1−p)t)u1(β)

)
with probability (1− µ). By playing according to the specified strategy, player i obtains an
expected payout of

V (t) ≡ µ(e−λ(1−p)tu1(βi, α−i) + (1− e−λ(1−p)t)u1(β)) + (1− µ)u1(β).
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Note that
V (0) > µVµ(0) + (1− µ)V1−µ(0)

by (1− µ)-dominance of β. Note further that

V (t)− µVµ(0)− (1− µ)V1−µ(0)

= µe−λt(ui(βi, α−i)− ui(α)) + e−λ(1−p)t (1− µe−λpt) (ui(β)− ui(αi, β−i))

which is greater than zero if and only if

(ui(βi, α−i)− ui(α)) +
(
eλpt − µ

)
(ui(β)− ui(αi, β−i)) > 0.

Since β is a Nash equilibrium, the above expression is increasing in t and because it is greater
than zero at t = 0, we can conclude that

V (t)− µVµ(0)− (1− µ)V1−µ(0) > 0

for all t. Therefore we have shown that playing βi whenever the opponent has prepared
α−i is incentive compatible against always playing β−i. Showing that playing βi is a best
response whenever the opponent has prepared β−i is trivial.
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