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Abstract
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types of individual who fail to recognize their own type but do observe the type of their
opponent. In this game we �nd two evolutionarily stable strategies and show that in each
of them, and for any distribution of types, one type of individuals su¤ers more aggression
than the other. Our theoretical results are consistent with the conclusions drawn from
an experimental study into the behavior of a group of domestic fowls when a subgroup
has been marked. (JEL C72 )
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1 Introduction

Scienti�c experiments using animals frequently involve the marking of animals in a way that

arti�cially changes their phenotype. For instance penguins with �ipper bands have been

used to study climate change. However, as Saraux et al. (2011) show, this banding reduces

penguins�survival rate. Consequently these studies may mix up the e¤ects of banding with

other changes in penguin life and therefore be inaccurate. To analyze the e¤ect of marking

within a group of birds, Dennis et al. (2008) conduct an experiment in which a subgroup

of domestic fowls is marked. The two most salient results of their research are that marked

birds, for any of the proportions of the population under study, su¤er more aggression and

have less body mass than their unmarked pen mates.

In this experiment each bird can observe whether others are marked or unmarked, but

does not know whether it is marked itself or not. This stands in sharp contrast with the

usual assumption made in game theory that a player knows her type, but may have only

partial information concerning the type of the other players. To the best of our knowledge

no situations where individuals lack self-perception but are able to observe others�type have

ever been modeled1. Here we consider this feature, which underlies the experimental work of

Denis et al. (2008).

We propose a variation of the classic hawk-dove game where individuals are unaware of

their own type but see their opponent�s type. We use evolutionarily stable strategy (Maynard

Smith and Price, 1973) for the analysis of this game.

We refer to the hawk-dove game in a �nite population as the �homogenous game�, and

modify it by arti�cially dividing the population into two types. Each individual can watch

all other individuals and observe their type, but does not have information concerning her

own type. Hence individuals can condition their actions on their information about the other

individuals�types but not on their own. We refer to this game as the �heterogeneous game�.

Though the division of a population into two types of individuals is not linked to any

disparity in capacity, we �nd that it a¤ects the behavior of the players. The evolutionar-

ily stable strategy of the homogeneous game played against any type of individual is not

evolutionarily stable in the heterogeneous game. Interestingly enough, the heterogeneous

game has exactly two evolutionarily stable strategies, in each of them an individual�s action

depends on her opponent�s type. In each equilibrium, one type of individual always su¤ers

more aggression than the other. We refer to the type which is attacked more as alien and

1Two illustrations of such type of situations are a card game called the "Indian poker game" (See
http://en.wikipedia.org/wiki/Blind_man�s_blu¤_poker) and a sequence in Tarantino�s movie "Inglourious
Basterds" (2009).

2



to the other type as local. Not surprisingly, we �nd that an alien is always worse o¤ than

a local, and that an alien�s expected payo¤ increases as the proportion of aliens within the

population increases. For a local, however, the expected payo¤ increases as the proportion of

aliens increases up to a certain point and decreases thereafter. Furthermore for an individual

taken at random the existence of a small proportion of aliens is bene�cial whereas a larger

proportion is detrimental.

Our theoretical results support the conclusions obtained by Dennis et al. (2008). Con-

sidering hawkish behavior as a proxy of the pecking and threatening between birds observed

in their experiment, we �nd that a strategy of more aggressive behavior toward marked birds

than toward unmarked ones can be evolutionarily stable whatever the proportion of the pop-

ulation that has been marked. Moreover, the fact that in this experiment marked birds have

less body mass than their unmarked pen mates is also supported under the assumption that

the body mass of a bird can be evaluated through the expected payo¤ of an individual in a

heterogeneous game.

Now let us compare our results with the relevant literature. In the seminal hawk-dove

game only the mixed strategy in which the probability of each individual playing hawk is

equal to the ratio between the value of the resource and the cost of �ghting is evolutionarily

stable. Maynard Smith and Parker (1976) propose a variation in which individuals �ght

for a territory, each player being either the "owner" or the "intruder". They show that the

"bourgeois" strategy, i.e. playing hawk when one is the owner and dove when the intruder,

is evolutionary stable. Going further, Selten (1980) proves that only pure strategies are

evolutionarily stable. However, Binmore and Samuelson (2001a, 2001b) consider the two roles

that an individual may play jointly with payo¤ perturbations, and show that under certain

conditions mixed strategies can also be evolutionarily stable in this game. This last result

goes along with the �ndings obtained in our variation. When individuals lack self-perception

but observe the type of the others pure as well as mixed strategies may be evolutionarily

stable, depending on the proportion of aliens in a population.

This study can also be linked to the literature on social dynamics, in particular to the work

by Axtell, Epstein and Young (1991). These authors consider the divide-one-dollar game, in

which each individual may choose among the following three actions: high (ask for 70 cents),

medium (ask for 50 cents) and low (ask for 30 cents) claims. The dollar is divided according

to claims whenever they are feasible, otherwise players receive nothing. The dynamics of

random bilateral encounters in large populations show that in the long run any two players

in the population tend to demand a medium claim. However, if the population is arti�cially

divided into two groups then a discriminatory norm emerges in society. An equilibrium
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where the members of one group make a high claim and the members of the other group

make a low claim when pairs belonging to di¤erent groups meet may persist for substantial

periods of time, in which there is intra-group dissension. We reach a similar conclusion in a

completely di¤erent setting: arti�cial division of the individuals into two types gives rise to

true discrimination against one of the types, the aliens, who moreover behave aggressively

among to one another.

The rest of the paper is organized as follows. Section 2 presents the homogeneous game

and its unique evolutionarily stable strategy. Section 3 introduces the heterogeneous game

and derives the evolutionarily stable strategies and expected payo¤s. Section 4 analyzes the

experimental work in the light of our game theoretical results. Section 5 concludes.

2 The homogenous game

Consider a population of n identical individuals in which any pair faces a contested resource

of value v and may �ght at a cost c. The size of the population n, the value v and the cost

c are considered to be �xed with v < c. Each individual can be either aggressive and behave

as a hawk or passive and behave as a dove. If an individual behaves as a hawk and her

opponent as a dove, the aggressive individual gets the resource v while the passive individual

gets nothing. If both individuals act as hawks, there is a �ght. The winner gets the resource

while the loser faces the cost c. Assuming that the two individuals have the same probability

of winning the �ght, the expected payo¤ for each one is half the resource minus the cost. If

the two individuals behave as doves one withdraws and the other gets the resource. Assuming

that the two individuals have the same probability of withdrawing the expected payo¤ for

each one is half the resource. This description corresponds to the classic hawk-dove game

played by a population of identical individuals, which we refer to as the homogeneous game

� whose payo¤ matrix may be represented as follows2:

hawk dove
hawk (v�c2 ;

v�c
2 ) (v; 0)

dove (0; v) (v2 ;
v
2 )

(1)

Let � denote the probability of playing hawk so that an individual can choose either a

pure hawk (� = 1) or dove (� = 0) strategy or a mixed strategy (0 < � < 1). Let u(�; �) be

the expected payo¤ of an individual that plays � when her opponent plays �. That is,

u(�; �) = v
2 (1� �) +

c
2(
v
c � �)�: (2)

2 If we have v > c then the structure of the game is equivalent to a prisoner�s dilemma, while if we have
v = c then it is equivalent to a coordination game.
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Since game � is symmetric the opponent�s expected payo¤ is given by u(�; �).

The concept of �evolutionarily stable strategy�introduced by Maynard Smith and Price

(1973) is applied to solve the hawk-dove game. This notion captures the resilience of a given

strategy against any other strategy in the following sense: Consider a population where most

members play an evolutionarily stable strategy while a small proportion of mutants choose a

di¤erent strategy. In this situation each mutant�s expected payo¤ is smaller than the expected

payo¤ of a "normal" individual, so that the mutants are driven out from the population3.

An evolutionarily stable strategy may be formally determined as follows. Recall that a

best response is a strategy that yields the highest payo¤ given the opponent�s strategy. Let

B(�) denote the set of an individual�s best responses to an opponent playing strategy �. The
two conditions for strategy �� to be evolutionarily stable are: (i) �� 2 B(��) and (ii) for any
� 6= �� such that � 2 B(��) we have u(��; �) > u(�; �). Condition (i) states that �� has

to be a best response to itself. That is, the pair of strategies (��; ��) is a symmetric Nash

equilibrium (Nash, 1951). Condition (ii) states that if the opponent plays a best response to

�� (other than ��) then the payo¤ of playing �� is strictly greater than the payo¤ of playing

that best response.

For game � the set of an individual�s best responses to an opponent playing � is

B(�) =

8<:
f1g if � < v

c
f� j � 2 [0; 1]g if � = v

c
f0g if � > v

c :

That is, if the probability of the opponent playing hawk is smaller than the ratio between

the resource and the cost, the unique best response is to play hawk, while if it is greater than

that ratio the unique best response is to play dove. If the probability of the opponent playing

hawk is equal to that ratio then any strategy is a best response. For this game strategy v
c is

the only evolutionarily stable strategy. It is the only strategy that is a best response to itself,
v
c 2 B(

v
c ), and it satis�es Condition (ii): u(

v
c ; �)� u(�; �) =

c
2(
v
c � �)

2 > 0 for � 6= v
c .

3 The heterogenous game

3.1 The model

Consider a division of the n individuals into two types, A and B, where x (0 < x < 1) is the

proportion of individuals of type B. Assume that a pair of individuals is selected at random.

This is equivalent to assuming that an individual is randomly chosen from a group of n

3See Maynard Smith (1982), Chapter 2, and Weibull (1995), Chapter 2, for a detailed explanation of this
notion. A good introduction can also be found in Osborne (2004), Chapter 13.
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individuals, and then an opponent is randomly chosen from the remaining n� 1 individuals.
Thus, in any bilateral encounter between two individuals there are four possible cases: both

individuals are of type A; the �rst individual is of type A and the second of type B; the �rst

is of type B and the second is of type A; or both are of type B. The probabilities of these four

possible encounters, which we denote respectively by p(A;A), p(A;B), p(B;A) and p(B;B)

are given by

p(A;A) = (1�x)(n�nx�1)
n�1 , p(A;B) = p(B;A) = x(1�x)n

n�1 and p(B;B) = x(nx�1)
n�1 : (3)

Since the division of individuals into types is done random, it does not re�ect genetic

di¤erences between individuals. Consequently the probability of winning or losing a �ght is

not determined by the distribution of types. Hence the hawk-dove game, whose payo¤matrix

given by (1) is played in each state of nature.

The essential feature of this model is that individuals fail to recognize their own type but

do observe their opponent�s type. This implies that the �rst individual does not distinguish

between states (A;A) and (B;A) nor between (A;B) and (B;B) while the second individual

does not distinguish between states (A;A) and (A;B) nor between (B;A) and (B;B).

What is a strategy in this context? Obviously individuals �nd themselves in a position

of choosing a probability of playing hawk for each type of opponent. A strategy can thus

be represented by � =(�A; �B) where �A gives the probability of behaving as a hawk when

facing an individual of type A and �B gives the probability of behaving as a hawk when facing

an individual of type B. Of course any strategy � played by an individual in a homogeneous

game can be played against either type of opponent, i.e. �A = �B = �. Such a strategy is

referred to as homogeneous by contrast to a heterogeneous strategy where �A 6= �B. Thus

there are two pure homogeneous strategies: hawk against either type of opponent, (1; 1),

and dove against either type of opponent, (0; 0); and two pure heterogeneous strategies: dove

against individuals of type A and hawk against individuals of type B, (0; 1), and hawk against

individuals of type A and dove against individuals of type B, (1; 0).

The expected payo¤ of an individual who lacks selfperception, who plays � =(�A; �B)

while the opponent plays � = (�A; �B) is the sum of the expected payo¤s that she would

obtain in each distinct encounter weighted by its probability of occurrence. For instance,

in the encounter (A;B) the �rst individual recognizes her opponent as being of type B and

plays hawk with probability �B while the latter recognizes the former as an individual of

type A and plays hawk with probability �A, being u(�B; �A) the individual�s expected payo¤

derived from such bilateral encounter. This expected payo¤ is multiplied by the probability

of encounter p(A;B). The expected payo¤s in each of the remaining encounters are de�ned
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analogously. Therefore the expected payo¤ of an individual playing � against an opponent

playing � is given by U(�;�). That is,

U(�;�) = p(A;A)u(�A; �A)+p(A;B)u(�B; �A)+p(B;A)u(�A; �B)+p(B;B)u(�B; �B).

Using (2) and (3) the expression above can be written as

U(�;�) = v
2 [1� (1� x)�A � x�B]

+ c
2

h
(1� x)vc �

(1�x)(n�nx�1)
n�1 �A �

x(1�x)n
n�1 �B

i
�A

+ c
2

h
xvc �

x(1�x)n
n�1 �A �

x(nx�1)
n�1 �B

i
�B. (4)

In addition, the individual�s expected payo¤ can be decomposed into the expected payo¤ of

an individual of type A, (UA(�;�)) multiplied by 1�x, the probability of being of type A and
the expected payo¤s of an individual of type B (UB(�;�)) multiplied by x, the probability

of being of type B. That is, U(�;�) can be written as

U(�;�) = (1� x)UA(�;�) + xUB(�;�)

where

UA(�;�) = v
2 (1� �A) +

c
2(
v
c � �A)

n(1�x)�1
n�1 �A +

c
2(
v
c � �A)

nx
n�1�B,

UB(�;�) = v
2 (1� �B) +

c
2(
v
c � �B)

n(1�x)
n�1 �A +

c
2(
v
c � �B)

nx�1
n�1 �B. (5)

Note the similarity between (2) and (5).

Summarizing, we have modeled a population formed by two types of individuals who play

a hawk-dove game. The main characteristic is that individuals fail to perceive their own

type but recognize the type of their opponents. The probabilities of the di¤erent types of

encounter, the strategies and expected payo¤s are de�ned. Thus, we have all the ingredients

of a game, hereafter referred to as a heterogeneous game and denoted by �x, where 0 < x < 1

is the proportion of individuals of type B, which is the key parameter in this paper.

We proceed to solve the heterogeneous game �x by applying the concept of evolutionarily

stable strategy as for game �. Let Bx(�) be the set of an individual�s best responses to an
opponent playing �. Strategy �� is evolutionarily stable if and only if (i) �� 2 Bx(��), and
(ii) for any � 2Bx(��) such that � 6= �� we have U(��;�) > U(�;�).

3.2 Best responses

First, we determine the set of an individual�s best responses given her opponent�s strategy.

If her opponent plays strategy � = (�A; �B) the individual�s best response is to choose

7



� = (�A; �B) such that U(�;�) is maximized. The set of best responses become clearer if

(4) is rewritten as follows

U(�;�) = f0(�) + fA(�) �A + fB(�) �B

where

f0(�) = v
2 [1� (1� x)�A � x�B]

fA(�) = c
2

h
(1� x)vc �

(1�x)(n�nx�1)
n�1 �A �

x(1�x)n
n�1 �B

i
fB(�) = c

2

h
xvc �

x(1�x)n
n�1 �A �

x(nx�1)
n�1 �B

i
. (6)

The optimal choice of an individual is �A = 1 whenever fA(�) > 0, �A = 0 whenever

fA(�) < 0 and any �A whenever fA(�) = 0. Similarly the choice of �B depends on the sign

of fB(�). Thus Bx(�), the set of an individual�s best responses to an opponent playing �, is
given by

Bx(�) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

f(�A; �B) j �A; �B 2 [0; 1]g if [fA(�) = 0 and fB(�) = 0]
f(�A; 1) j �A 2 [0; 1]g if [fA(�) = 0 and fB(�) > 0]
f(0; 1)g if [fA(�) < 0 and fB(�) > 0]
f(0; �B) j �B 2 [0; 1]g if [fA(�) < 0 and fB(�) = 0]
f(1; B) j B 2 [0; 1]g if [fA(�) > 0 and fB(�) = 0]
f(1; 0)g if [fA(�) > 0 and fB(�) < 0]
f(A; 0) j A 2 [0; 1]g if [fA(�) = 0 and fB(�) < 0]
f(1; 1)g if [fA(�) > 0 and fB(�) > 0]
f(0; 0)g if [fA(�) < 0 and fB(�) < 0] .

(7)

Second, we determine the strategies that are best responses to themselves. As will be proven

in the next theorem only three strategies satisfy this property. The �rst is independent of x,

whereas for the other two the probability of hawkish behavior depends on x. These strategies

denoted respectively as vc , �
�
x and 

�
x are given by

v
c = (

v
c ;
v
c )

��x =

8<:
(��A(x); 1) if x � w
(0; 1) if w < x < w
(0; ��B(x)) if x � w

(8)

�x =

8<:
(�A(x); 0) if x � 1� w
(1; 0) if 1� w < x < 1� w
(1; �B(x)) if x � 1� w,

(9)
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where

��A(x) =
v
c � (1�

v
c )

nx
n�nx�1 , ��B(x) =

n�1
nx�1

v
c ,

�A(x) =
n�1

n(1�x)�1
v
c , �B(x) =

v
c � (1�

v
c )

n(1�x)
n�n(1�x)�1 ,

w = v
c (1�

1
n), and w = v

c (1�
1
n) +

1
n .

We can now state and prove the following result:

Theorem 1 In any heterogeneous game �x, only strategies vc , �
�
x and 

�
x are best responses

to themselves.

Proof. Using (6) and (7) it can be checked that these three strategies satisfy � 2 Bx(�) and
that no other strategy does.

1. Strategy v
c 2 Bx(

v
c ) since fA((�A; �B)) = fB((�A; �B)) = 0 i¤ �A = �B =

v
c .

2. For strategy ��x, we �rst check that the following holds: fA((�A; 1)) = 0 i¤�A = �
�
A(x)

with ��A(x) � 0 if x � w, and fB((��A(x); 1)) > 0. Second, we have fA((0; 1)) < 0 if

x > w and fB((0; 1)) > 0 if x < w. Third, we have fB((0; ��B(x))) = 0 i¤ �B = �
�
B(x),

with ��B(x) � 1 if x � w and fA((0; ��B(x))) < 0. Hence ��x 2 Bx(�
�
x).

3. For strategy �x, we �rst check that fA((A; 0)) = 0 i¤ A = 
�
A(x) with 

�
A(x) � 1 if

x � 1� w, and fB((�A(x); 0)) < 0. Second, we have fA((1; 0)) > 0 if x > 1� w while
fB((1; 0)) < 0 if x < 1 � w. Third, fB((1; B)) = 0 i¤ B = �B(x), with �B(x) � 0 if
x � 1� w and fA((0; �B(x))) > 0. Hence �x 2 Bx(

�
x).

4. It remains to show that no other strategy can be a best response to itself. This is done

by checking that fA((1; 1)) < 0, and fA((0; 0)) > 0.

Thus, we have one homogeneous and two heterogeneous strategies that are best responses

to themselves. The homogeneous strategy v
c consists of playing the evolutionarily strategy

v
c of the homogeneous game toward an individual of any type. Note that the strategy is

adopted by the individuals of two types. Obviously it could not be otherwise since in our

game individuals do not know their own type.
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3.3 Evolutionarily stable strategies

The next question is whether the strategies that are best responses to themselves are evo-

lutionarily stable. As the following result shows, this is not the case for strategy v
c (where

individuals play hawk with probability v
c against any type of opponent).

Theorem 2 In any heterogeneous game �x, strategy v
c is not evolutionarily stable.

Proof. It is immediately apparent that fA(vc ) = fB(
v
c ) = 0, and by (7) we know that any

strategy is a best response to strategy v
c . To show that v

c is not evolutionarily stable, we

choose a strategy � such that the di¤erence U(vc ;�) � U(�;�) is negative. Using (4) this
di¤erence can be written as

U(vc ;�)� U(�;�)) =
c

2(n�1)
�
(vc � �A)

2(n� nx� 1)(1� x)+

2(vc � �A)(
v
c � �B)n(1� x)x+ (

v
c � �B)

2(nx� 1)x
�
.

(i) If x = n�1
n the above di¤erence is reduced to

U(vc ;�)� U(�;�) =
c
2n(

v
c � �B)

�
2(vc � �A) + (

v
c � �B)(n� 2)

�
which turns out to be negative if strategy � is chosen such that

0 < �B <
v
c and

v
c < �A < 1 so that �A �

v
c >

n�2
2 (

v
c � �B). (10)

(ii) If x 6= n�1
n , denote Z =

v
c��A
�B�

v
c
. In this case the di¤erence is a quadratic equation in Z:

U(vc ;�)�U(�;�) =
c

2(n�1)(�B�
v
c )
2
�
(n� nx� 1)(1� x)Z2 � 2n(1� x)xZ + (nx� 1)x

�
whose discriminant is � = 4(1�x)x(n�1) > 0. Thus, the di¤erence under study is negative
for any Z such that 2n(1�x)x�

p
�

2(n�nx�1)(1�x) < Z < 2n(1�x)x+
p
�

2(n�nx�1)(1�x) and, in particular, for a strategy

� =(�A; �B) such that the following equality is satis�ed:

v
c��A
�B�

v
c
= nx

n�nx�1 : (11)

Thus, while playing hawk with probability v
c is evolutionarily stable in the homogeneous

game, doing so against any type of opponent is not evolutionarily stable in the heterogeneous

game. At �rst sight, this result may appear surprising as the di¤erentiation introduced within

the members of the population is merely arti�cial. But from the proof of Theorem 2 it can be

easily understood why strategy v
c is not evolutionarily stable. The strategies � that satisfy
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(10) or (11) perform better against vc than strategy
v
c does against itself. These strategies are

such that the probability of aggressive behavior toward one type is higher than v
c while the

probability of aggressive behavior toward the other type is smaller than v
c . The observation

of the opponent�s type gives a signal that players use.

By contrast the result for the other two strategies that are best responses is the following.

Theorem 3 In any heterogeneous game �x, only strategies ��x and 
�
x are evolutionarily

stable.

Proof. By Theorem 1 we know that the only strategies that are best responses to themselves

are ��x, 
�
x and

v
c and by Theorem 2 we know that vc is not evolutionarily stable. Hence, it

remains only to analyze strategies ��x and 
�
x.

Using (7) the set of an individual�s best responses to an opponent playing ��x is

Bx(��x) =

8<:
f(�A; 1) j �A 2 [0; 1]g if x � w
f(0; 1)g if w < x < w
f(0; �B) j �B 2 [0; 1]g if w � x:

For w < x < w we have that ��x = (0; 1) is the only best response to itself, hence Condition

(ii) of the evolutionarily stable strategy de�nition becomes empty. For the other values of

x, however, it must be checked whether the di¤erence U(��x;�)�U(�;�) is strictly positive
for any � 2Bx(��x) where � 6= ��x. Using (4) we obtain that

U(��x;�)� U(�;�) =
(

c
2
(1�x)(n�nx�1)

n�1 (��A(x)� �A)2 if x � w
c
2
x(nx�1)
n�1 (��B(x)� �B)2 if w � x

Since this di¤erence is strictly positive for any � 6= ��x then strategy ��x is evolutionarily
stable.

The proof that strategy �x is evolutionarily stable is omitted because it is similar to the

previous one.

So in general evolutionarily stable strategies are mixed strategies, although they may be

pure strategies for some speci�c proportions of individuals of type B. This is the case when

x is equal to v
c , that is for the game �v=c. For this game an interesting comparison between

v
c , the evolutionarily stable strategy in game �, and (0; 1); the evolutionarily stable strategy

in game �v=c can be made. In game �v=c an individual who plays strategy (0; 1) behaves

as a hawk whenever her opponent is of type B, which occurs with frequency v
c . Therefore

strategies vc in � and (0; 1) in �v=c are "similar" in the sense that a probability in game � is

substituted by a frequency in game �v=c. Furthermore strategy (0; 1) is also evolutionarily

stable in game �x for values of x close to v
c , i.e. w < x < w. Note, however, that for values
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of x smaller than w, an individual that plays strategy (0; 1) plays dove so often that her

opponent is better o¤ playing hawk at probabilities greater than v
c while the opposite occurs

for values of x higher than w. Analogously an individual who plays strategy (1; 0) in game

�1�v=c plays hawk with a frequency of 1 � x = v=c. The same comparison can be made

between v
c in game �, and strategy (1; 0) in game �1�v=c.

Now let us move on to the expected payo¤s for the evolutionarily stable strategies starting

with ��x. Given game �x, plugging (8) into (4) we obtain

U(��x;�
�
x) =

8><>:
v
2 (1�

v
c ) +

c2�v2
2c

x
n�nx�1 if x � w

v
2 �

nx�1
n�1

cx
2 if w < x < w

v
2 (1�

v
c )�

v2

2c
1�x
nx�1 if x � w.

Observe that an individual�s payo¤ is larger for smaller proportions than for large pro-

portions of individuals of type B. In the next section we come back to this result and explain

why this is so.

If the payo¤ is decomposed according to the type of individuals we have that (5) yields

to

UA(�
�
x;�

�
x) =

8><>:
v
2 (1�

v
c ) +

c�v
c

vnx
n�nx�1 if x � w

v
2 (1�

v
c ) +

v
2c
v(n�1)+cnx

n�1 if w < x < w
v
2 (1�

v
c ) +

v2

2c
2nx�1
nx�1 if x � w,

and

UB(�
�
x;�

�
x) =

8><>:
v
2 (1�

v
c )�

c�v
2c

2nv(1�x)�c�v
n�nx�1 if x � w

v
2 (1�

v
c )�

c�v
2c

(n�1)v+(nx�1)c
n�1 if w < x < w

v
2 (1�

v
c )�

v2

c
n�nx
nx�1 if x � w.

Clearly an individual of type A always obtains a larger payo¤ than an individual of type

B. The reverse holds in the second evolutionarily stable strategy. Moreover, by plugging (9)

into (4) and (5) it can be checked that the following relations hold:

U(�x;
�
x) = U(��1�x;�

�
1�x) (12)

UA(
�
x;

�
x) = UB(�

�
1�x;�

�
1�x) (13)

UB(
�
x;

�
x) = UA(�

�
1�x;�

�
1�x). (14)

3.4 Interpretation of the results in terms of aliens and locals

Let us start by examining strategy ��x, given by (8). Note that, whatever x may be, the

probability of aggression toward individuals of type B is always greater than toward individ-

uals of type A. The reverse holds for strategy �x given by (9). So the individuals of type B
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are treated worse in strategy ��x while the individuals of type A are treated worse in strategy

�x. We refer to the better-treated individuals as locals and to the worse-treated individuals

as aliens. A closer look at (8) and (9) reveals the relationship between the two evolutionarily

stable strategies. To clarify this, de�ne

gI(y) =

� v
c � (1�

v
c )

ny
n�ny�1 if y � w

0 otherwise

gII(y) =

�
1 if y < w
n�1
ny�1

v
c otherwise, (15)

which allows (8) and (9) to be rewritten as ��x = (gI(x); gII(x)) and 
�
x = (gII(1�x); gI(1�x))

clearly showing that the two strategies are the two faces of a single coin. Moreover, if these

probabilities are expressed as a function of the proportion of aliens (denoted by y), gI(y) can be

interpreted as the probability of hawkish behavior toward a local and gII(y) as the probability

of hawkish behavior toward an alien. To illustrate the evolution of these probabilities with

an example, in Figure 1 we plot gII(y) and gI(y) for n = 10 and v=c = 1=3.

Figure 1 about here

The following conclusions can be derived on the trend in the probability of aggression.

The probability of aggression toward aliens is 1 for y smaller than w, and then it decreases

toward v
c . The probability of aggression toward locals, however, decreases from

v
c to 0 for y

smaller than w and remains at 0 thereafter. Furthermore, aggression toward aliens is always

greater than the aggression su¤ered by individuals in a homogeneous game (gII(y) > v
c ) while

the reverse holds for locals (gI(y) < v
c ).

Similarly we may wonder what happens to the trend in payo¤s assuming that individuals

play an evolutionarily stable strategy. The payo¤s in equality (12) can be written as a

function of y, which we denote by U�(y); so that U�(y) = U(��y;�
�
y).

To facilitate the interpretation of the trend in U�(y) we take as a reference the equilibrium

payo¤ obtained in the homogeneous game � which we denote by �U�. From (2) we determine
�U� = u(vc ;

v
c ) =

v
2 (1 �

v
c ). In Figure 2 we graphically represent U

�(y) and �U� for n = 10,

v=c = 1=3.

Figure 2 about here.
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This �gure shows that the introduction of aliens proves bene�cial for individuals as long

as y is smaller than w. For y greater than w the contrary e¤ect arises. The maximal payo¤

is obtained for y equal to w.

We can also study the trend in the payo¤ depending on the type of the individuals. Once

more, equality (13) allows us to write the payo¤ of a local, U�I (y), as a function of y so

that U�I (y) = UA(�
�
y;�

�
y). Similarly equality (14) allows us to write the payo¤ of an alien

U�II(y) = UB(�
�
y;�

�
y). In Figure 3 we plot U

�
I (y) and �U

� while in Figure 4 we plot U�II(y)

and �U� for n = 10 and v=c = 1=3.

Figure 3: about here.

Figure 4: about here.

At �rst glance these �gures reveal that the situation is as expected: aliens are worse

o¤ than individuals in a homogeneous game, while locals are better o¤. Furthermore the

maximal payo¤ for a local is obtained for a proportion of aliens of w. A closer examination

enables the trend in these payo¤s according to the proportion of aliens to be explained. Two

e¤ects may be identi�ed.

First, the less aggression su¤ered, the greater the well-being. This result partially explains

the trend in the payo¤s. Figure 1 shows that gI(y) decreases for values of y smaller than w

and gII(y) decreases for values of y larger than w. Consequently for values of y smaller than

w a local�s payo¤ increases, and for values of y larger than w an alien�s payo¤ also increases

(see Figures 3 and 4). This increase in payo¤s for the same intervals is also observed for an

individual (see Figure 2).

Second, when the aggression is constant, the trend in the payo¤ may be explained by the

response to the level of aggression. Figure 1 shows that function gI(y) is 0 for values of y

greater than w, meaning that locals su¤er no aggression. In that case their best response

is to play hawk. But for y greater than w they play hawk less often (gII(y) decreases and

gI(y) = 0)). Therefore in this interval the payo¤ of locals decreases. Analogously function

gII(y) is 1 for values of y smaller than w, meaning that aliens su¤er maximum aggression. In

that case their best response is to play dove. For y smaller than w they play hawk less often

(gI(y) decreases and gII(y) = 1). Therefore in this interval the payo¤ of aliens increases.

It remains to explain the trend in the payo¤s for values of y lying between w and w where

locals su¤er no aggression and aliens su¤er maximum aggression. Here the best response for

a local is to play hawk and for an alien it is to play dove. As y grows, the hawkish behavior
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increases, which turns out to be bene�cial for locals and harmful for aliens. For an "average"

individual, however, the overall e¤ect is negative.

The following proposition summarizes the main features that are observed in the foregoing

�gures. The proof is omitted because of its simplicity.

Proposition 1 For any proportion of aliens 0 < y < 1 we have that:

(i) U�II(y) < �U� < U�I (y), (16)

(ii) U�(y) > �U� if y < w and U�(y) < �U� if y > w,

(iii) U�I (y) is maximal for y = w and U�(y) is maximal for y = w.

4 The experiment

Dennis et al. (2008) have conducted several experiments with groups of domestic fowls.

They consider group sizes of 10 and 50 birds in which di¤erent proportions (20%, 50% and

100% respectively) are marked. They study the birds�aggressive behavior measured by the

number of pecks and threats in the encounters between them. The most signi�cant results

of this experiment are: (i) Marked domestic fowls receive more pecks than their unmarked

pen mates. (ii) Marked domestic fowls in the 20% group receive signi�cantly more threats

than domestic fowls in the 100% marked group. (iii) There is no signi�cant di¤erence in the

aggression su¤ered by marked fowls in the 20 and 50% marked groups. (iv) Aggressiveness

toward marked fowls in populations with 100% of marked birds is lower than in any mixed

population. (v) Marked fowls have a lower body mass than their unmarked pen mates.

To evaluate these experimental results in the light of our model we assume that behaving

as a hawk is a good proxy for the pecking and threatening between birds observed in the

experiment. We also assume that the strategy played by the population is the evolutionarily

stable strategy where the aliens are the marked fowls. In addition we consider that the

expected payo¤ of an individual can be used as a proxy for a bird�s body mass. With these

assumptions we �nd that some of our theoretical results are consistent with the experimental

ones:

(i) Marked domestic fowls receive more pecks than their unmarked pen mates. By (15)

we have gI(y) < gII(y):

(ii) Marked domestic fowls in the 20% group receive signi�cantly more threats than do-

mestic fowls in the 100% marked group. By (15) we have gII(0:2) = 5
(n�1)
n�5

v
c >

v
c .

(iii) There is no signi�cant di¤erence in the aggression su¤ered by marked birds in the 20

and 50% marked groups. By (15) we have gII(0:5) = gII(0:2) = 1 if 0:5 � v
c (1�

1
n). Therefore
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this empirical result is supported by our theoretical �ndings under the assumption that the

value of the resource v is basically greater than half the cost c.

(iv) Aggressiveness toward marked birds in populations with 100% of marked birds is lower

than any other mixed population. By (15) we have that for any 0 < y < 1, gII(y) > v
c .

(v) Marked birds have a lower body mass than their unmarked pen mates. By (16) we

have U�II(y) < U
�
I (y): the payo¤ of a marked bird is smaller than the payo¤ of an unmarked

one.

5 Concluding comments

The contribution of this paper can be summarized as follows: We introduce a variation of the

hawk-dove game in which there is a population formed by two types of individual who do not

perceive their own type but do recognize the type of their opponent. Although the di¤erence

between the two types is "arti�cial" it is not innocuous. Our game has two evolutionarily

stable strategies in which the probability of being aggressive toward one type of individual

is always higher than the probability of being aggressive toward the other type. It is worth

stressing that the type of individual treated worse may not be the minority group. This

contradicts the intuition according to which the type which constitutes the minority of the

population seems likely to be discriminated against. The probability of aggression toward

aliens does however decrease with the proportion of aliens. Increasing the proportion of aliens

also decreases the probability of aggressive behavior toward locals. For a random individual

the e¤ect is positive for small proportion of aliens, and negative for large proportions.

In conclusion we would like to point out that although our research was inspired by a

biological experiment, the approach followed in this paper might also serve to explain other

social situations. First, the behavior of the individuals in our setting could be interpreted

as if they were acting behind the veil of ignorance. It is known that individuals under this

device conscientiously ignore their position in society with the objective of reaching a more

"just" society. This idea transferred to game theory could be interpreted as if every agent

when playing a strategic game ignores who she is while she is aware of the type of opponent is

playing with. Second, our work can also be related to the classic work developed by Cass and

Schell (1983) who show that extrinsic uncertainty may play a role in rational expectations

equilibrium models. For these authors a variable is intrinsic whenever it has an a¤ect on the

fundamentals otherwise it is extrinsic. In our paper the random division of the population

can be considered as an extrinsic variable that matters since it changes the results of the

hawk-dove in homogenous populations. Finally, it should be emphasized that our results are
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similar to those obtained in the paper by Axtell et al. (1991) in which an arti�cial division

of a group of individuals into two subgroups generates real discrimination.
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