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Social Learning in Regime Change Games

Abstract

This paper studies social learning effects in dynamic regime change games with a
finite number of short-lived players in each period. These games have been usually
applied to currency attacks by hedge funds, investments in emerging firms by venture
capitalists, and revolutions against dictators. In my model, the state of the status quo
is fixed but unobservable to players. Since each short-lived player can observe only
one signal about the true state, no individual can individually learn the true state of
the status quo. However, I allow players to observe previous play, so the true state
may be socially learned. I describe the equilibrium dynamics of attacking and relate
the state of the status quo to the likelihood of the regime’s eventual fate. This model,
in which perfect individual learning is impossible, yields equilibrium properties that
differ from earlier results of models in the literature, where perfect individual learning
is allowed. First, players may give up attacking even though they don’t learn the
true state, because extremely informative signals may be ignored when cooperation is
required. Second, fundamentals may not determine the eventual fate of the regime,
as signals from early periods are important. Third, social learning may lead to either
efficiency or inefficiency depending on the state of the status quo.
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1 Introduction

Speculative currency attacks have happened in many countries. Some attacks succeeded

immediately; for example, the Thai baht was devaluated after only one attack in May 1997.

Some attacks were successful only after several attempts. For example, following an attack

against the Russian ruble in November 1997, a further attack in April 1998 triggered a

ruble devaluation. And some attacks were unsuccessful, ending with no new attacks. This

happened in Hong Kong. During the East Asian financial crisis, the Hong Kong government

defended speculative attacks in October 1997, January 1998, and June 1998. After a further

attack failed in August 1998, no speculator initiated a new war against the Hong Kong

dollar. Did all speculators believe that the Hong Kong dollar was strong enough to survive

speculative attacks? Or did all individual speculators believe that they could succeed if all of

them shorted the Hong Kong dollar simultaneously but this coordination was very difficult?

While most currencies have been attacked at some point, the Dutch guilder has never been

attacked. Will this fact suggest to future speculators to never attack the Dutch guilder,

even if it was thought to be weak? Similar questions arise when venture capitalists are

considering investing in an emerging firm and when potential revolutionaries are planning

to fight against a dictator.

These questions share some common features. In particular, past people’s behavior

affect current agents’ decisions. Because an agent’s private information about the funda-

mentals affects that agent’s optimal decision, observed past behavior is informative about

the fundamentals. As a result, after observing previous plays, current period players update

their beliefs about the fundamentals. This process constitutes social learning. For exam-

ple, failed attacks against the Hong Kong dollar in 1997 and 1998 provide good lessons to

subsequent speculators. On the one hand, past attacks imply that previous private signals

suggested to people in previous times that they should attack; on the other hand, that attacks

failed suggests that the Hong Kong dollar was not weak. These inferences affect subsequent

speculators’ decisions, which in turn will impact future speculators’ decisions. Besides learn-
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ing from public histories, players can learn the fundamentals by collecting private signals.

This is usually defined as individual learning. However, in an economy consisting of a finite

number of agents, individual learning may significantly complicate the analysis of the so-

cial learning effects. Therefore, I abstract away individual learning and focus on the social

learning effects when addressing the questions above.

This paper studies the social learning effects in the situations above, by analyzing a

dynamic regime change game with a finite number of players in each period and synchronous

coordination requirement at some states. In each period, there are two new short-lived (one-

period-lived) players, each of whom observes previous public plays and one piece of private

information about the status quo. Based on these histories, they update their beliefs about

the true state of the status quo, which is unknown and fixed. Because any individual can

observe only one piece of private information, perfect individual learning is impossible. These

two new short-lived players then simultaneously choose to attack or not to attack the status

quo. A player choosing to attack receives a positive payoff if the regime changes; she receives

a negative payoff otherwise. Not attacking is a safe action giving zero payoff regardless

of the regime change outcome. The true state of the strength of the status quo is drawn

at the beginning of the game from a set consisting of three elements: weak, medium, and

strong. If the status quo is weak, one attack changes the regime; for the medium status

quo, synchronous coordination is required to trigger the regime change; if the status quo is

strong, the status quo can never be beaten. The game continues as long as the status quo is

in place.

In my model, given the prior belief about the fundamentals, there are always extremely

informative private signals, which make a player have an arbitrarily high posterior belief

about some state of the status quo. However, with social learning, players’ prior beliefs

evolve over time, which generates the dynamics of attacking. When current period players

observe that no attack has yet occurred, they infer that previous private signals suggested

not to attack, so the true state of the status quo is more likely to be strong. Social learning,

in this case, makes current period players pessimistic about triggering the regime change,
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so it reduces current period players’ incentives to attack. The longer the time without

any attack, the more pessimistic the players are, and the smaller the ex-ante probability of

attacking is. In another scenario, players rule out the possibility of the weak status quo by

observing a failed attack by one player in some period before (but there was no period with

failed attacks by two players). Now the regime changes only if the status quo is medium

and in some period players coordinate synchronously. Suppose no attack happens after the

last failed attack. Similar to the first case, social learning makes the ex-ante probability of

attacking smaller over time. As a result, though players may be convinced by their private

signals that the status quo is medium, they think coordination is very difficult. Hence,

players give up attacking, ignoring their private signals.

As the driving force of the dynamics of attacking, social learning plays a critical role

in determining eventual regime change outcomes. The fate of a weak regime is an example.

After a very long time without attacks since the beginning of the game, players’ prior beliefs

about the not strong status quo are arbitrarily low. As a result, the ex-ante probability of

attacking is arbitrarily small. Therefore, ex-ante, it seems that the weak regime may not

change. However, while the ex-ante probability of attacking keeps decreasing, players learn

less and less from the no attack history. Such a social learning process prevents the ex-ante

probability of attacking from dropping to 0 too fast and thus guarantees the change of the

weak regime. Social learning’s effect on regime change outcomes is also illustrated when

the true state of the status quo is medium. If players cannot observe past plays (so that

social learning is impossible), the medium status quo is abandoned eventually. With social

learning, a failed attack by one player along with sufficiently long but finite periods of no

attack leads players to give up attacking, no matter what their private signals are. Since such

an event happens with a positive probability, the medium status quo may not be abandoned.

Social learning not only drives the dynamics of attacking and partly determines the

eventual fate of the status quo, but also causes social welfare to differ depending on the

status quo. Considering the discounted social welfare value, under a weak status quo, social

learning delays regime change, resulting in inefficiency. Under the medium status quo, social
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learning causes the probability of the regime change to be less than one. Consequently, when

future social values become as important as current social values (that is, the discount factor

is sufficiently close to 1), social learning leads to a lower social welfare, which is inefficient.

For a strong status quo, social learning prevents attacking infinitely often with probability

one, which leads to a higher social welfare provided that the discount factor is sufficiently

close to 1.

The benchmark dynamic regime change game rules out the possibility of perfect indi-

vidual learning and focuses on a two-player three-state case. I extend the benchmark model

in two directions. In the first extension, players’ private signals are increasingly precise and

this precision becomes perfect. That is, I allow perfect individual learning. In this extended

model, the medium regime will be abandoned almost surely, and I get transitions similar to

those in Angeletos, Hellwig and Pavan (2007): the economy transits back and forth between

“tranquility” phases (no attack in any equilibrium) and “distress” phases (attack with pos-

itive probability in non-trivial equilibria). In the second extension, I analyze the dynamic

regime change game with N+1 possible states of the status quo and N new short-lived play-

ers in each period. At state n, at least n attacks are needed to trigger the regime change.

So the first state is like the weak regime in the benchmark model, while the (N + 1)th state

is like the strong regime in the benchmark model. In this second extended model, in any

monotone equilibrium of this game, the dynamics of attacking and the eventual outcomes of

the regime change are similar to the benchmark model.

Abstracting away the dynamic feature, economists have been extensively applying

regime change games to currency attacks (Morris and Shin, 2003), bank runs (Goldstein

and Pauzner, 2005), debt crises (Morris and Shin, 2004), and political change (Edmond,

2007). These static regime change games follow the static global game literature (Carlsson

and Van Damme, 1993), and they are solvable by iterated elimination of strictly dominated

strategies (see Morris and Shin, 2003). Hence, fix a prior belief over the parameter space. As

the noise of private signals goes to 0, there is a unique Bayesian Nash equilibrium in static

global games.
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In a recent paper, Angeletos, Hellwig and Pavan (2007) incorporate the learning pro-

cess to regime change games in a dynamic model.1 They consider a continuum of long-lived

agents, each receiving a piece of private information about the true state in each period.

Therefore, an individual eventually learns the true state from her own signals. This individ-

ual learning process is the driving force of the dynamics of attacking in their model. But

in Angeletos, Hellwig and Pavan (2007), previous plays are not observable. Because the

economy consists of a continuum of agents, if previous plays are observable, at the beginning

of the second period, players learn perfectly what the true state is.

Different from the static global game literature, Angeletos, Hellwig and Pavan (2007)

show the existence of multiple equilibria in a dynamic global game. Such multiplicity orig-

inates in the coordination requirement and the private learning process. Since attacking is

not a dominant action for all private signals since the second period, an equilibrium in which

no attack occurs after the first period always exists. And when the fundamentals that can

be beaten are still in the support of players’ posterior beliefs, private learning generates sub-

sequent attacks consistent with some equilibrium by making players’ private signals highly

correlated. Multiple equilibria also exist in my model, but they emerge from two distinct

sources. First, similar to Angeletos, Hellwig and Pavan (2007), when the weak regime is

ruled out, the coordination requirement makes no more attacks always consistent with an

equilibrium; then when players’ prior beliefs about the medium regime are high enough, pos-

sible subsequent attacks are also consistent with some equilibrium. Second, different from

Angeletos, Hellwig and Pavan (2007), when period t players observe that no attack has yet

occurred (this is on the path of play in any equilibrium), period t players are playing a static

global game with both attacking and not attacking as dominant actions for some private

signals. However, since the precision of players’ private signals is fixed and players’ prior

beliefs (after observing previous plays) are evolving over time through social learning, there

1Dynamic regime change games are studied as examples of dynamic global games. Other papers con-
tributing to this literature are Dasgupta (2006), Dasgupta, Steiner and Stewart (2009), Giannitsarou and
Toxvaerd (2009), and Heidhues and Melissas (2006). Chamley (1999) analyzes a regime switch game, in
which a continuum of short-lived players in each period learn the distribution of the private cost in their
cohort from previous aggregate actions.
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are prior distributions on the fundamentals such that period t players put a sufficiently high

probability on the medium regime. As a result, multiple strategies of period t players are all

consistent with some equilibrium. This is different from static global games, in which prior

beliefs are fixed and the precision of private signals is arbitrarily large.

Social learning models, initialized by Banerjee (1992) and Bikhchandani, Hirshleifer and

Welch (1992) and generalized by Smith and Sorenson (2000), have been extensively studied in

the herding literature (see also Chamley (2002)). However, there is no strategic uncertainty

in these herding models. In a dynamic regime change game, a player’s payoff is increasing

in her opponent’s probability of attack. That is, there is a strategic complementarity in

each period of the dynamic regime change game. As shown in the analysis of this paper,

this strategic complementarity leads players to join the herd (not to attack ignoring private

signals), even though they are convinced by their extremely informative private signals that

the status quo can be beaten.

The rest of this paper is organized as follows. Section 2 describes a static regime

change game and analyzes it with both interior prior beliefs and prior beliefs ruling out the

weak status quo. In section 3, I introduce a dynamic regime change game and provide an

algorithm to characterize all equilibria. In section 4, I study both the short-run and the

long-run dynamics of attacking, investigate the eventual fate of the status quo conditional

on its strength, and analyze the social learning effects in this game. Section 5 is devoted to

two extensions of the benchmark model. Section 6 concludes. All proofs are presented in

the Appendix.

2 A Two-Player Static Regime Change Game

In this section, I describe a static regime change game. Since the results of this static game

will be applied in the dynamic model, I analyze them in detail.
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2.1 The Model

Two players i ∈ {1, 2} play the static regime change game. Player i can choose one of two

actions ai ∈ {0, 1}, where ai = 0 is “not attack” while ai = 1 means “attack.” Player i’s

ex-post payoff depends on both his choice and the outcome of the regime change. Let the

binary variable R denote the outcome (R = 1 means the regime changes, and R = 0 means

the regime does not change). Player i’s ex-post payoff is ui = ai(R − c), where c ∈ (1
2
, 1) is

the cost of attacking.

The strength of the status quo is described by θ ∈ Θ ≡ {w,m, s}, where w,m, s ∈ R

with the order w < m < s.2 Whether the regime changes or not depends on both the strength

of the status quo θ and the number of attacks a1 +a2. The following table summarizes these

outcomes:

Number of Attacks θ = w θ = m θ = s

0 attack Fail Fail Fail

1 attack Succeed Fail Fail

2 attacks Succeed Succeed Fail

The strength of the status quo θ is unobservable to all players, and players share the

common prior belief µ ∈ ∆(Θ). Before choosing to attack or not to attack, player i receives

a private signal xi = θ + ξi, where ξi ∼ N (0, 1
β
) is independent of θ and independent across

players.3 Therefore, players’ signals are independent conditional on θ.

Player i’s strategy is a mapping si : R → ∆({0, 1}). A Bayesian Nash Equilibrium is

a strategy profile (ŝ1, ŝ2), such that given ŝj and any signal xi, ui(ŝi, ŝj) ≥ ui(ai, ŝj) for all

ai ∈ {0, 1}. In the rest of this section, I analyze the properties of Bayesian Nash Equilibria

when (i) µ(θ) > 0,∀θ ∈ Θ and when (ii) µ(w) = 0,while µ(m) > 0 and µ(s) > 0. In case (i)

the static regime change game is a static global game, and in case (ii) it is a coordination

2w,m and s denote “weak,” “medium” and “strong,” respectively.
3The additive structure of the signal and the normality assumption of the noisy term are convenient for

computing equilibria and comparing equilibrium properties with previous works. In fact, the distribution of
the signal can be fairly general, and the only assumptions I have to make are the following: (1) conditional
on θ, the two players’ private signals are independent and identically distributed; (2) the support of xi is R,
and the conditional pdf f(x|θ) of the signal is strictly positive for all x ∈ R and all θ ∈ Θ; (3) unbounded
likelihood ratio: lim

x→−∞
f(x|θ)/f(x|θ′) = +∞ and lim

x→+∞
f(x|θ)/f(x|θ′) = 0, whenever θ < θ′; and (4)

monotone likelihood ratio: if θ < θ′, f(x|θ)/f(x|θ′) is strictly decreasing in x.
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game.

2.2 Interior Prior Beliefs

In this subsection, I focus on the interior prior beliefs case of the static regime change game.

Let ρ(·|xi) denote player i’s posterior belief over Θ after receiving signal xi. Then from

Bayes’ rule, the posterior belief about θ is:

ρ(θ|xi) =
µ(θ)φ(

√
β(xi − θ))∑

θ′∈Θ

µ(θ′)φ(
√
β(xi − θ′))

,

where φ(·) is the standard normal pdf. Player i’s interim payoff from attacking given signal

xi and player j’s strategy sj is:

Exju
i(1, sj|xi)

= ρ(w|xi) + Pr(sj = 1,m|xi)− c (2.1)

= ρ(w|xi) + ρ(m|xi) Pr(sj = 1|m)− c (2.2)

=
µ(w)φ(

√
β(xi − w))∑

θ′∈Θ

µ(θ′)φ(
√
β(xi − θ′))

+
µ(m)φ(

√
β(xi −m))∑

θ′∈Θ

µ(θ′)φ(
√
β(xi − θ′))

Pr(sj = 1|m)− c, (2.3)

where Φ(·) is the standard normal cdf. (2.1) is equal to (2.2) because players’ private signals

are independent conditional on θ. Note ρ(w|xi) → 1 as xi → −∞; hence, from the regime

change rule, attacking is the dominant action for player i. By the continuity of the interim

payoff function, there exists an x ∈ R such that Exju
i(1, sj|xi) > Exju

i(0, sj|xi),∀xi ≤ x and

∀sj. I call the set (−∞, x] the dominant region of attacking. Similarly, there is an x̄ ∈ R

such that Exju
i(1, sj|xi) < Exju

i(0, sj|xi),∀xi ≥ x̄ and ∀sj, so the set [x̄,+∞) is called the

dominant region of not attacking.

Proposition 2.1 In the static regime change game with µ ∈ int(∆(Θ)), a Bayesian Nash

Equilibrium exists. In any Bayesian Nash Equilibrium, players follow a symmetric cutoff

strategy with threshold point x∗ ∈ R:4

s∗ =

{
1, if x ≤ x∗,

0, if x > x∗.

4To simplify notation, I denote the strategy not attacking for all signals by x∗ = −∞ and the strategy
attacking for all signals by x∗ = +∞.

8



Remark 2.1 In the global game literature, a unique equilibrium is usually guaranteed by

conditions on the precision of the signal, β. For any fixed prior belief µ ∈ int(∆(Θ)), as β

becomes very large, the uniqueness of the static regime change game can be established by

interim iterated elimination of strictly dominated strategies as in Morris and Shin (2003).

However, for any fixed β, there is a prior belief µ ∈ int(∆(Θ)) such that multiple equilibria

exist in the static global game, which is discussed in detail in the proof of Proposition 2.1 in

the appendix.

�

Corollary 2.1 In the static regime change game, when µ ∈ int(∆(Θ)), the equilibrium

ex-ante probability of attacking is positive but less than one.

2.3 When the Weak State Is Impossible

In this subsection, I analyze the static regime change game when the prior belief is µ(w) = 0

(µ(m) > 0 and µ(s) > 0). Because the weak state is impossible, a dominant region of attack-

ing no longer exists. Therefore, (x∗, x∗)=(−∞,−∞) is an equilibrium. Since players attack

the regime with zero probability in this equilibrium, I call this a trivial equilibrium. In the

remainder of this subsection, I propose a necessary and sufficient condition for the existence

of a non-trivial equilibrium, in which players attack the regime with positive probability.

The only state for which the regime can change is θ = m, so players choose to attack

only if both their beliefs about θ = m and their beliefs about their opponents choosing to

attack are sufficiently high. Therefore, if players’ common prior belief about θ = m is high

(players are optimistic), cooperation is possible; conversely, when players’ common prior

belief about θ = m is low (players are pessimistic), even if one player observes an extremely

negative signal and is convinced that θ = m, she won’t attack. This is because she believes

that the probability of her opponent observing a signal favoring θ = m is very low. With

the sufficiently informative signals assumption given below (I maintain this assumption in

the whole paper), Proposition 2.2 formally shows the above intuition.
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Assumption 2.1 Private signals are sufficiently informative: Φ(
√
β

2
(s−m)) > c.

Proposition 2.2 In the static regime change game with µ(w) = 0, ∃µ̃(m) ∈ (0, 1) such that

1. If µ(m) < µ̃(m), there is no non-trivial equilibrium;

2. If µ(m) > µ̃(m), there are two non-trivial equilibria, which are symmetric and in cutoff

strategies. The threshold point for any equilibrium is in (m,+∞);

3. If µ(m) = µ̃(m), there exists a unique x̃ ∈ (m,+∞) such that (x̃, x̃) is the unique

non-trivial equilibrium.

Remark 2.2 When µ(m) > µ̃(m), the two non-trivial equilibria have different interpreta-

tions. The one with the larger threshold point is the most aggressive equilibrium, because

players attack the regime with high probability. The one with the smaller threshold point is

the lowest possible coordination equilibrium, because if player j’s threshold is lower than it,

player i will choose not to attack regardless of her private signal.

�

3 A Dynamic Regime Change Game

I extend the static game to a dynamic regime change game with two new short-lived players

in each period given the status quo is in place. Since any individual can get only one piece of

information about the state of the status quo, no one can learn the true state individually.

However, I assume previous plays (not previous signals) are perfectly observable, so social

learning plays an important role in the dynamic model.

Consider the discrete time model and index periods by t ∈ {1, 2, · · · }. At the beginning

of the game, θ ∈ Θ is chosen by nature according to a commonly known distribution µ0 ∈

int(∆(Θ)). Once picked, θ is fixed forever. Denote the state of the regime at the end of

period t by Rt ∈ {0, 1}: Rt = 0 means the status quo is still in place and Rt = 1 means the

status quo falls by period t. Assume R0 = 0 and if Rt−1 = 0 and Rt = 1 for some t, then
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Rτ = 1 for all τ > t. In each period t, there are two new short-lived players and each chooses

one action from {0, 1}. The regime change rule is as described in the static regime change

game. Period t’s players’ ex-post payoff is uit = (1−Rt−1)ait(Rt− c) +Rt−1. Therefore, if the

regime changes in period t, period τ (τ > t) players get payoff 1 for sure and do not have

strategic behaviors (essentially, the regime change game ends in period t). Before making

their decisions, both players observe the number of attacks in each previous period and a

private signal xit = θ + ξit, where ξit ∼ N (0, 1
β
) is independent of θ and independent across

agents and across time.

Previous plays are public histories at the beginning of period t. Denote a typical public

history ht = (b1, · · · , bt−1), where bτ ∈ {0, 1, 2} is the number of attacks in period τ for all

τ < t. Letting H t be the set of all public histories at the beginning of period t, I define a

period t player i’s strategy by sit : H t × R→ ∆({0, 1}).

Definition 3.1 An assessment
{

(sit)
i=1,2
t=1,···, (µt)t=1,···

}
is an equilibrium if

1. For any t, given µt, (s1
t , s

2
t ) forms a static game equilibrium;

2. µt is consistent with (sit)
i=1,2
t=1,···.

The first part of the definition of an equilibrium is a natural requirement of the assumption

that players are short-lived. Since period t players have no intertemporal incentive when

making decisions, their strategies need to form a static game equilibrium given µt. The

consistent belief requirement in the definition implies that because ht is public, period t

players have the same prior belief over Θ at the beginning of period t. So for simplicity, in

the definition, I denote the belief system (µt)t=1,···.

Recall that Proposition 2.2 implies the existence of multiple equilibria for some prior

beliefs in the static regime change game. This in turns implies that multiple equilibria exist in

the dynamic regime change game. In particular, as analyzed in section 4, the belief µt(w) = 0

and µt(m) ≥ µ̃(m) appears on the path of play. Then, the multiplicity of equilibria in the

static regime change game in period t with prior belief µt directly implies the multiplicity

of equilibria in the dynamic regime change game. This kind of multiplicity is driven by
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the coordination property when µ(w) = 0, as in Angeletos, Hellwig and Pavan (2007).5

However, in the dynamic regime change game, there is another source for multiplicity. If

we fix players’ strategies when the prior beliefs are not in the interior of the simplex of the

state space, remark 2.1 implies that because the precision of private signals is fixed, the prior

belief (in the interior of the simplex of the state space) may lead to multiple equilibria in the

static regime change game, which in turn implies multiple equilibria in the dynamic regime

change game.

Equilibria of the dynamic regime change game can be characterized by the following

algorithm:

1. In period 1, compute all solutions to G(x;µ1) = 0 (note µ1 = µ0). Pick any solution

x∗1 to be the threshold point in the first period;

2. After any history ht, first employ Bayes’ rule (whenever possible) to calculate µt from

µt−1 and x∗t−1 (t > 1), then compute all equilibria threshold points in period t with

prior belief µt;

3. If ĥt−1 is on the path of play but ĥt = (ĥt−1, bt−1) is off the path of play, then pick any

consistent µt and compute all equilibria threshold points in period t with prior belief

µt.

From the above algorithm, multiple equilibria are characterized. Two classes of equi-

libria have nice properties and are easy to analyze, which I define as follows:

Definition 3.2 Emax = {(x∗(ht), x∗(ht))t=1,···, (µ
∗
t )t=1,···} is the equilibrium, in which after

any ht, for any (x′(ht), x′(ht)) forming a static equilibrium in period t with prior belief µ∗t ,

x′(ht) ≤ x∗(ht).

Definition 3.3 Emin = {(x∗(ht), x∗(ht))t=1,···, (µ
∗
t )t=1,···} is the equilibrium, in which after

any ht, for any (x′(ht), x′(ht)) forming an equilibrium in period t with prior belief µ∗t and

x′(ht) ∈ R (if exists), x∗(ht) ∈ R and x∗(ht) ≤ x′(ht); if there is no such x′(ht), x∗(ht) = −∞.

5In their model, after the first period, players lose the dominant region of attacking, so that they are in
a coordination game.
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So Emax is the equilibrium, in which players choose the most aggressive strategy in their own

period; and Emin is the equilibrium, in which players choose the lowest possible cooperation

strategy in their own period. I will show that the dynamics of attacking and the social

learning processes for the same path of histories are different in these two equilibria.

4 Dynamics of Attacking, Regime Change, and Social

Learning

In this section, I describe the equilibrium dynamics of attacking, and based on these dynam-

ics, I analyze the eventual outcome of the regime change conditional on the strength of the

status quo. Because social learning is the driving force behind the dynamics of attacking, I

investigate how social learning plays a role in the dynamics of attacking and in determining

regime change outcomes. Additionally, as shown at the end of this section, social learning

may lead to efficiency or inefficiency, depending on the strength of the status quo.

Two facts, which follow directly from the regime change rule and the assumption that

the game ends once the regime changes, should be noted before the analysis begins. First, if

one attack is observed in period t and Rt = 0, players learn immediately that θ 6= w; thus,

given Rt−1 = 0 (t > 1), if θ = w, the only history players can observe is the one without

any attack (ht = (0, · · · , 0)). Second, if two attacks are observed in period t and Rt = 0,

players learn immediately that θ = s. This fact has two implications: (1) Given Rt−1 = 0

(t > 1), if θ = m, players can only observe histories with at most one attack in each period

(ht with bτ ≤ 1,∀τ < t); (2) Since not attacking is the dominant strategy in state s, if two

attacks fail to trigger the regime change in some period t, there are no attacks ever again.

In the following, I first study the short-run dynamics of attacking and then investigate the

long-run dynamics.

4.1 Short-Run Dynamics

Because µ1 = µ0 ∈ int(∆(Θ)), by Proposition 2.1, players in period 1 follow a symmetric

cutoff strategy with threshold point x∗1 ∈ R.
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First, consider the case that there is no attack in period 1 (so ĥ2 = 0). Players in the

second period (before receiving private signals) learn that x1
1 > x∗1 and x2

1 > x∗1. So the prior

belief at the beginning of the second period is:

µ2[ĥ2](θ) =
µ1(θ)[Φ(

√
β(θ − x∗1))]2∑

θ′∈Θ

µ1(θ)[Φ(
√
β(θ′ − x∗1))]2

, ∀θ ∈ Θ.

Because x∗1 ∈ R, µ2(θ) > 0 for all θ ∈ Θ. Therefore, by Proposition 2.1, players in period 2

follow a symmetric cutoff strategy in the equilibrium, with the threshold point x∗2(ĥ2) ∈ R.

This is true for any period t: if Rt−1 = 0 and ĥt = (0, · · · , 0), no attack in period t will

lead to players in period t + 1 following a symmetric cutoff strategy with threshold point

x∗t+1(ĥt+1) ∈ R. So in both Emax and Emin, players in period t + 1 attack the status quo

with positive probability. However, this probability is lower than that in period t, because

no attack in period t makes period t+ 1 players more pessimistic.

Lemma 4.1 If there is no attack before period t + 1, in both Emax and Emin, players in

period t+ 1 attack the status quo with strictly lower probability than period t players.

Now consider that there is exactly one attack in period 1 (h̄2 = 1). Period 2 players

learn two facts: (1) θ 6= w and (2) xi1 > x∗1 and xj1 ≤ x∗1. From the first fact, players know

that cooperation is needed for the regime change. The latter fact shifts the belief about

{m, s}. Formally, the prior belief at the beginning of period 2 is:

µ2[h̄2](θ) =

0, θ = w;
µ1(θ)Φ(

√
β(θ−x∗1))Φ(

√
β(x∗1−θ))∑

θ′∈{m,s}
µ1(θ′)Φ(

√
β(θ′−x∗1))Φ(

√
β(x∗1−θ′))

, θ = m, s.

From Proposition 2.2, second period players attack the status quo with positive probability

in the equilibrium if and only if µ2[h̄2](m) ≥ µ̃(m). This is also true for any period t. Fix any

non-trivial equilibrium. If there is no attack before period t, players attack the status quo

with positive probability (threshold point x∗t (ĥ
t) ∈ R). Suppose one of the period t players

chooses to attack but the other does not. Then period t+1 players attack the status quo with

positive probability if and only if µt+1[(ĥt, 1)](m) ≥ µ̃(m). If µt+1[(ĥt, 1)](m) < µ̃(m), in any

non-trivial equilibrium, the probability of attacking in period t + 1 is 0, which of course is
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less than the probability of attacking in period t. Hence, when comparing the probabilities

of attacking in period t and in period t+ 1 along this history ht+1 = (0, · · · , 0, 1), it is more

interesting to assume µt[ĥ
t] and exactly one attack leading to µt+1[(ĥt, 1)](m) ≥ µ̃(m). One

failed attack in period t makes period t+ 1 players understand that they cannot trigger the

regime change unilaterally. But whether exactly one attack increases or decreases period

t + 1 players’ beliefs about the medium status quo depends on x∗t (ĥ
t). If x∗t (ĥ

t) < m+s
2

,

exactly one attack in period t makes

µt+1[(ĥt, 1)](m) >
µt[ĥ

t](m)

µt[ĥt](m) + µt[ĥt](s)
,

so period t + 1 players put more probability on the medium status quo.6 Conversely, if

x∗t (ĥ
t) > m+s

2
, exactly one attack in period t makes period t+ 1 players put more probability

on the strong status quo.

Lemma 4.2 Suppose µt[ĥ
t] and exactly one attack lead to µt+1[(ĥt, 1)](m) ≥ µ̃(m). In Emax,

when µt[ĥ
t](w) is close to 1 or x∗t (ĥ

t) ≥ m+s
2

, the probability of attacking in period t + 1 is

lower than that in period t. But there is µt[ĥ
t] with µt[ĥ

t](w) close to 0 and x∗t (ĥ
t) < m+s

2
.7

The probability of attacking in period t+ 1 is higher than that in period t.

Now consider the third period players’ behavior when there is one attack in the first

period and no attack in the second period. Obviously, because of the failed attack by one

player in the first period, players know θ 6= w. When there are only two possible states, m

and s, if second period players attack the status quo with positive probability, no attack in

the second period decreases third period players’ shared prior belief about θ = m. Hence,

in the third period, a non-trivial equilibrium exists if and only if µ3(m) ≥ µ̃(m). This also

can be generalized to any period t. Consider the history ht = (0, · · · , 0, 1) with no attack in

period t (therefore ht+1 = (0, · · · , 0, 1, 0)). There is an equilibrium in which the probability

of attacking in period t+ 1 is positive if and only if µt+1[(0, · · · , 0, 1, 0)](m) ≥ µ̃(m).

6Note x < m+s
2 implies Φ(

√
β(m− x))Φ(

√
β(x−m)) > Φ(

√
β(s− x))Φ(

√
β(x− s)).

7This is possible. When x̃ (the unique solution to H(x; µ̃)) is less than m+s
2 , let µt[ĥt](w) go to 0, and

there exists µt such that in all equilibria, x∗t (ĥt) < m+s
2 .
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Now suppose period t+1 players attack the status quo with positive probability. Is this

probability higher or lower than that in period t? In Emax, the most aggressive equilibrium,

because period t+1 players are more pessimistic than period t players, the highest probability

of attacking in period t+ 1 is lower than the highest probability of attacking in period t. In

contrast, in Emin, the lowest possible coordination equilibrium, period t players can cooperate

at signals lower than the lowest cooperation point in period t+1, because period t+1 players

are more pessimistic. These intuitions are verified in the following lemma:

Lemma 4.3 Suppose that ht = (0, · · · , 0, 1), there is no attack in period t, and µt+1[(ht, 0)](m) ≥

µ̃(m). In Emax, period t+1 players attack the status quo with lower probability than period t

players; in Emin, period t+1 players attack the status quo with higher probability than period

t players.

Finally, consider the history with one attack in both period t−1 and period t. Because

period t + 1 players can rule out the case that θ = w, there is an equilibrium in which the

probability of attacking in period t+1 is strictly positive after the history under consideration

if and only if µt+1(m) ≥ µ̃(m). Suppose in this equilibrium period t + 1 players attack the

status quo with positive probability under the history, then will they attack more or less

frequently than period t players? Obviously, this question can be answered by comparing

µt(m) with µt+1(m). From footnote 6 and the proof of Lemma 4.3, the following lemma can

easily be shown.

Lemma 4.4 Suppose ht = (0, · · · , 0, 1). There is one attack in period t, and µt+1[(ht, 1)](m) ≥

µ̃(m). In Emax, period t+ 1 players attack the status quo with lower probability than period

t players do if and only if x∗t >
m+s

2
; in Emin, period t+ 1 players attack the status quo with

higher probability than period t players do if and only if x∗t >
m+s

2
.

Before moving on to the long-run dynamics, I summarize the analysis about short-run

dynamics in this subsection. First, if there has never been an attack, period t + 1 players

attack the status quo with positive probability lower than that in period t. Second, if there is
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one attack in some period τ and the status quo is still in place in period t (t ≥ τ), there is an

equilibrium, in which players in period t′ > t attack the status quo with positive probability,

if and only if µt′(m) ≥ µ̃(m). Third, if there is one attack before period t and period t + 1

players attack the status quo with positive probability after no attack in period t, then the

probability of attacking is lower in period t+ 1 than in period t in Emax, and it is higher in

period t + 1 than in period t in Emin. Finally, if period t + 1 players attack the status quo

with positive probability after one attack in period t, the probability of attacking in period

t+1 is larger than that in period t if x∗t < (m+s)/2 in Emax and the probability of attacking

in period t+1 is smaller than that in period t if x∗t > (m+s)/2 in Emax. The converse claim

is true in Emin.

4.2 Long-Run Dynamics and Regime Change

When θ = w, ĥt ≡ (0, · · · , 0) is the only history period t players can observe conditional on

Rt−1 = 0. So the dynamics along ĥt determine the eventual outcome of the regime change,

conditional on θ = w. Hence, I first study the dynamics of the probability of attacking along

the history without any attack (ĥt).

Along ĥ∞, in both Emax and Emin, players attack the status quo with positive proba-

bility in every period t, because µt ∈ int(∆(Θ)). Since the probability of attacking is positive

in any period t, period t + 1 players learn something about θ from no attack in period t.

Lemma 4.1 implies that along ĥ∞, players become pessimistic, so the probability of attacking

is strictly decreasing over time in both Emax and Emin.

Proposition 4.1 In both Emax and Emin, along ĥ∞, µt(w)→ 0 and Pr(attack in period t|ĥt)→

0.8

When θ = w, one attack in any period t (given Rt−1 = 0) triggers the regime change.

So the probability that the status quo does not fall at the beginning of period t (conditional

on θ = w) is
t−1∏
τ=1

[1−Φ(
√
β(x∗τ (ĥ

τ )−w))]2. For any finite period t, this probability is positive.

8If other equilibria exist, Pr(attack in period t|ĥt) may not be monotonic, but the convergence result is
still true.
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The asymptotic probability that the status quo does not fall when θ = w is not clear at

first glance, because the probability of attacking is strictly decreasing and converges to 0.

Therefore, the asymptotic probability of the regime change when θ = w depends on the

speed of the probability of attacking converging to 0. If it is too fast, the status quo may not

fall. But while players continue to learn, they learn slowly. This slow social learning process

determines that the probability of attacking cannot converge to 0 too fast. As a result, the

following proposition holds.

Proposition 4.2 If θ = w, in any equilibrium, the status quo is abandoned almost surely.

Now, let’s turn to the analysis conditional on θ = m. Since first period players attack

the status quo with positive probability, two attacks in the first period happen with positive

probability. As a result, when θ = m, the status quo falls with positive probability. Then

does the status quo fall almost surely conditional on θ = m? Because players’ private signals

have the unbounded likelihood ratio property, for any prior beliefs, there are signals making

their posterior beliefs about θ = m arbitrarily close to 1. Therefore, it seems that in a non-

trivial equilibrium (in which attacking with positive probability if possible), with probability

1, there is one period in which both players in that period receive signals informing θ = m.

As a result, conditional on θ = m, the status quo should fall almost surely. However, this

is not true. Consider the history h̄t ≡ (1, 0, · · · , 0), in which there is one attack in the first

period but no attacks afterward. Note for any finite period t, h̄t is on the path of play.

From the failed first period attack, players learn that θ > w. So by Proposition

2.2, whether players attack the status quo with positive probability in period t depends on

whether their prior belief at the beginning of period t, µt(m)[h̄t], is greater than or equal

to µ̃(m). Then the observation of “no attack” after the first period indicates that players

are increasingly pessimistic, so social learning leads to no attack for sure after some period.

This analysis is summarized in the following proposition.

Proposition 4.3 Along the history h̄t, in Emax, the probability of attacking is strictly de-

creasing over time until some period T1 ≥ 1. From period T1 + 1 on, the probability of
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attacking is 0. Along this history, in Emin, the probability of attacking is strictly increasing

over time until period T2 ≥ 1. From period T2 + 1 on, the probability of attacking is 0.

This result holds in all equilibria. Fixing any equilibrium, along the history h̄t, there

is a T such that players stop attacking from period T + 1 on. As a result, h̄∞ occurs with

the same probability as h̄T . Since the status quo does not fall under h̄∞, and h̄T occurs with

positive probability, the following proposition is obvious.

Proposition 4.4 If θ = m, in any equilibrium the probability of the status quo being aban-

doned is strictly between 0 and 1.

So when θ = m, the fundamental itself cannot predict the eventual outcome of the regime

change; early period signals play important roles in determining the regime change. This is

a herding result; that is, players in later periods join the herd by ignoring their own private

signals, no matter how informative such signals are.

Why is the previous argument that the medium regime is almost surely abandoned

wrong? Or what is the intuition of the dynamics in Proposition 4.3? This is related to the

global game literature (see Carlsson and Van Damme (1993) and Morris and Shin (2007)).

Fix any finite precision of private signals. Even though both players can believe θ = m by

their private signals, this is never a common belief. In particular, one player, although she

believes θ = m, puts a bounded (away from 1) probability on the other player also receiving

an extreme private signal indicating θ = m. Then when the prior belief about θ = m is

sufficiently small, this player’s belief that her opponent will choose to attack is sufficiently

low. As a result, when social learning drives the prior belief about θ = m below µ̃(m), no

attack is the only outcome consistent with an equilibrium.

Finally, when θ = s, the status quo never falls. However, it is still interesting to

examine the dynamics of attacking in this case. One interesting and typical history is that

with exactly one attack in each period, h̃t ≡ (1, · · · , 1). Since the second period, a failed

attack by one player in period t can be evidence favoring θ = m or θ = s. Lemma 4.4

indicates that if x∗t [h̃
t] < (>)m+s

2
, one attack in period t leads period t+1 players to increase
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Figure 4.1: x̃ > m+s
2

(decrease) their beliefs about θ = m. Since players behave quite differently along h̃t in Emax

and in Emin, I analyze the dynamics of attacking in Emax and Emin separately.

From Proposition 2.2, when µt(m) = µ̃(m), there exists a unique x̃ ∈ R such that

h(x̃; µ̃) = 0. If x̃ > m+s
2

, in period t, the largest solution to h(x;µt) = 0 is greater than or

equal to x̃. As a result, in Emax, x∗t [h̃
t] > m+s

2
. This implies that µt+1(m) < µt(m) after

exactly one attack in period t. Hence, in this case, if period t players attack with positive

probability, period t + 1 players attack less frequently than period t players do. Because

x̃ > m+s
2

, one attack in period t is always evidence in favor of θ = s, so players always

learn from having one attack in the previous period, although players learn less over time.

Therefore, beginning in some period T3 + 1, players’ beliefs about θ = m drop below µ̃(m),

and players stop attacking. This intuition is illustrated in Figure 4.1.

When x̃ = m+s
2

, in Emax, the dynamic of attacking along h̃t is similar to that in the

case of x̃ > m+s
2

. But the information players learn from one attack in the previous period

is not bounded away from zero. That is, one attack in period t becomes neutral in the limit

because x∗t [h̃
t] is decreasing toward x̃ over time (and if x∗t [h̃

t] = x̃, one attack in period t is

neutral). However, as shown in Proposition 4.5, if x∗t [h̃
t] is in the neighborhood of x̃, µt is so

close to µ̃ that the discrete adjustment of the prior belief after one attack in period t makes

µt+1(m) < µ̃(m). Hence, players stop attacking from that period onward. Figure 4.2 shows

this intuition.
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Figure 4.2: x̃ = m+s
2

Figure 4.3: x̃ < m+s
2

The last case is x̃ < m+s
2

. When µt(m) > (<)µ′(m) (where µ′ is the prior belief such

that m+s
2

is the biggest solution to the equation h(x;µ′) = 0), one attack in period t is

evidence favoring θ = s (θ = m). When β is very large and x∗t [h̃
t] is in the neighborhood of

x̃, the adjustment of the prior from one attack in period t is very small, so that µt+1(m) is

between µt(m) and µ′(m). Therefore, the probability of attacking converges to Φ(
√
β

2
(s−m))

along h̃t. See Figure 4.3 for this case.

The analyses above are summarized in the following proposition:

Proposition 4.5 In Emax, along the history h̃t,

1. If µ̃(m) > m+s
2

, the probability of attacking is decreasing over time after period 2; and

there is a period T3, such that the probability of attacking is 0 from period T3 + 1 on.
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2. If µ̃(m) = m+s
2

, the probability of attacking is decreasing over time after period 2; and

there is a period T4 such that from period T4 +1, the probability of attacking is constant

at either Φ(
√
β

2
(s−m)) or 0.

3. If µ̃(m) < m+s
2

, the probability of attacking is decreasing (increasing) over time if

µ2(m) > (<)µ′(m); and the probability of attacking converges to Φ(
√
β

2
(s−m)).

Now, let’s move to the dynamics of attacking along h̃t in Emin. Lemma 4.4 implies

that if x∗2[h̃2] < (>)m+s
2

, the probability of attacking is decreasing (increasing) over time.

The following proposition describes the asymptotic behavior in Emin along h̃t.

Proposition 4.6 In Emin, along h̃t, if x∗2[h̃2] > m+s
2

, there exists a period T5 such that the

probability of attacking is 0 from period T5 +1 on; if x∗2[h̃2] < m+s
2

, the probability of attacking

converges to c, the cost of attacking.

It is interesting to compare part 3 of Proposition 4.5 with the second case of Proposition

4.6. Along h̃t, in both Emax and Emin under some conditions, the probability of attacking

converges. However, the social learning processes, which drive these two convergence results,

are different. In Emax, because one attack in the previous period becomes neutral evidence,

players learn more slowly over time, and in the limit they learn nothing. This leads to

convergence in Emax. In Emin, players learn increasingly more from one attack in the previous

period, and in the limit they are convinced that θ = m. So players in the limit follow the

strategy, which purifies the mixed strategy equilibrium of the complete information normal

form game when θ = m. (In fact, in the complete information normal form game when

θ = m, the mixed strategy equilibrium is the lowest possible coordination equilibrium.)

4.3 Social Welfare

In this section, I analyze the effects of social learning on social welfare. Imagine the scenario

that all players believe they are in a static regime change game, so that there is no social

learning. From Proposition 2.1, in any equilibrium, players attack the status quo with

positive probability (bounded away from 0) in each period. Consider the ex-post social
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welfare W = (1 − δ)
∞∑
t=1

δt(u1
t + u2

t ), where δ ∈ (0, 1) is the discount factor. By comparing

the social welfare functions of the regime change game with and without social learning, the

effect of social learning can be seen from the following proposition:

Proposition 4.7 Compare with the scenario without social learning,

1. if θ = w, in both Emax and Emin, for any δ ∈ (0, 1), social learning leads to inefficiency;

as δ goes to 1, this inefficiency disappears;

2. if θ = m, in any equilibrium, there exists a δm ∈ (0, 1), such that social learning is

inefficient for any δ ∈ (δm, 1);

3. if θ = s, in any equilibrium, there exists a δs ∈ (0, 1), such that social learning leads to

a higher social welfare value.

The intuition behind the first part of this proposition is that social learning delays

the regime change. However, when the discount factor is sufficiently large, such inefficiency

disappears. In the second part, when θ = m, social learning causes players to stop attacking

with positive probability, so the status quo may not fall with positive probability, which is

inefficient because positive utilities after the regime change cannot be collected. In the third

case, the lower the number of attacks the better, because the regime cannot be beaten. Since

social learning can prevent infinitely many attacks, it is more efficient.

5 Extensions

In this section, I consider two extensions of the dynamic regime change game of the bench-

mark model. In the first extension, I allow the precision of signals, βt, to change over

time deterministically. In particular, {βt}t is assumed to be an increasing sequence and

lim
t→∞

βt = ∞. This extension captures the idea of information technology innovation and

demonstrates how the benchmark model differs from models with private learning. The sec-

ond extension models a N -player (N + 1)-state dynamic regime change game. Restricted to

the monotone equilibrium, I get results very similar to the benchmark model.
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5.1 Private Learning

In the benchmark model, because players are short-lived, they can observe only one piece

of private information. Hence, no one can individually learn the true state, given that the

precision of private signals, β, is a constant. Consequently, when θ = w is ruled out, the

critical belief µ̃(m) below which players choose not to attack, ignoring their private signals,

is constant over time (m, s and c are given). As a result, along the history h̄t ≡ (1, 0, · · · , 0),

there is a period T such that µT+1(m) < µ̃(m). Since period T + 1 players choose not to

attack with probability 1, period T + 2 players could not update their beliefs about θ = m

from the no attack outcome in period T + 1. So µT+2(m) = µT+1(m) < µ̃(m), and period

T + 2 players will also choose not to attack for any private signals. This analysis leads to

Proposition 4.3 and Proposition 4.4.

Then, what happens if private learning is allowed? In particular, does the herding

result in Proposition 4.3 occur with private learning? And can players with private learning

beat the medium status quo almost surely? Because information technology innovates over

time, a straightforward way to incorporate private learning in the benchmark model is to

assume that players in the later period have more precise private information than players in

the earlier periods and that private signals are accurate in the limit. That is, the precision

of period t’s private signals, βt, increases over time and converges to ∞.

The most interesting case is when θ = m. Consider the history h̄t. A failed attack by

one player in the first period rules out θ = w, so players lose the dominant region of attacking.

While the prior belief about θ = m, µt(m), keeps decreasing over time, the critical belief

µ̃t(m) changes over time. From Proposition 2.2, attacks can occur with positive probability

in period t, in which µt(m) ≥ µ̃t(m), and no attack is the unique equilibrium outcome in

period t′, in which µt′(m) < µ̃t′(m). Since µ̃t(m) goes to 0 (by Lemma 7.5 in the appendix),

unless the status quo is abandoned, attacks occur in infinitely many periods. Therefore,

when θ = m, the status quo falls almost surely.

The reason why the herding result in Proposition 4.3 disappears is due to the increasing

without bound precision of private signals. As players’ precision of private signals goes to
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+∞ (and this is common knowledge), the correlation of players’ private signals (in the same

period) is arbitrarily close to 1. Therefore, when one player gets the private signal indicating

that θ = m, she assigns an arbitrarily high probability that her opponent’s private signal

also indicates θ = m. As a result, for a fixed common prior belief (if, in equilibrium, period

t’s players’ strategies are to not attack for all signals, then period t+ 1 players’ prior beliefs

are the same as period t’s players’), there is a sufficiently large precision of private signals

such that attacking with positive probability is consistent with an equilibrium.

This extended model with private learning shows the possibility of one transition in

Angeletos, Hellwig and Pavan (2007). That is, an economy can transit back and forth

between “tranquility” phases (no attack in any equilibrium) and “distress” phases (attack

with positive probability in non-trivial equilibria). Without private learning, this transition

cannot happen.

5.2 N-Player (N + 1)-State Dynamic Regime Change Game

The benchmark model has three possible levels of the strength of the status quo (|Θ| = 3)

and two new short-lived players in each period. I now extend the benchmark model to a

dynamic regime change game with N new short-lived players in each period and N + 1

possible levels of the strength of the status quo.

Suppose Θ = {m1, · · · ,mN+1} with N > 2 and m1 < m2 < · · · < mN+1, is the set of

states. When θ = mk, at least k attacks are needed to trigger the regime change. Hence,

when θ = m1, attacking is the dominant action for players, because one attack is enough to

make the status quo be abandoned. When θ = mN+1, not attacking is the dominant action

for players, because at least N + 1 attacks are required to trigger the regime change, but

the maximum number of possible attacks is N . In all other states, players may cooperate at

different levels.

Different from Proposition 2.1 and Proposition 2.2, given some strategy profile of other

players S−i, the best response of player i may not be a cutoff strategy. In particular, when

all other players choose to attack the status quo if and only if their private signals are in
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a small neighborhood of mN , player i’s best response is to attack the status quo when xi

convinces player i that θ = mN . Therefore, in this extension, I focus only on monotone

equilibria in which players’ strategies are decreasing in their own private signals (so attack

for low private signals and not attack for high private signals). Lemma 7.6 in the appendix

shows that if all other players are following this kind of strategy, player i’s best response is

a cutoff strategy with attack for low signals and not attack for high signals. Because of the

strategic complementarity, if a monotone equilibrium exists, it is symmetric. Following in

a similar way the proof of Proposition 2.1, a monotone equilibrium can be shown to exist

for any interior prior belief. Also, there exists a µ̃(mN+1) ∈ (0, 1) such that when mk is

ruled out (so that all states mk′ , k
′ < k are ruled out), only a trivial equilibrium exists.

Hence, restricted to monotone equilibria, the static game analysis is similar to that of the

benchmark model.

For any fixed monotone equilibrium, the eventual outcome of regime change in this

extended model is similar to that of the benchmark model. When θ = m1, an N + 1 state

version of Lemma 7.4 and the fact that after an infinitely long history without any attack

players’ belief about θ = m1 is 0 together imply that the status quo falls almost surely.

When θ = mN+1, by assumption, the status quo never falls. For any state, which requires

coordination to trigger the regime change, the state itself cannot predict the eventual outcome

of the regime change. This is so for two reasons: (1) the history h̄t = (1, 0, · · · , 0) happens

with positive probability for any period t, and (2) as t becomes large, players’ beliefs about

θ = mN+1 are larger than µ̃(mN+1).

6 Conclusion

This paper examined how social learning influences the dynamics of attacking and the even-

tual outcome of regime change in a dynamic regime change game without perfect individual

learning. I show that when the regime is weak, although players become pessimistic and

eventually choose not to attack, the social learning process guarantees that the regime falls

almost surely. When the regime is in the medium state, social learning leads to a herd-
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ing result. That is, when players are sufficiently pessimistic before observing their private

signals (because they have updated their beliefs from previous plays), they choose not to

attack despite their private signals. Therefore, in this case, both the status quo and the

early signals determine the eventual outcome of the regime change. My result also shows

that although the dynamics of attacking are similar in different equilibria, they are driven

by different social learning processes.

Social learning may lead to more or less efficient outcomes, compared with the scenario

without social learning. In particular, when the status quo is weak or medium, social learning

delays the regime change time, which is inefficient. But when the status quo is strong,

social learning can prevent infinitely many attacks, which leads to a higher discounted social

welfare.

My results contribute to the growing literature on dynamic global games by analyzing

social learning instead of individual learning and to the herding literature by incorporating

a strategic complementarity environment in each period. From a methodological perspec-

tive, multiple equilibria emerge in my setting, as in Angeletos, Hellwig, and Pavan (2007).

However, the multiplicity is due not only to the pure coordination property after the weak

status quo is ruled out but also from the updating of priors over time. In particular, the

uniqueness established in Morris and Shin (2003) comes from fixing a prior belief and letting

private signals become very precise. However, in my model, the precision of private signals

is fixed while the prior is being updated over time. So multiplicity may appear under the

history without any attack (a global game).
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7 Appendix: Proofs

PROOF OF PROPOSITION 2.1: I first show that if a Bayesian Nash Equilibrium exists,

it is in cutoff strategies. Because signals are conditionally independent, in equation 2.3, fix

any sj, Pr(sj = 1|m) is a constant number less than or equal to 1. Therefore, for any fixed

sj, player i’s interim payoff Exju
i(1, sj|xi) is strictly decreasing in xi. Note also that since

lim
xi→−∞

Exju
i(1, sj|xi) = 1− c > 0 (dominant region of attacking) and lim

xi→+∞
Exju

i(1, sj|xi) =

−c < 0 (dominant region of not attacking), the best response to any sj is a cutoff strategy

with threshold point x̂i ∈ R. Therefore, if a Bayesian Nash Equilibrium exists, it is in cutoff

strategies. So I represent an equilibrium profile by (x̂1, x̂2).

Second, I show that if a Bayesian Nash Equilibrium exists, it is symmetric, that is, x̂1 =

x̂2. Suppose not, then there is an equilibrium (x̂1, x̂2) with x̂1 > x̂2. Because players are ex-

ante homogeneous, there exists another equilibrium (ˆ̂x1, ˆ̂x2)=(x̂2, x̂1). Because Exju
i(1, sj|xi)

is strictly supermodular and Exju
i(1, x̂j|x̂i) = 0, x̂i is strictly increasing in x̂j. Thus ˆ̂x2 =

x̂1 > x̂2 implies x̂2 = ˆ̂x1 > x̂1. Contradiction.

Now consider any symmetric cutoff strategy profile (x, x). Fix any prior µ, the interim

payoff from attacking given the signal x and the opponent’s cutoff strategy with threshold

point x can be written as:

G(x;µ) =
µ(w)φ(

√
β(x− w))∑

θ′∈Θ

µ(θ′)φ(
√
β(x− θ′))︸ ︷︷ ︸

posterior belief about θ=w

+
µ(m)φ(

√
β(x−m))∑

θ′∈Θ

µ(θ′)φ(
√
β(x− θ′))︸ ︷︷ ︸

posterior belief about θ=m

Φ(
√
β(x−m))︸ ︷︷ ︸

probability j attacks

−c.

Because G(x;µ) is continuous in x, the dominant region of attacking and dominant region

of not attacking imply that there exists x∗ ∈ R such that (x∗, x∗) is an equilibrium.

Finally, I claim that for any fixed β, there exists a µ ∈ int(∆(Θ)) such that multiple

equilibria exist in this static regime change game. To show this claim, I just need to show

that there exists a µ ∈ int(∆(Θ)) such that there are more than one solutions to G(x;µ) = 0.

Note that lim
µ(m)→1

G(w+m
2

;µ) = Φ(
√
β

2
(w − m)) − c < 0 (by c > 1

2
) and lim

µ(m)→1
G(m+s

2
;µ) =

Φ(
√
β

2
(s −m)) − c > 0 (by Assumption 2.1). Therefore, the dominant region of attacking,

the dominant region of not attacking, and the continuity of G(x;µ) in x imply that there

28



are three solutions to G(x;µ) = 0, one in (−∞, w+m
2

), one in ( w+m
2

, m+s
2

), and one in (m+s
2

,

+∞). Q.E.D.

PROOF OF PROPOSITION 2.2: First when µ(w) = 0, for a fixed sj, Exju
i(1, sj|xi) is

strictly decreasing in xi, and the regime change game is supermodular. So similar to the proof

of Proposition 2.1, if a non-trivial equilibrium exists, it is symmetric and in cutoff strategies.

Denote a symmetric cutoff strategy profile by (x, x). Let H(x;µ) = G(x;µ(w) = 0), then

(x∗, x∗) is a non-trivial equilibrium of the regime change game if and only if H(x∗;µ) = 0.

Therefore, conditions for the existence of a non-trivial equilibrium are equivalent to those

for the existence of a solution to H(x;µ) = 0. Note H(x;µ) can be equivalently written as

H(x;µ) = f(x;µ)h(x;µ), where

g(x;µ) =
µ(m)φ(

√
β(x−m))

µ(m)φ(
√
β(x−m)) + (1− µ(m))φ(

√
β(x− s))

and

h(x;µ) = [Φ(
√
β(x−m))− c]− c( 1

µ(m)
− 1) exp[

β

2
(s−m)(2x− s−m)].

For any x ∈ R, g(x;µ) > 0, therefore x∗ is a solution to H(x;µ) = 0 if and only if it is a

solution to h(x;µ) = 0. The rest of this proof relies on the following sequence of lemmas.

Lemma 7.1 There exist µ̄(m), µ(m) ∈ (0, 1) with µ̄(m) > µ(m), such that for all µ(m) ∈

(0, µ(m)], there is no solution to h(x;µ) = 0; and for all µ(m) ∈ [µ̄(m), 1), there is x∗ ∈ R

such that h(x∗;µ) = 0.

Proof.

First consider the case where µ(m) is close to 1. Since Φ(
√
β

2
(s−m)) > c, h( s+m

2
;µ) > 0.

Note that for all µ(m) ∈ (0, 1), h(m;µ) < 0 and lim
x→+∞

h(x, µ) < 0, so by continuity of

h(x;µ) in x, there exist x̂ ∈ (m, s+m
2

) and ˆ̂x ∈ ( s+m
2
,+∞) such that h(x̂, µ) = 0 and

h(ˆ̂x, µ) = 0. Therefore, there exists µ̄(m) ∈ (0, 1) such that solutions to h(x;µ) = 0 exist

for all µ(m) ∈ [µ̄(m), 1). Now consider µ(m) is close to 0. The last term of h(x;µ) is very

negative for any x larger than m, so h(x;µ) < 0 for all x > m. Combined with the fact

that h(x;µ) < 0 for all x ≤ m, there exists µ(m) ∈ (0, 1) such that for all µ(m) ∈ (0, µ(m)],
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h(x;µ) < 0,∀x ∈ R. Finally, because µ̄(m) can be picked as a number very close to 1 and

µ(m) can be picked as a number very close to 0, µ̄(m) > µ(m).

Lemma 7.2 There exists µ̃(m) ∈ (µ̄(m), µ(m)), such that for all µ(m) ∈ (0, µ̃(m)), there

is no solution to h(x;µ) = 0; and for all µ(m) ∈ (µ̃(m), 1), there are two solutions to

h(x;µ) = 0. Therefore, claims (1) and (2) in Proposition 2.2 are true.

Proof.

Suppose 1 > µ′(m) > µ′′(m) > 0 and ∃x′′ ∈ (m,+∞) such that h(x′′;µ′′) = 0 (because

all x ≤ m cannot be a solution to h(x;µ′′) = 0). Since h(x;µ) is strictly increasing in

µ(m) for any fixed x ∈ R, h(x′′;µ′) > h(x′′;µ′′) = 0. Then by the continuity of h(x;µ′)

and lim
x→+∞

h(x, µ′) < 0, there exists x′ ∈ (x′′,+∞) such that h(x′;µ′) = 0. Similarly, if

1 > µ′(m) > µ′′(m) > 0 and h(x;µ′) < 0 for all x ∈ R, h(x;µ′′) < 0 for all x ∈ R. Define

µ̃(m) = inf{µ(m) ∈ (0, 1) : ∃x ∈ R such that h(x;µ) = 0} = sup{µ(m) ∈ (0, 1) : h(x;µ) <

0 ∀x ∈ R} (since for a given µ, h(x;µ) either has a solution or doesn’t have a solution).

Obviously, µ̃(m) ∈ (µ̄(m), µ(m)).

For all µ(m) ∈ (µ̃(m), 1), note that ∂2h
∂x2 < 0 for all x ≥ m and h(x;µ) has a single peak

in (m,+∞). Therefore, when µ(m) ∈ (µ̃(m), 1), there are two solutions to h(x;µ) = 0.

Lemma 7.3 There exists a unique x̃ ∈ (m,+∞) such that h(x̃, µ̃) = 0. Therefore, claim

(3) in Proposition 2.2 is true.

Proof.

Suppose ∀x ∈ R, h(x; µ̃) < 0. Recall that because µ(m) < 1, for any x ∈ (x̄(µ̃(m)),+∞),

h(x; µ̃(m)) < 0 (dominant region of not attacking), where x̄(µ(m)) = inf{x ∈ R : Exju
i(1, sj|xi, µ) <

0 for all sj}. Since Exju
i(1, sj|xi) is increasing in µ(m), x̄(µ(m)) is an increasing function in

µ(m). As a result, h(x; µ̃(m)) < 0 for all x > x̄(µ̄(m)), because µ̃(m) < µ̄(m). Since c > 1
2
,

for any µ, h(x;µ) < 0 for all x < m. Now consider the compact set [m, x̄(µ̄(m))]. From

the continuity of h(x;µ) in x, ∃x̂ ∈ [m, x̄(µ̄(m))] such that h(x; µ̃) ≤ h(x̂; µ̃) < 0. Pick a

sequence {µk(m)} such that µk(m) ∈ (µ̃(m), µ̄(m)), µk(m) > µk+1(m) and µk(m) → µ̃(m).
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Since h(x;µ) is continuous in µ(m) for any x ∈ [m, x̄(µ̄(m))], lim
k→+∞

h(x;µk) = h(x; µ̃).

Defining Mk = sup
x∈[m,x̄(µ̄(m))]

|h(x;µk)− h(x; µ̃)|, it can be calculated that

Mk = sup
x∈[m,x̄(µ̄(m))]

| 1

µk(m)
− 1

µ̃(m)
|c exp[

β

2
(s−m)(2x− s−m)]

= | 1

µk(m)
− 1

µ̃(m)
|c exp[

β

2
(s−m)(2x̄(µ̄(m))− s−m)].

Therefore, ∀ε > 0,∃K such that for all k > K, | 1
µk(m)

− 1
µ̃(m)
| < ε

c exp[β
2

(s−m)(2x̄(µ̄(m))−s−m)]
,

which implies that Mk < ε. So h(x;µk) converges to h(x; µ̃) uniformly. So there exists

K ′ such that for all k > K ′, h(x;µk) − h(x; µ̃) < |h(x̂,µ̃(m))|
2

, so h(x;µk) < − |h(x̂,µ̃(m))|
2

< 0

for all x ∈ [m, x̄(µ̄(m))]. Note for any x < m and x > x̄(µ̄(m)), h(x;µk) < 0, so for all

x ∈ R, h(x;µk) < 0. But by the definition of µ̃(m), there must be some x′ ∈ R such that

h(x′;µk) = 0. Therefore, when µ(m) = µ̃(m), there exists x̃ such that h(x̃; µ̃) = 0.

Now suppose x′ 6= x̃ and h(x′; µ̃) = 0. Because ∂2h
∂x2 < 0 for all x ≥ m, there must be x′′

between x′ and x̃ such that h(x′′; µ̃) > 0. Then because h(x′′;µ) is continuous in µ(m), fix

any ε ∈ (0, h(x′′;µ̃)
2

), there exists γ > 0 such that for all µ′(m) ∈ (µ̃(m)− γ, µ̃(m)), h(x′′;µ) >

h(x′′; µ̃)− ε > 0. So there exists x′′′ ∈ (m,x′′) such that h(x′′′;µ) = 0. This contradicts the

definition of µ̃(m). Therefore, there exists a unique x̃ ∈ R, such that h(x̃, µ̃(m)) = 0.

The following graph of h(x, µ) is helpful for further analysis. In the graph, µ′′(m) >

µ̃(m) > µ′(m), so h(x;µ′′) = 0 has two solutions, h(x; µ̃) = 0 has unique solution x̃, and

h(x;µ′) < 0 for all x ∈ R.

Figure 7.1: µ′′(m) > µ̃(m) > µ′(m)
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Q.E.D.

PROOF OF LEMMA 4.1: Because there is no attack before period t+1 and any finite

history without any attack is on the path of play conditional on any θ ∈ Θ, Bayes’ rule

implies that µt, µt+1 ∈ int(∆(Θ)) in any equilibrium. Fix any x and recall ĥt ≡ (0, · · · , 0),

G(x;µt+1)

=
µt+1(w)φ(

√
β(x− w))∑

θ′∈Θ

µt+1(θ′)φ(
√
β(x− θ′))

+
µt+1(m)φ(

√
β(x−m))Φ(

√
β(x−m))∑

θ′∈Θ

µt+1(θ′)φ(
√
β(x− θ′))

− c

=

µt(w)[Φ(
√
β(w − x∗t (ĥt)))]2φ(

√
β(x− w))

+ µt(m)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x−m))Φ(

√
β(x−m))



µt(w)[Φ(

√
β(w − x∗t (ĥt)))]2φ(

√
β(x− w))

+ µt(m)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x−m))

+ µt(s)[Φ(
√
β(s− x∗t (ĥt)))]2φ(

√
β(x− s))


− c

<

µt(w)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x− w))

+ µt(m)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x−m))Φ(

√
β(x−m))



µt(w)[Φ(

√
β(m− x∗t (ĥt)))]2φ(

√
β(x− w))

+ µt(m)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x−m))

+ µt(s)[Φ(
√
β(m− x∗t (ĥt)))]2φ(

√
β(x− s))


− c

=
µt(w)φ(

√
β(x− w))∑

θ′∈Θ

µt(θ′)φ(
√
β(x− θ′))

+
µt(m)φ(

√
β(x−m))Φ(

√
β(x−m))∑

θ′∈Θ

µt(θ′)φ(
√
β(x− θ′))

− c

= G(x;µt).

In Emax, let x∗t+1(ĥt+1) be the largest solution to G(x;µt+1) = 0, so G(x∗t+1(ĥt+1);µt) >

G(x∗t+1(ĥt+1);µt+1) = 0. Since lim
x→+∞

G(x;µt) < 0 (dominant region of not attacking), there

exists x′ ∈ (x∗t+1(ĥt+1),+∞) such that G(x′;µt) = 0. Therefore, x∗t (ĥ
t+1) ≥ x′ > x∗t+1(ĥt+1),

which implies that if there is no attack before period t + 1, period t + 1 players attack the

status quo with lower probability than period t players in Emax. In the similar way, it can

be shown that in Emin, if there is no attack in the first period, second period players attack

the status quo with lower probability. Q.E.D.

32



PROOF OF LEMMA 4.2: To simplify notation, I ignore all history entries. Just keep

in mind that in this lemma, there is no attack before period t and there is exactly one

attack in period t. First note that if µt(w) is very close to 1, G(m+s
2

;µt) > 0. Therefore,

in Emax, x∗t > m+s
2

. So I just need to show the case that x∗t ≥ m+s
2

. Fix any x, let

A = Φ(
√
β(m−x∗t ))Φ(

√
β(x∗t −m)) and B = Φ(

√
β(s−x∗t ))Φ(

√
β(x∗t − s)), from footnote 6,

H(x;µt+1)

=
µt(m)Aφ(

√
β(m− x))Φ(

√
β(x−m))

µt(m)Aφ(
√
β(m− x)) + µt(s)Bφ(

√
β(s− x))

− c

≤ µt(m)φ(
√
β(m− x))Φ(

√
β(x−m))

µt(m)φ(
√
β(m− x)) + µt(s)φ(

√
β(s− x))

− c

<
µt(w)φ(

√
β(w − x)) + µt(m)φ(

√
β(m− x))Φ(

√
β(x−m))

µt(w)φ(
√
β(w − x)) + µt(m)φ(

√
β(m− x)) + µt(s)φ(

√
β(s− x))

− c

= G(x;µt).

Since in Emax, x∗t is the largest solution to G(x;µt) = 0 and lim
x→+∞

G(x;µt) < 0, G(x;µt) <

0, ∀x > x∗t , which implies that H(x;µt+1) < 0, ∀x > x∗t . Therefore, all threshold points

in period t + 1 are smaller than x∗t , so the probability of attacking in period t + 1 is lower

than that in period t.

Now consider the case that in Emax, µt(w) is close to 0 and x∗t <
m+s

2
. Define

D1

= G(x∗t ;µt)− [
µt(m)φ(

√
β(m− x∗t ))Φ(

√
β(x∗t −m))

µt(m)φ(
√
β(m− x∗t )) + µt(s)φ(

√
β(s− x∗t ))

− c]

=

µt(w)φ(
√
β(x∗t − w))

∗ [µt(m)φ(
√
β(x∗t −m))(1− Φ(

√
β(m− x∗t ))) + µt(s)φ(

√
β(x∗t − s))]




(
∑
θ′∈Θ

µ(θ′)φ(
√
β(x∗t − θ′)))

∗ (
∑

θ′∈{m,s}

µ(θ′)φ(
√
β(x∗t − θ′)))


,
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and

D2

= G(x∗t ;µt+1)− [
µt(m)φ(

√
β(m− x∗t ))Φ(

√
β(x∗t −m))

µt(m)φ(
√
β(m− x∗t )) + µt(s)φ(

√
β(s− x∗t ))

− c]

=
µt(m)φ(

√
β(m− x∗t ))Φ(

√
β(x∗t −m))µt(s)φ(

√
β(s− x∗t ))(A−B) (µt(m)φ(

√
β(m− x∗t ))A+ µt(s)φ(

√
β(s− x∗t ))B)

∗ (µt(m)φ(
√
β(m− x∗t )) + µt(s)φ(

√
β(s− x∗t )))

 .

Note that when x∗t <
m+s

2
, A > B and A−B is decreasing in x∗t . Consider µt = (ε, µ̃(m), 1−

µ̃(m)− ε). It can be shown that, x∗t is decreasing with ε, but x∗t is bounded below by x̃, the

unique solution to G(x; µ̃) = 0. Therefore, as ε→ 0, A−B becomes larger, so D2 is positive

and bounded away from 0. Since D1 converges to 0 as ε→ 0, in this case, when µt(w) is very

close to 0, G(x∗t ;µt+1) > G(x∗t ;µt) = 0. Therefore, in Emax, the threshold point in period

t+ 1 is larger than that in period t, which implies that the probability of attacking is larger

in period t+ 1 than that in period t. Q.E.D.

PROOF OF LEMMA 4.3: First note µt+1(m) < µt(m), so for any x, H(x;µt) >

H(x;µt+1). In Emax, if x∗t+1 is the largest threshold point in period t+ 1, then H(x∗t+1;µt) >

H(x∗t+1;µt+1) = 0. Recall that lim
x→+∞

H(x;µt) < 0, ∃x′ ∈ (x∗t+1,+∞) such that H(x′;µt) = 0.

Let x∗t be the largest threshold point in period t, then x∗t ≥ x′ > x∗t+1. So in Emax, the

probability of attacking in period t + 1 is lower than that in period t. Now consider Emin.

Let x∗t+1 be the smallest threshold point in period t+1, then H(x∗t+1;µt) > H(x∗t+1;µt+1) = 0.

Because c > 1
2
, for all x ≤ m, 0 > H(x;µt) > G(x;µt+1). So, x∗t+1 > m, and x∗t ∈ (m,x∗t+1).

As a result, in Emin, the probability of attacking in period t+1 is higher than that in period

t. Q.E.D.

PROOF OF PROPOSITION 4.1: From Bayes’ rule,

µt+1(w) =
µt(w)[Φ(

√
β(w − x∗t ))]2∑

θ′∈Θ

µt(θ′)[Φ(
√
β(w − x∗t ))]2

. (7.1)

By induction, µt+1 ∈ int(∆(Θ)) and x∗t ∈ R. Therefore, µt+1(w) < µt(w), so µt(w) →

µ∞(w) ≥ 0, since µt is a probability measure. Lemma 4.1 shows that in both Emax and

34



Emin, x∗t is strictly decreasing, so x∗t → x∗∞. Suppose µ∞(w) > 0, then because of the

dominant region of attacking, x∗∞ ∈ R. Then from the updating function 7.1, µ∞(w) = 0.

Contradiction. So µt(w)→ 0.

Because Pr(attack in period t|ĥt) is decreasing in t and bounded, Pr(attack in period t|ĥt)→

p ≥ 0. Suppose p > 0, then x∗t → x∗∞ ∈ R. Consequently, lim
t→∞

G(x∗t ;µt) = −c, that is, for

sufficiently large t, G(x∗t ;µt) < 0, which contradicts the definition of x∗t . Q.E.D.

PROOF OF PROPOSITION 4.2: This proposition is a consequence of Proposition 4.1

and the following lemma, which states that conditional on θ = w, Bayes’ rule leads prior

belief about θ = w to converge to a random variable larger than 0 almost surely. Since along

ĥ∞, µt(w)→ 0, conditional on θ = w, ĥ∞ is a zero measure event. Therefore, when θ = w,

the status quo falls almost surely.

Lemma 7.4 Fix an equilibrium, the strategy profile and the prior belief induce a probability

measure P ∈ ∆(X∞), where X = {0, 1, 2}. Suppose Pw and P̂ are the probability measures

induced on X∞ by P, conditional on θ = w and θ ∈ {m, s} respectively. Hence, P =

µ0(w)Pw + (1 − µ0(w))P̂. Then µt(w) → µ∞(w),Pw − almost surely and µ∞(w) > 0,Pw −

almost surely.

Proof.

The sequence {µt(w)}t is a bounded martingale adapted to the filtration F t, which is

generated by the history H t under the measure P. So {µt(w)}t converges P− almost surely

to µ∞(w). Since Pw is absolutely continuous with respect to P, µt(w) → µ∞(w),Pw −

almost surely.

Now suppose there is a set A ∈ X∞ such that µ∞(w)[a] = 0,∀a ∈ A and Pw(A) > 0. It

is easy to show that from Bayes’ rule, the odds ratio {(1−µt(w))/µt(w)}t is a Pw−martingale,

so E[1−µt(w)
µt(w)

] = 1−µ0(w)
µ0(w)

for all t. However, E[1−µt(w)
µt(w)

] = E[1−µt(w)
µt(w)

χ(A)]+E[1−µt(w)
µt(w)

(1−χ(A))],

where χ is the indicator function. Obviously, the second term is nonnegative, while the first

term is bigger than 1−µ0(w)
µ0(w)

for very big t since µ∞(w)(a) = 0, ∀a ∈ A, which lead to a

contradiction. Q.E.D.
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PROOF OF PROPOSITION 4.3: The monotonicity property follows directly from

lemma 4.3. To show the existence of T1, suppose in an equilibrium, for any period t, players

attack the status quo with positive probability (this probability is bounded below by 1/2

because c > 1/2). Then from Bayes’ rule, µt(m)[h̄t] → 0 < µ̃(m). That is, there is T1 such

that for all t > T1, µt(m)[h̄t] < µ̃(m), so for all t > T1, players don’t attack the status

quo for sure. This leads to the contradiction. In a similar way, the existence of T2 can be

demonstrated. Q.E.D.

PROOF OF PROPOSITION 4.5: Part 1: x̃ > m+s
2

. If µt(m) ≥ µ̃(m), then x∗t [h̃
t] >

m+s
2

. So from Bayes’ rule, one attack in period t makes µt+1(m) < µt(m), which implies

the attacking probability is decreasing along h̃t in Emax. Suppose there is no T3 such that

the probability of attacking is 0 from T3 + 1 on in Emax, then Bayes’ rule implies that

µt(m)→ 0 < µ̃(m). That is, there is T3 such that for all t > T3, µt(m)[h̄t] < µ̃(m), so for all

t > T3, players don’t attack the status quo for sure. This leads to the contradiction.

Part 2: x̃ = m+s
2

. The decreasing attacking probability part is similar to that in part

1. I show the existence of T4 as follows. First note that, when θ = w has been ruled out,

in any period, given the previous period prior belief µ(m) and one attack in the previous

period, Bayes’ rule implies that the prior belief about θ = m at the beginning of the current

period, Tµ(m) is:

Tµ(m) =
µ(m)Φ(

√
β(x∗ −m))Φ(

√
β(m− x∗))

µ(m)Φ(
√
β(x∗ −m))Φ(

√
β(m− x∗)) + (1− µ(m))Φ(

√
β(x∗ − s))Φ(

√
β(s− x∗))

,

where x∗ ∈ R is the largest solution to H(x; µ̃) = 0. So at the point µ(m) = µ̃(m),

lim
µ(m)→µ̃(m)+

dTµ(m)

dµ(m)
|µ̃(m),x̃ =

∂Tµ(m)

∂µ(m)
|µ̃(m),x̃ +

∂Tµ(m)

∂x∗
|µ̃(m),x̃ lim

µ(m)→µ̃(m)+

∂x∗

∂µ(m)
.

The first term above equals to 1 and ∂Tµ(m)
∂x∗
|µ̃(m),x̃ is negative and bounded. Since x̃ is the

unique solution to H(x; µ̃) = 0, the term d
dx
H(x̃; µ̃) = 0, which leads to lim

µ(m)→µ̃(m)+

∂x∗

∂µ(m)
=

+∞. As a result, lim
µ(m)→µ̃(m)+

dTµ(m)
dµ(m)

|µ̃(m),x̃ = −∞, so there is ε > 0 such that for all µ(m) ∈

(µ̃(m), µ̃(m) + ε), Tµ(m) < µ̃(m). Therefore, {µt(m)}t cannot be a strictly decreasing

sequence converging to µ̃(m). If given µ0, there is a period T4 such that µT4+1(m) = µ̃, then
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from period T4 + 1 the probability of attacking is constant at Φ(
√
β

2
(s−m)). Such µ0 exists,

because in the updating function, as µ(m) → 1, Tµ(m) → 1, and Tµ(m) is continuous in

µ(m), there is some µ̂(m) ∈ (µ̃(m), 1) such that Tµ(m) = µ̃(m). So for any finite T4, µ0 can

be found. If given µ0, there is no T4 such that µT4+1(m) = µ̃, then in any period t, if players

attack the status quo with positive probability, the threshold point is bigger than x̃ = m+s
2

.

Since {µt(m)}t cannot be a strictly decreasing sequence converging to µ̃(m), there must be

a period T4 such that from period T4 + 1, the probability of attacking is constant at 0.

Part 3: From the updating function, at µ(m) = µ̃(m), when β is very large,

∣∣∣∣ dTµ(m)
dµ(m)

∣∣∣
µ̃(m),x̃

∣∣∣∣ <
1. Therefore, the probability of attacking converges to Φ(

√
β

2
(s−m)). Q.E.D.

PROOF OF PROPOSITION 4.6: The proof of the case x∗2[h̃2] > m+s
2

is similar to that

of Proposition 4.3, by noting that µt(m) is strictly decreasing over time since period 2.

Now consider the case x∗2[h̃2] < m+s
2

. Since µt(m) is strictly increasing over time since

period 2, and x∗t [h̃
t] is decreasing over time, then Bayes’ rule implies µt(m) → 1. Because

H(x∗t [h̃
t];µt) = 0 for all t, Φ(

√
β(x∗t −m))→ c. Q.E.D.

PROOF OF PROPOSITION 4.7: Let WL be the social welfare with social learn-

ing and WN be the social welfare without social learning. Part 1 is due to the decreas-

ing probability of attacking in both Emax and Emin. When θ = w, let κ be the regime

change time. With social learning, PL(κ ≥ t|θ = w) = 1 −
t−1∑
τ=1

P(κ = τ |θ = w). De-

fine pLt be the probability that an attack happens in period t conditional on no attack

before with social learning when θ = w, then PL(κ = 1|θ = w) = pL1 . (So the proba-

bility that an attack happens in period t conditional on no attack before without social

learning is pNt = pLt for all t.) So, by induction, PL(κ ≥ t|θ = w) =
t−1∏
τ=0

(1 − pτ ), where

pL0 = pN0 ≡ 0. By the same way, PN(κ ≥ t|θ = w) = (1 − pL1 )t−1. Because {pLt }t is a

decreasing sequence, PL(κ ≥ t|θ = w) ≤ PN(κ ≥ t|θ = w) for all t = 1, 2, · · · . There-

fore, the cumulative distribution function of κ without social learning first order stochastic

dominates that with social learning, which implies that the expected regime change time is

longer with social learning. Define Vt be the discounted value conditional that the regime
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changes in period t, then Vt > Vτ if t < τ , given any δ ∈ (0, 1), so social learning leads to

inefficiency when θ = w for any δ ∈ (0, 1). However, for any ε > 0, there is a T such that∣∣∣∣ ∞∑
t=T+1

PL(κ = t|θ = w)Vt −
∞∑

t=T+1

PN(κ = t|θ = w)Vt
∣∣∣∣ < ε

2
for all δ ∈ (0, 1). Fix this T , as

δ → 1,

∣∣∣∣ T∑
t=1

PL(κ = t|θ = w)Vt −
T∑
t=1

PN(κ = t|θ = w)Vt
∣∣∣∣ < ε

2
. Therefore, for any ε > 0, there

is a δw ∈ (0, 1) such that for all δ ∈ (δw, 1),

∣∣∣∣ ∞∑
t=1

PL(κ = t|θ = w)Vt −
∞∑
t=1

PN(κ = t|θ = w)Vt
∣∣∣∣ <

ε. That is, as the discount factor goes to 1, the inefficiency due to the delay of the regime

change caused by social learning disappears.

Part 2 is a consequence of Proposition 4.4. On one hand, because PN(regime changes|θ =

m) = 1, as δ goes to 1, WN converges to 2. On the other hand, Proposition 4.4 implies

that PL(regime changes|θ = m) < 1, which in turns implies that WL is strictly less than 2.

Note that infinitely many attacks are prevented with or without social learning and that the

discounted value of the cost from finite many attacks goes to 0 as δ goes to 1. Therefore,

there is a δm ∈ (0, 1) such that for all δ ∈ (δm, 1), social learning leads to lower social welfare

value.

For Part 3, while with social learning, PL(attack, i.o.|θ = s) = 0, since either the

probability of attacking is constant at 0 from some finite period onward or the proba-

bility of two attacks in every period is bounded away from 0, without social learning,

PN(attack, i.o.|θ = s) > 0. Because the strong status quo won’t fall, the less attacks,

the higher the social welfare. In particular,

WL = (1− δ)
∞∑
t=1

PL(no attack after period t|θ = s)V L
t

WN = (1− δ)
∞∑
t=1

PN(no attack after period t|θ = s)V N
t

where V L
t and V N

t are the expected discounted social welfare (conditional on the event that

no attack occurs after period t) with and without social learning respectively. Note for any

t, both V L
t and V N

t are finite. Because PL(attack, i.o.|θ = s) = 0, for any ε > 0, there is a T

such that

∣∣∣∣ ∞∑
t=T

PL(no attack after period t|θ = s)V L
t

∣∣∣∣ < ε. Because PN(attack, i.o.|θ = s) >

0, for any T ′, there is a ε > 0 such that

∣∣∣∣ ∞∑
t=T

PN(no attack after period t|θ = s)V N
t

∣∣∣∣ > ε′. Fix
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such ε′ and T ′,

WL > (1− δ)
T ′∑
t=1

PL(no attack after period t|θ = s)V L
t − ε′,

while

WN < (1− δ)
T ′∑
t=1

PN(no attack after period t|θ = s)V N
t − ε′.

Therefore, there is a δs such that for all δ ∈ (δs, 1), WL >WN . Q.E.D.

Lemma 7.5 Suppose θ = w has been ruled out. Given large β, µ̃(m) is decreasing in β. As

β → +∞, µ̃(m) converges to 0.

Proof.

Recall that µ̃(m) is the belief about θ = m, at which there is a unique x̃ ∈ R such

that H(x̃; µ̃) = 0 (where µ̃(w) = 0). Since H(x; µ̃) < 0 for all x 6= x̃, H ′(x̃; µ̃) = 0. As

in Proposition 2.2, instead of studying H(x; µ̃) directly, it is easier to study the function

h(x; µ̃) = [Φ(
√
β(x−m))− c]− c( 1

µ̃(m)
− 1) exp(β

2
(s−m)(2x− s−m)). Since x̃ is also the

unique solution to h(x; µ̃) = 0, h′(x̃; µ̃) = 0. That is,

[Φ(
√
β(x̃−m))− c]− c( 1

µ̃(m)
− 1) exp(

β

2
(s−m)(2x̃− s−m)) = 0

φ(
√
β(x̃−m))−

√
β(s−m)c(

1

µ̃(m)
− 1) exp(

β

2
(s−m)(2x̃− s−m)) = 0

Comparative static analysis shows that, for large β, µ̃(m) is decreasing in β.

A necessary condition for the above system of equations is Φ(
√
β(x̃ − m)) − c =

φ(
√
β(x̃−m))√
β(s−m)

. The right hand side obviously goes to 0, as β goes to +∞. Therefore, as β goes

to +∞, Φ(
√
β(x̃−m)) goes to c, which implies that

√
β(x̃−m) goes to Φ−1(c). Hence, as

β → +∞, exp(β
2
(s−m)(2x̃−s−m)) goes to exp(− (s−m)2

2
β+Φ−1(c)(s−m)

√
β). Suppose µ̃(m)

is bounded away from 0 as β goes to +∞, then ( 1
µ̃(m)
−1) exp(− (s−m)2

2
β+ Φ−1(c)(s−m)

√
β)

and
√
β( 1

µ̃(m)
− 1) exp(− (s−m)2

2
β + Φ−1(c)(s −m)

√
β) both go to 0. So h′(x̃; µ̃) > 0, which

leads to the contradiction. As a result, as β → +∞, µ̃(m)→ 0.
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Lemma 7.6 In a N-players N+1-states static regime change game, if Sj is a cutoff strategy

such that Sj = 1 if xj ≤ x̄j and Sj = 0 if xj > x̄j for all players j 6= i, then player i’s best

response is a cutoff strategy such that Si = 1 if xi ≤ x̄i and Si = 0 if xi > x̄i.

Proof.

I show this lemma with the general private signal structure mentioned in footnote 4.

Let Lk(x) = f(x|mk)
f(x|m1)

to be the likelihood ratio, then Lk(x) is increasing in x for all k and

Lk(x)/Lk′(x) is increasing in x for any k > k′. Given Sj such that Sj = 1 if xj ≤ x̄j and Sj =

0 if xj > x̄j for all players j 6= i, if player i chooses to attack, then conditional on θ = mk, the

probability of the regime change is Zk = Pr(there are at least k − 1 players choosing to attack

besides player i|mk). Note Zk is independent of xi, and Zk+1 ≤ Zk ≤ 1 for all k =

1, 2, · · · , N . Then the interim payoff of player i when she observes private signal xi and

choose to attack is:

ui(xi|S−i) =

N∑
k=1

µkLk(x
i)Zk

N+1∑
k=1

µkLk(xi)

.

Now, consider two private signals of player i, x and x′ with x < x′. Denote Lk(x) = Lk and

Lk(x
′) = L′k. Then,

ui(x|S−i)− ui(x′|S−i)

=
1

Q
[(

N∑
k=1

µkLkZk)(
N+1∑
k=1

µkL
′
k)− (

N∑
k=1

µkL
′
kZk)(

N+1∑
k=1

µkLk)]

=
1

Q
{
N∑
k=1

∑
q≤k

µkµq(LkL
′
q − L′kLq)(Zk − Zq) + µN+1

N∑
k=1

(L′N+1Lk − LN+1L
′
k)Zk}.

Each term in the first part is positive because LkL
′
q − L′kLq < 0 and Zk − Zq < 0 for all

q ≤ k. Every term in the second part is also positive because L′N+1Lk − LN+1L
′
k > 0 for

all k ≤ N . Therefore, ui(x|S−i) is decreasing in x. Together with the dominant region of

attacking and the dominant region of not attacking, this monotonicity implies that player

i’s best response is also a cutoff strategy such that Si = 1 if xi ≤ x̄i and Si = 0 if xi > x̄i.

Q.E.D.
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