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Abstract

We adapt the methods from Abreu, Pearce and Stacchetti (1990) to finitely repeated

games with imperfect public monitoring. Under a combination of (a slight strengthening of)

the assumptions of Benôıt and Krishna (1985) and those of Fudenberg, Levine and Maskin

(1994), a folk theorem follows.
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1 Introduction

The literature on finitely and infinitely repeated games have proceeded somewhat indepen-

dently in the last twenty years. Following Abreu, Peace and Stacchetti (1990), tremendous

progress has been accomplished in the analysis of infinitely repeated games with imperfect mon-

itoring. Results in this literature have build on the fixed-point characterization that they give

of the set of public perfect equilibrium payoffs, which allowed for a largely non-constructive

analysis of the equilibrium payoff set, in particular, as discounting vanishes. See, in particular,

Fudenberg, Levine and Maskin (1994, hereafter FLM).

Clearly, no such fixed-point characterization exists in the case of finitely repeated games,

as the (public perfect) equilibrium payoff set is not independent of the number of periods left.

∗Yale University, 30 Hillhouse Ave., New Haven, CT 06520, USA, johannes.horner@yale.edu.
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As a result, folk theorems for this case have required the explicit specification of equilibrium

strategies. This has forced these authors to restrict attention to perfect monitoring. See Benôıt

and Krishna (1985), Gossner (1995) and Smith (1995), as well as Benôıt and Krishna (1996) for

a survey.1

Yet the (Bellman-Shapley) operator involved in the definition of the fixed point applies just

as well to the case of a finite horizon, giving us an immediate link between the equilibrium payoff

sets that obtain as the horizon length varies. Similarly, the main idea behind the proof of FLM

applies as well. Suppose that the (average) equilibrium payoff set converges to a strict subset of

the feasible, and individually rational payoff set V . Then there exists a direction in which this

limit set has a boundary that is locally smooth (in an appropriately defined sense) yet bounded

away from the extreme point of V in that direction. Under the assumptions of FLM, then, a

contradiction can be derived.

Some care must be taken in this argument, however. First, this limit set must have non-empty

interior. Clearly, this requires an assumption involving the payoffs of the stage game. Indeed, if

the stage game admits a unique Nash equilibrium payoff, then the finitely repeated game admits

a unique (perfect public) equilibrium payoff. Therefore, we must follow Benôıt and Krishna

(1985) and assume that the stage game admits distinct Nash equilibrium payoffs for each player,

and we strengthen this assumption by assuming that the convex hull of this set of vectors has

non-empty interior. Furthermore, in the absence of discounting, the relative weights of current

vs. continuation average payoffs in the definition of the operator are related to the number of

periods left. Therefore, it is not exactly the same operator that is being applied repeatedly. As

longer and longer horizons are considered, and as flow payoffs are assigned a vanishing weight,

one must make sure that these weights do not decrease too fast in order for a contradiction to

obtain.

While there has been few systematic analyses of finitely repeated games since Benôıt and

Krishna (1985) and Gossner (1995), very interesting examples have been produced by Mailath,

Matthews and Sekiguchi (2002) to show how non-trivial equilibria can be constructed in finitely

repeated with imperfect monitoring even as the stage game admits a unique Nash equilibrium.

Such equilibria involve private strategies, and so are not covered by our analysis. However, all

that matters for our argument is that it is known that the finitely repeated game admits a set

of equilibrium payoffs whose convex hull has non-empty interior for some horizon length. This

1It might be argued that Gossner’s construction is not entirely constructive, though, as his main innovation
relies in applying approachability. Still, the overall structure of the argument follows Benôıt and Krishna.
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length can then be as “end-game” involving private strategies, and treated as a “blackbox” when

defining public strategies. Other related recent contributions involve Contou-Carrère and Tomala

(2010) for the case of semi-standard monitoring, and Gonzàlez-Dı̀az (2006) for the case of Nash

equilibria. Standard results or definitions will follow Mailath and Samuelson (2006, hereafter

M&S).

2 Notation and Assumptions

We consider finitely repeated games between I players. Notations mostly follow M&S. Actions

sets are Ai, finite, with generic element ai, and given action profile a, there is a public signal

y from a finite set Y that is publicly observed. The distribution of signals given a is denoted

π(·|a). Rewards in the stage game are given by ui(a) for player i, given action profile. Action

profiles are not observed, nor are realized payoffs. Let F denote the set of feasible payoffs, V the

set of feasible and individually rational payoffs (where individual rationality is, as usual, defined

with respect to the mixed minmax payoff, in which players −i randomize independently). We

maintain throughout:

Assumption 1 (A1) The set V has non-empty interior.

We maintain the simplest rank assumptions of Fudenberg, Levine and Maskin (1994). The profile

α has individual full rank for i the |Ai| × |Y | -matrix

Πi (α) = (π (y|ai, α−i))ai,y

has full row rank, i.e. the probability distributions {π (·|ai, α−i) : ai ∈ Ai} are linearly indepen-

dent. It has individual full rank if it has individual full rank for all i. It has pairwise full rank

for i and j if the (|Ai|+ |Aj|)× |Y | -matrix

Πij (α) =

(

Πi (α)

Πj (α)

)

has rank |Ai|+ |Aj | − 1 (i.e., maximal rank).

Assumption 2 (A2) All the pure action profiles yielding extreme points of F have pairwise full

rank for all pairs of players.
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Player i’s minmax payoff is denoted ui, and the corresponding (possibly mixed, but uncorrelated)

action profile mi.

Assumption 3 (A3) All the minmax profiles mi have individual full rank.

We let En ⊂ F denote the set of average equilibrium payoffs in the game that is repeated n times

(without discounting). Throughout, equilibrium refers to public perfect equilibrium (see, for

instance, FLM). It is known that En converges in the Hausdorff sense (See Renault and Tomala

(2011)), though the speed of convergence is unknown. We denote by E the limit of this set,

which is convex (as opposed to En, which typically is not). Clearly, E1 ⊂ E. Hence, a sufficient

condition that guarantees that E has non-empty interior is to assume that the convex hull of E1

has non-empty interior, i.e., there exists distinct Nash equilibrium payoff vectors whose convex

hull has non-empty interior. This is a strengthening of the assumption of Benôıt and Krishna

(1985).

3 A Folk Theorem with a Randomization Device

In this section, we assume a public randomization device. This drastically simplifies argu-

ments, as it guarantees that En is convex, for all n.

Theorem 4 Assume (A1)–(A3). If E has non-empty interior, then E = V , the set of feasible

and individually rational payoffs.

Proof. Recall that E is convex. Therefore, by a theorem due to Alexandrov, almost all its

boundary points are normal, i.e. the representing function is differentiable at these points.

Therefore, if E 6= V , there exists a vector λ ∈ S1 :=
{

x ∈ R
I : ‖x‖ = 1

}

and a point v ∈ bd(E)

with (unique) normal vector λ, and such that maxv′∈V λ · (v′ − v) = 2κ > 0.

Assume first that λ is not a coordinate direction, and let l be the line through v with direction

λ. In what follows, a ∈ A refers to an action profile such that λ · g(a) = maxv′∈V λ · v′ (fix one of

them if multiple exist). Let v̄ ∈ R
I denote the unique point of l such that λ · v̄ = λ ·g (a). Clearly,

v̄ /∈ E. For all k ∈ R, let Hλ (k) :=
{

x ∈ R
I : λ · x = k

}

, and H+

λ (k) :=
{

x ∈ R
I : λ · x ≥ k

}

.

The pairwise full rank assumption at the action profile a ensure that there exists x : Y → R
I

such that a is a Nash equilibrium of the game with payoff function

g (·) +
∑

π (y|·)x (y) ,
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and λ · x (y) = 0 for all y ∈ Y (See M&S, Lemma 8.1.1(4) and 9.2.2). Without loss of generality,

we may assume that the payoff from this equilibrium is equal to v̄ (redefine each x (y) as x (y)+

v̄ − g (a)−
∑

y∈Y π(y|a)x(y)). Let M = maxy ‖x (y)‖, and set κ0 :=
κ
2
/
√
κ2 +M2.

Given x ∈ R
I , let

Cx :=
{

x′ ∈ R
I : λ · (x− x′) > κ0 ‖x− x′‖

}

.

See Figure 1. Because E is smooth at v, there exists k < λ · v and a compact set D ⊂ R
I such

that

Hλ (k) ∩ Cv ⊂ D ⊂ int (E) .

Because En → E, we can assume without loss that D ⊂ En for all n. Let vn = argmaxx∈l∩En
λ·x

be the highest point of En on the line l, and set kn = λ · vn. We restrict attention to n ≥ n0 such

that kn − ·κ/n > k. This implies that Cvn ∩H+

λ (k) ∈ En, because Cvn ⊂ Cv, vn and D are in

En, and En is convex.

Given vn, let

wn (y) := vn +
1

n
x (y)− κ

n
λ,

for all y ∈ Y . Note that
λ · (vn − wn (y))

‖vn − wn (y)‖
≥ κ√

κ2 +M2
> κ0,

so that wn (y) ∈ Cvn and hence wn (y) ∈ En (note that λ · wn (y) = kn − κ/n > k). Note that

the action profile a is a Nash equilibrium of the game with payoff vector

1

n+ 1
g (·) + n

n + 1

∑

π (y|·)wn (y)

=
1

n+ 1

(

g (·) +
∑

π (y|·)x (y)
)

+
n

n+ 1
vn −

κλ

n+ 1
.

Because wn ∈ En, this implies that the resulting equilibrium payoff vector hn+1 is in En+1.

Observe that

λ · (hn+1 − vn) =
1

n+ 1
λ · (g (a)− vn)−

κ

n + 1
≥ κ

n+ 1
.

Furthermore, observe that, by construction, hn+1 is on the line l (recall that g (a)+
∑

π (y|a)x (y) =
v̄ ∈ l). Hence,

kn+1 ≥ λ · hn+1 ≥ λ · vn +
κ

n + 1
= kn +

κ

n + 1
.

This is not possible, as it implies that kn → ∞. Consider the case in which λ is a coordinate
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Figure 1: Proof of Lemma 4

direction, i.e. λ = ±ei, for some basis vector ei. Then it is also the case, by Assumption 2 and

3 (see M&S, Lemma 9.2.1(1) and (3)) that there exists x(y) such that λ · x(y) = 0 for all y, and

such that the action profile a (resp. mi) that maximizes gi(a) (resp. minmaxes player i) is an

equilibrium of the game with payoffs g(·)+
∑

y∈Y π(y|·)x(y). In both cases, the remainder of the

proof is identical to the previous one.

4 Dispensing with the Public Randomization Device

The proof can be extended to the case in which no public randomization device is assumed.

There are two difficulties.

First, continuation payoffs cannot be fine-tuned to be precisely those used in Theorem 1. This

is not a major difficulty as long as directions λ ∈ R
I are considered for which score is maximized

by a pure action profile. In that case, the same action profile can be enforced by giving strict

incentives to the players, and so what matters is whether the set En is “rich” enough that we

can approximate the desired continuations payoffs by actual available elements of En, while
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preserving these strict incentives. This can be done constructively, assuming full support of the

monitoring.

Assumption 5 (B1) There exists a partition of the set of signals Y into subsets Y1, Y2, such

that, for all a ∈ A, k = 1, 2,
∑

y∈Yk
π(y|a) > 0.

Of course, the result is trivial (or rather, follows from Benôıt and Krishna (1985)) in the case

of perfect monitoring. We suspect that Assumption (B1) can be dropped by a direct constructive

argument whenever there is not full support, but have not verified the details.

On the other hand, a difficulty arises while considering negative coordinate directions, which

correspond to the minimization of a player’s payoff. If player i’s payoff is to be minimized, players

−i might have to use a mixed strategy to minmax i. The question then arises, whether incentives

to (approximately) minmax i can be given to player −i for some continuation payoffs that can

only be chosen approximately (i.e., within some neighborhood). This can easily be done with

two players, or of course when the minmaxing action profile is pure. More generally, consider

the minmaxing action profile mi
−i. It is known that there is a best-reply for player i for which

the resulting action profile mi is a Nash equilibrium of the (“team zero-sum”) game in which

player i’s payoff function is ui, while player −i’s payoff function is −ui. See von Stengel and

Koller (1997) for details. It suffices that games with payoff functions that are sufficiently close

to (ui,−ui) admit an equilibrium whose payoff is close to the minmax payoff ui. This is ensured,

for instance, if m is an essential equilibrium. See Wu and Jiang (1962).

Assumption 6 (B2) Assume that for all i, either (i) mi
−i involves at most one player j ( 6= i)

not using a pure strategy, or (ii) mi is an essential equilibrium.

Note that (i) covers the case of two players. In fact, it is essentially the two-player case, as

with more players, players k 6= i, j can be given strict incentives to play the pure action that

m specifies. We suspect that this assumption can be dispensed with altogether, but have been

unable to do so so far. Alternatively, this assumption can be dropped if the minmax payoff is

defined with respect to pure strategies.

We can then show:

Theorem 7 Under Assumptions (A1)–(A3) and (B1)–(B2), if E has non-empty interior, then

E = V .

Proof. To be completed.
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