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Abstract— We study a simple game-theoretical model of lan-
guage evolution in finite populations. This model is of particular
interest due to a surprising recent result for the infinite pop-
ulation case: under replicator dynamics, the population game
converges to socially inefficient outcomes from a set of initial
conditions with non-zero Lesbegue measure. If finite population
models do not exhibit this feature then support is lent to the idea
that small population sizes are a key ingredient in the emergence
of linguistic coherence. We analyze a generalization of replicator
dynamics to finite populations that leads to the emergence of
linguistic coherence in an absolute sense: After a long enough
period of time, linguistic coherence is observed with arbitrarily
high probability as a mutation rate parameter is taken to
zero. The perturbations are modeled as state-dependent “point
mutations”. Formally, the stochastically stable action profiles
maximize the sum of the individual utilities. Our proofs use
the resistance tree method.

I. INTRODUCTION

A. Background

It is difficult to discount the import of language in the
success of our species. Human language allows us to spread
information at speeds that vastly outstrip the pace of biolog-
ical evolution. Thus language can be seen as the technology
that enables evolutionary change on cultural timescales.
Nevertheless, how language first emerged remains somewhat
of a mystery. Compounding the issue is a scarcity of physical
evidence of the earliest speakers [1]. Two novel approaches
to the study of language evolution have emerged in recent
decades: genomics [2] and mathematical modeling (for a
review, see for instance [3]). We concentrate on the latter.
Mathematical modeling of language evolution is especially
useful for checking the internal consistency of proposed
theories. Alternatively, this endeavor is capable of provid-
ing insights into language learning in artificially intelligent
systems [4], [5].

A popular approach to explaining language origins is the
suggestion that the first languages were simple, possibly
gestural [1] linkings from object to symbol. These proto-
languages are the predecessors of modern compositional
languages. The fundamental problem with the emergence
of useful proto-languages is that of cooperation [6]. It is
advantageous for many members of a population to associate
symbols with objects consistently, but how does such a
convention emerge? Invoking a particular symbol to refer
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to an object is only useful after a significant portion of
the population has already adopted such a mapping. Game
theory has proven to be a useful framework for studying
these simple proto-language models [7], [8], [9], [10], [11],
[12], [3].

We mention in passing that the problem we study can also
be interpreted as a model of economic signaling [7], [8], [12],
[13], although we do not explore this possibility here.

B. The Language Game

We consider a simple language game, first proposed in
a substantially similar form in [13], and reformulated more
recently in [9]. Each player’s strategy (or language) is a pair
of matrices (P,Q) ∈ B

m×n×B
n×m ≡ Lm×n, where B

m×n

is the set of binary (having elements from {0, 1}), row-
stochastic m×n matrices and Lm×n is the set of languages.
There are nmmn languages in Lm×n. We refer to the two
matrices as the speaker and hearer matrices, respectively.
The speaker matrix maps objects to symbols, and the hearer
matrix maps symbols to objects. Every player has the same
set of languages available to them. The utility of player i
with language (Pi, Qi) is

ui((Pi, Qi), (P̄ , Q̄)) ≡ 1

2
Tr(PiQ̄) +

1

2
Tr(P̄Qi)

where (P̄ , Q̄) are the average of the speaker and hearer
matrices, respectively, over the entire population. We depart
from the more conventional notation of utilities depending
on the joint strategies to emphasize that individuals interact
with the entire population and do so anonymously. Note that
ui does not depend on i other than through (P i, Qi). For
this reason, we drop the subscript below. The two terms
on the right hand side correspond to speaking and hearing,
respectively. We can rewrite one of these terms as

Tr(PQ) =

n∑
k=1

m∑
j=1

pkjqjk

where pkj is the kj th element of P and similarly for q.
We interpret this as follows: The inner summation is for a
fixed object k. Only a single pkj equals one due to the row-
stochasticity. This is the symbol j that the speaker matrix P
associates with object k. If the hearer Q associates symbol
j with object k (i.e. qjk = 1) then there is a contribution of
one to the utility for object k. The total utility is computed
by summing over the objects and weighting contributions
from speaking and hearing equally. We include (P i, Qi) in
(P̄ , Q̄) in order to streamline the notation, but all of our
results can easily be extended to the case where there are no
self-interactions.



This model can be augmented to accommodate differ-
ing weights for different symbols and events [8] although
we do not consider this here. Characterization of various
static equilibria for this model are carried out in [10], and
corresponding dynamic models are considered in [9]. A
discussion of robustness with respect to the specified learning
dynamics can be found in [7]. We have up until now left the
computation of (P̄ , Q̄) from the joint strategy intentionally
vague so that the same model can be used in both the infinite
and finite population settings. We first describe the infinite
population case.

1) Infinite Populations: The standard technique for mod-
eling infinite populations is to consider a continuous mass
of players [14]. There are n2m2 languages in Lm×n so we
define the population state space as X = S

n2m2

where S
r

is the r-dimensional simplex. We confer any ordering on
Lm×n so that each element xi of a state x ∈ X gives the
fraction of the population that speaks a particular language. It
follows that the subscripts (Pi, Qi) refer to the i’th language
in Lm×n (not the i’th player) in this setting and similarly
for the utilities ui. We can then compute

(P̄ , Q̄) = (

m2n2∑
i=1

xiPi,

m2n2∑
i=1

xiQi),

the average language in the population at large. The standard
evolutionary dynamic for studying games of this type is the
replicator dynamic

ẋi = xi[ui((Pi, Qi), (P̄ , Q̄))− ū((P̄ , Q̄))]

= xi[
1

2
Tr(PiQ̄) +

1

2
Tr(P̄Qi)− Tr(P̄ Q̄)]

for i = 1, ..., n2m2. The term ū((P̄ , Q̄)) = Tr(P̄ Q̄) is
the payout to the average of the population when it plays
against itself. We will use this quantity as our measure of
social welfare. The replicator dynamic is imitative: an unused
strategies is never subsequently taken up. It follows that
each vertex of the simplex is a rest point of the dynamic.
What is surprising about the behavior of this system is
that there are many neutrally stable strategies (sometimes
referred to as weak evolutionarily stable strategies) where
social welfare is not maximized that the system will converge
to from a set of initial conditions with non-zero Lebesgue
measure [12]. This is troubling for proponents of the simple
proto-languages explanation of language origins. The retort
is that small populations, where mutations can impact the
population state, were integral to the formation of the first
proto-languages.

2) Finite Populations: In the finite case, we consider N
players and a population state space X = LN

m×n. For the
population state x ∈ X we let xi = (Pi, Qi) refer to the
language of player i. We can compute

(P̄ , Q̄) = (
1

N

N∑
i=1

Pi,
1

N

N∑
i=1

Qi).

We reiterate that in this setting the subscript in xi refers to
the player while in the infinite population setting it refers to
the language.

One issue with analyzing the language game in finite pop-
ulations is that there are many different ways to generalize
replicator dynamics and evolutionarily stable strategies (the
associated static equilibrium concept) to finite populations
(see for instance [15]). One particular approach [6] is to
consider the limit of weak selection where the contribution
of utility to an otherwise uniform reproductive fitness is
taken to zero. For some analytical results associated with this
solution concept, see for instance [16]. This is the approach
taken in [11]. In that model, one player is selected at random
proportional to its fitness and then a second randomly chosen
player adopts the first player’s language. It is shown that, in
the limit of weak selection, population states that maximize
social welfare are the only states for which no mutant
strategy has a fixation probability higher than 1/N . This
analysis is used to argue that evolution directs the system
towards linguistic coherence. However, it is clear that this
particular model as specified will not, in general, converge
to a socially efficient state with high probability. Such would
require analyzing a system that exhibits strong selection—
this is the idea that is pursued in this paper.

Specifically, in Section III we propose a model of re-
production in populations in which a randomly selected
individual adopts the language of one of the players that
has the current highest utility. That is, unless a mutation
occurs with probability ε in which case a random language
from a set of “nearby” languages is adopted. We analyze
this model in the small mutation rate limit. The resulting
prediction of linguistic coherence is in the form of stochastic
stability, a concept introduced to study the evolution of social
conventions, but not previously suggested in relation to the
language game. We review stochastic stability in Section
II. This paper makes three novel contributions: we analyze
a stochastic, finite population model of the language game
exactly for the case of strong selection, we draw a connection
between the study of the evolution of social conventions
and language evolution, and we suggest that non-equilibrium
models like our own are adequate to explain the observed
drift in languages over time.

In the next section, we briefly review the concept of
stochastic stability.

II. STOCHASTIC STABILITY

This introduction to the notion of stochastic stability will
draw heavily from the presentation of Young [18] in the
context of social conventions. We will develop these concepts
here with an eye for brevity. We will consider a Markov
process P 0 on a finite state space Z . We will restrict our
interest to perturbations to this process of a specific form,
defined below.

Definition 2.1: Let P ε be a Markov process on Z for each
ε ∈ (0, ε̄]. The process P ε is a regular perturbed Markov
process if P ε is irreducible and aperiodic for every ε ∈ (0, ε̄]
and for each z, z ′ ∈ Z we have

lim
ε→0

P ε
zz′ = P 0

zz′ ,



and if P ε
zz′ > 0 for some ε > 0, then

0 < lim
ε→0

P ε
zz′/εr(z,z

′) <∞
for some r(z, z′) ≥ 0.

The value r(z, z ′) ∈ R is called the resistance of the
transition z → z′. Clearly, r(z, z′) must be uniquely defined
in order to satisfy the condition. Also, P 0

zz′ > 0 if and only
if r(z, z′) = 0. That is, transitions that occur with non-zero
probability under P 0 have zero resistance. Transitions that
never occur can be considered as having infinite resistance
so that r(z, z′) is always defined.

For each ε, there is a unique stationary distribution, μ ε,
associated with P ε (by its irreducibility and aperiodicity).
We can now formally define stochastic stability.

Definition 2.2: A state z is stochastically stable (Young,
1993) if

lim
ε→0

με(z) > 0.

It has been shown elsewhere that the above limit exists for
every z so that every regular perturbed Markov process has
at least one stochastically stable state. These states are the
ones that the system spends most time in over the long run
when ε is small. It should be noted that the stochastically
stable states correspond to the perturbed process P ε. That is,
which states survive in the presence of the perturbations will
depend on how the perturbations are introduced. It is possible
to arrive at different stochastically stable states for the same
process P 0 by applying the perturbations differently. Also,
the stochastically stable states correspond to the limiting case
of ε approaching zero, and are not always particularly likely
to be observed when ε is not small. Next we will describe
how to compute the stochastically stable states.

A. Resistance Trees

A recurrent class of a Markov process is a set of states
such that from any state in the set one can reach any other
state in the set in finite time with positive probability, and no
state outside the set is accessible from any state inside it. Let
P 0 have K recurrent classes E1, E2, ..., EK . We will define
for every distinct pair of recurrent classes Ei and Ej , i �= j,
a sequence of states ζ = (z1, z2, ..., zq), z1 ∈ Ei, zq ∈ Ej

called an ij-path. The resistance of the path is the sum of
resistances in the sequence, r(ζ) = r(z1, z2) + r(z2, z3) +
... + r(zq−1, zq). We further denote rij = min r(ζ) as the
ij-path with least resistance. rij is always positive because
there cannot be a zero resistance path between two distinct
recurrent classes.

Now, for each recurrent class Ej , construct a tree rooted
at a vertex j corresponding to Ej . That is, a set of K − 1
directed edges such that each Ei, i �= j is represented by
a vertex i and there is a unique directed path from any
vertex different from j to j. The resistance of such a tree
is the sum of the resistances rij on the K − 1 edges.
The stochastic potential γj of the recurrent class Ej is the
minimum resistance among all such trees rooted at j. We
expect the recurrent classes of minimum stochastic potential
to be the most likely when ε is small. This result has been
formalized [19] as follows:

Theorem 2.1: Let P ε be a regular perturbed Markov
process, and let με be the unique stationary distribution of
P ε for each ε > 0. Then limε→0 μ

ε = μ0 exists, and μ0 is a
stationary distribution of P 0. The stochastically stable states
are precisely those states that are contained in the recurrent
class(es) of P 0 having minimum stochastic potential.
Next we derive a bound on the stochastic potential of a state
based on the construction of greedy, or myopic, forests. The
bound will be tight for the models we analyze below.

B. Myopic Forests

In this section we introduce a lower bound on the stochas-
tic potential of a recurrent class based on myopic forests.
In the case that a myopic forest can be constructed that is
itself a resistance tree, the bound is tight and the potential
is the minimum over all resistance trees for that recurrent
class. A tree has minimum resistance when the sum of all
the resistances is minimum. A myopic forest minimizes the
resistance of each outgoing edge individually without any
connectedness constraint.

Lemma 2.1: Let P ε be a regular perturbed Markov pro-
cess with E1, E2, ..., EK the recurrent classes of P 0, then
for any recurrent class j we have

γj ≥
∑
i�=j

min
k �=i

(rik),

and the relationship is satisfied with equality whenever
there exists a myopic forest ({1, ...,K}, {(ik) : k ∈
argmink �=irik}) that is a tree rooted at j.

Proof: Assume w.l.o.g. that j = 1, then γ1 is given by
the following optimization problem

minimize
∑

i�=1 riki

subject to ({1, ...,K}, {iki : i ∈ {2, ...,K}})
is a tree rooted at 1.

We arrive at our inequality by dropping the constraint and
interchanging the order of summation and minimization. It
is obvious that when the condition for equality is added as
a constraint then the two optimizations are identical.

Next we present our dynamic model.

III. THE DYNAMIC MODEL

The N players play the language game with the following
model of reproduction. At each time t select an agent i
at random according to some distribution F (x) satisfying
Pr [F (x) = i] > 0 ∀i ∈ {1, ..., N}, x ∈ X . Let

xi[t+ 1] =

{
xk̂, w.p. 1− ε

rand(BH
2 (Pi[t], Qi[t])), w.p. ε,

where k̂ = argmaxkuk((Pk[t], Qk[t]), (P̄ [t], Q̄[t])), and
rand(BH

2 (Pi[t], Qi[t])) refers to the language given by
sampling from the set of accessible mutant languages
BH

2 (Pi[t], Qi[t]) ⊂ Lm×n uniformly. We use BH
d (l) to refer

to the element-wise ball of Hamming distance d centered at
l. Furthermore let

xj [t+ 1] = xj(t) ∀ j �= i.



In words, we select a random agent and assign him the
language of an individual with a utility that is currently
highest, or with small probability we randomly reassign a
single row of either Pi[t] or Qi[t]. This dynamic model gives
a perturbed Markov processes Pm×n,N for particular values
of m,n,N . We call a state homogeneous if for some l ∈
Lm×n we have x = (l, l, ..., l). Clearly the absorbing states
of the unperturbed process are precisely the homogeneous
states. We next compute the stochastically stable states of this
process, first for the case where m = n and then for m > n
(n > m is then implied by symmetry). Recall that, in the long
run, the process spends an arbitrarily large proportion of its
time in the stochastically stable states as ε goes to zero. We
remark that in [20] we analyzed the same system except with
the ε-probability mutation events causing the selected player
i to adopt a new language at random, uniformly from all of
Lm×n. The state-dependent “point mutations” we consider
here are somewhat more realistic.

A. The m = n Case

We will want to make use of the bound we introduced in
Lemma 2.1. In order to do so we must compute some mini-
mum resistances from homogeneous states. First consider ho-
mogeneous states that maximize linguistic coherence. These
are the states that satisfy Tr(P̄ Q̄) = n. This condition im-
plies that Tr(PiQi) = n ∀i ∈ {1, ..., N}. We call languages
satisfying this condition aligned. We call the homogeneous
states corresponding to aligned languages optimal. The next
lemma characterizes the minimum resistance from optimal
states.

Lemma 3.1: When m = n the minimum resistance from
an optimal state x = (P,Q)N to any other homogeneous
state is N and this is achieved by any homogeneous state in
a language differing from x in a single row of one of either
P or Q.

Proof: Suppose x̃ is arrived at by reassigning Ñ <
N rows among language matrices in x. Let (P̄ , Q̄) be the
average language in x̃. Since each mutation event changes a
single row, this implies a resistance of Ñ . We will show that

u((P,Q), (P̄ , Q̄)) > u((P ′, Q′), (P̄ , Q̄)),

for any language (P ′, Q′) in x̃ other than (P,Q). This will
imply that, without further mutations, the state will revert
back to x. Thus the minimum resistance is at least N . We
have

u((P,Q), (P̄ , Q̄)) = m− Ñ

2N
,

because each mutated row gives a loss of 1
2N . First consider

aligned (P ′, Q′). This implies that (P ′, Q′) differs from
(P,Q) in α rows, where 4 ≤ α ≤ Ñ is even. We then

have u((P ′, Q′), (P̄ , Q̄))

= u((P ′, Q′), (P,Q)) + u((P ′, Q′), (P̄ , Q̄))− u((P ′, Q′), (P,Q))

= m− α

2
+ u((P ′, Q′), (P̄ , Q̄))− u((P ′, Q′), (P,Q))

= m− α

2
+ u((P̄ , Q̄), (P ′, Q′))− u((P,Q), (P ′, Q′))

≤ m− α

2
+

Ñ

2N
,

where the inequality follows from noting that communication
efficiency with (P ′, Q′) is maximized by having all Ñ
mutations applied in a manner consistent with (P ′, Q′).
Combining the expressions for the two languages we get
u((P,Q), (P̄ , Q̄))− u((P ′, Q′), (P̄ , Q̄)

≥ m− Ñ

2N
−m+

α

2
− Ñ

2N
=

α

2
− Ñ

N
> 0.

Next consider (P ′, Q′) not aligned, this implies

u((P ′, Q′), (P̄ , Q̄)) ≤ m− 1

2

so that u((P,Q), (P̄ , Q̄))− u((P ′, Q′), (P̄ , Q̄)

≥ m− Ñ

2N
−m+

1

2
=

N − Ñ

2N
.

The minimum resistance is no less than N , but N consec-
utive, identical mutations to N different users gives a new
homogeneous state. So the minimum resistance is N and the
new language differs from (P,Q) in a single row.

The minimum resistance from a sub-optimal state is one.
This is because at least one row of either the speaker or
hearer matrix does not contribute to the trace (by sub-
optimality). Mutating this row has no utility consequences,
so the mutant can fixate in the population without further
resistance. We will show that the myopic forest is a tree,
i.e. Lemma 2.1 is satisfied with equality. We claim that from
any state we can reach any optimal state via a sequence
of homogeneous states with each edge having minimal
resistance, given the source. That is to say, the sequence
will include optimal and sub-optimal states with all edges
emanating from the former having resistance N and all
edges emanating from the latter having resistance one. The
claim follows immediately by induction on the element-wise
Hamming distance from the target optimal state once we
establish the following Lemma:

Lemma 3.2: Given any homogeneous state x = (P,Q)N

and any target optimal state x̂ = (P̂ , Q̂)N there exists a
homogeneous state x̃ = (P̃ , Q̃)N that is among the homo-
geneous states that can be reached from x with minimum
resistance and satisfies

dH((P̃ , Q̃), (P̂ , Q̂)) < dH((P,Q), (P̂ , Q̂)),

where dH is the element-wise Hamming distance.
Proof: If x is optimal then all states in BH

2 ((P,Q))
are reached with resistance equal to N , which is minimum.
We can simply choose any row from either P or Q that does
not match the corresponding row in P̂ or Q̂ and correct it.
The resulting homogeneous state satisfies the Lemma.



Now suppose x is sub-optimal. This implies that either P
or Q has row(s) not contributing to the trace. If we mutate
one of these rows then the mutant will have the same fitness
as players with the language (P,Q). It follows that the
mutant can fixate without resistance. If one of these rows
does not match (P̂ , Q̂) then we are done, so assume that
all rows that do not contribute to trace already match their
corresponding row in (P̂ , Q̂). In this case, there is a zero
column in either P or Q. To see this, assume the contrary
and let I be the indices of the rows in P that do not contribute
to the trace. It follows that I are also indices of columns in
Q not contributing to the trace. By assumption Q has no zero
columns, so each column in Q with an index in I contains
a single one. Let J(I) be the indices of the rows in Q such
that for each j ∈ J(I) there exists i ∈ I satisfying Qji = 1.
This implies

Qji = Q̂ji, ∀j ∈ J(I), i ∈ {1, ...,m},

by assumption. Now since Q has a single one in each column
the above is equivalent to

Qji = Q̂ji, ∀i ∈ I, j ∈ {1, ...,m},

i.e. the columns indexed by I in Q match Q̂. The rows
indexed by I in P also match P̂ . Recall that (P̂ , Q̂) is aligned
so the rows indexed by I in P actually do contribute to the
trace, contradicting our assumptions. Thus, (P,Q) has a zero
column.

We now show that the presence of a zero column in
either P or Q guarantees the existence of a language ( P̃ , Q̃)
satisfying the lemma. If any rows not contributing to the
trace do not match (P̂ , Q̂) we are done, so assume all
such rows match. Assume without loss of generality that
Q has a zero column, i.e. there exists i1, i2, and j such that
Qi1j = Qi2j . Further assume without loss of generality that
row i1 contributes to trace and row i2 does not. This implies
that row i2 matches the corresponding row in Q̂, so P̂ji2 = 1
since all rows in Q̂ contribute to trace. Since Pji1 = 1 we can
mutate this row so that Pji2 = 1. This mutant has the same
fitness as (P,Q) in a population of players using (P,Q), and
is thus a suitable (P̃ , Q̃).

We can now give the main result for the m = n case.
Theorem 3.1: For any N ≥ 3 and any m ≥ 2 the

stochastically stable states of the process Pm×m,N are the
optimal states.

Proof: First, consider trees rooted at optimal states.
Lemma 3.2 implies we can construct a myopic forest per
Lemma 2.1 and that this forest is a resistance tree. The bound
is therefore satisfied with equality and the stochastic potential
of the optimal states is N(B − 1) + B̄, where B and B̄ are
the number of optimal and sub-optimal homogeneous states,
respectively, with languages in L. Next consider trees rooted
at sub-optimal homogeneous states. Applying Lemma 2.1 we
find that the stochastic potential is at least NB+B̄−1, which
concludes the proof.

Next, we develop a similar result for the case of m > n.

B. The m > n Case

Careful inspection of the arguments in Lemma 3.2 reveal
that, for (P,Q) sub-optimal, we nowhere assumed m = n.
The Lemma therefore carries over. However, the minimum
resistance targets from optimal states are different in this
case.

Lemma 3.3: The minimum resistance between an optimal
state and any other state is one, and this is achieved by an
optimal language.

Proof: Since m > n, Q must have a zero column.
The corresponding row in P cannot contribute to fitness so
any P ′ that is the same as P except for this row achieves
the same utility. Alternatively, since m > n, P must have a
column with two or more ones. The corresponding row in
Q can have a one in at least two different positions that will
maximize utility.

We have shown that every homogeneous (absorbing) opti-
mal state can transition to some other homogeneous optimal
states with resistance one. Can we reach any optimal state via
a sequence of transitions through optimal states, each having
resistance one? We answer this question in the affirmative by
presenting a constructive algorithm, Path.

Example: Path

(P,Q) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎣ 1 0 0 0

0 0 1 0
0 0 0 1

⎤
⎦
⎞
⎟⎟⎠ ,

(P ′, Q′) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 0 0
1 0 0
0 0 1
0 1 0

⎤
⎥⎥⎦ ,

⎡
⎣ 1 0 0 0

0 0 0 1
0 0 1 0

⎤
⎦
⎞
⎟⎟⎠ ,

⇒ Path((P ′, Q′), (P,Q)) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ ,

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ ,

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 1 0

⎤
⎥⎥⎦ ,

⎡
⎣ 1 0 0 0

0 0 0 1
0 0 1 0

⎤
⎦
⎞
⎟⎟⎠ ,

where we have purposefully omitted the initial and final
languages as well as each unchanged matrix in the sequence.
The Path algorithm always alternates between modifying
the speaker and hearer matrix in each step. §

The Path algorithm is a recursion that terminates when
the last language in the path Φ is the same as the language
in the target argument (lines 2-8). If the speaker matrices
match, but the hearer matrices do not then we can always
reach the target language in one more step (line 6). The idea
is to drive down the element-wise hamming distance between
the current speaker matrix P and the target P ′. Since P can
only be part of an aligned language when it has no zero
columns, we attempt to identify ones in P that do not match
P ′ (line 9) and are also in columns that sum to more than
one. Otherwise changing that ones position in its row would



Algorithm 1 Path((P ′, Q′),Φ)

1: (P,Q)← Φ|Φ|
2: if P = P ′ then
3: if Q = Q′ then
4: return Φ
5: else
6: return (Φ0, ..,Φ|Φ|, (P ′, Q′))
7: end if
8: end if
9: K ← {(i, j) : Pij > P ′

ij}
10: K̂ ← {(i, j) ∈ K :

∑
k Pkj > 1}

11: if |K̂| > 0 then
12: (i∗, j∗)← argmin(i,j)∈K̂

∑
k Qki

13: if
∑

k Qki∗ = 0 then

14: P̂ij ←
{
Pij , i �= i∗

P ′
ij , i = i∗

15: return Path((P ′, Q′), (Φ0,Φ1, ...,Φ|Φ|, (P̂ , Q)))
16: else
17: let î �= i∗ satisfy Pîj∗ = 1

18: Q̂ij ←

⎧⎪⎨
⎪⎩
Qij , i �= j∗

0, i = j∗, j �= î

1, i = j∗, j = î

19: return Path((P ′, Q′), (Φ0,Φ1, ...,Φ|Φ|, (P, Q̂)))
20: end if
21: else
22: let j∗ satisfy

∑
k Q

′
kj∗ = 0

23: let (̂i, ĵ) ∈ K

24: P̂ij ←

⎧⎪⎨
⎪⎩
Pij , i �= j∗

0, i = j∗, j �= ĵ

1, i = j∗, j = ĵ

25: Φ← (Φ0,Φ1, ...,Φ|Φ|, (P̂ , Q))

26: let ĩ �= î satisfy P̂ĩĵ = 1

27: Q̂ij ←

⎧⎪⎨
⎪⎩
Qij , i �= ĵ

0, i = ĵ, j �= ĩ

1, i = ĵ, j = ĩ

28: return Path((P ′, Q′), (Φ0,Φ1, ...,Φ|Φ|, (P, Q̂)))
29: end if

create a zero column in the new P . If we can find such a one
in P whose corresponding column in Q is zero (lines 12-13)
then we can move the one so that its row matches P ′ (lines
14-15). If all such ones correspond to non-zero columns in Q
then we instead modify Q (lines 16-19). Whenever a column
of P sums to more than one, the corresponding row in Q
can change while still maintaining alignment with P . We
do this in a manner so as to create a zero column in Q so
that in the next recursive call line 13 evaluates true. If we
did not find any suitable ones in P (i.e. line 11 evaluates
false) then we must actually generate a new P that is further
from P ′ (lines 21-25). We do this in order to add a one to a
column that currently contains a mismatched one so that we
can later move the mismatched one while maintaining the

alignment. We then adjust the corresponding row in Q (lines
26-28) so that we have a zero column in Q corresponding to
the mismatched one in P that is in a column that now sums
to more than one. Despite the fact that lines 21-28 imply
two steps in Φ that do not move P closer to P ′, the overall
sequence does reach P ′ in finitely many steps.

The behavior of Path is described by the following
lemma:

Lemma 3.4: The Path algorithm takes two aligned lan-
guages, one initial and one final, and returns a sequence
of aligned languages linking the associated initial and final
optimal states via transitions through the associated optimal
states each having resistance one .

We refer the reader to [20] for a proof. We can now prove
our main result for the m > n case.

Theorem 3.2: For any N ≥ 3 and any m > n ≥ 2 the
stochastically stable states of the process Pm×n,N are the
optimal states.

Proof: For optimal states we can construct a re-
sistance tree where every edge has resistance one. The
edges emanating from sub-optimal states can all reach
some optimal state via transitions of resistance one. From
each optimal state with language (P,Q) we find the path
to the candidate optimal state with language (P ′, Q′)
via Path((P ′, Q′), (P,Q)), eliminating redundancies as
needed. This gives only edges of resistance one. What
remains is to show that for sub-optimal states, at least one
edge of each resistance tree has resistance greater than 1.
There must be at least one edge that goes from an optimal
state to a sub-optimal state. Suppose that in x there are N−1
agents that speak an aligned language (P,Q) and a single
agent speaks misaligned language (P ′, Q′). The resistance
between the homogeneous states in these languages is greater
than one if u((P,Q), (P̄ , Q̄)) > u((P ′, Q′), (P̄ , Q̄)). We
compute u((P,Q), (P̄ , Q̄))− u((P

′, Q′), (P̄ , Q̄))

=
1

2
Tr((P − P ′)

1

N
((N − 1)Q+Q′))

+
1

2
Tr(

1

N
((N − 1)P + P ′)(Q −Q′))

=
N − 1

2N
Tr((P − P ′)Q+ P (Q−Q′))

+
1

2N
Tr(PQ′ + P ′Q− 2P ′Q′)

=
N − 2

2N
Tr((P − P ′)Q+ P (Q−Q′))

+
1

N
Tr(PQ − P ′Q′)) > 0

IV. DISCUSSION

We analyzed this process separately for the cases where
the number of objects and symbols agree and disagree. In
the more natural setting where the number of objects and
symbols disagree we showed that we could transit between
any two optimal states through a sequence of optimal states
requiring only one mutation per transition. This (along with



the non-equilibrium nature of the process) concords with
the observed phenomenon of drift in languages. That is,
languages seem to change over time (see for instance, [21])
in a manner that is neutral with respect to the expressiveness
of the language. The presence of synonyms and homonyms,
exploited in our Path algorithm, seems a reasonable mech-
anism for this action.

We note that our results are not especially sensitive to
our choice of dynamics. In [20] we show that a number of
variations on the model are equivalent with respect to the
characterization of stochastically stable states. In particular,
our model assumed selection is very strong and only the most
fit player reproduces its language. This assumption can be
relaxed somewhat without consequence.

A. Future Directions

A key feature of the model that can be generalized
is the form of the utility. We computed the utility in a
manner reflecting a global interaction. It is possible to
instead compute each agents utility based on their ability
to communicate with some subset of the total population.
This subset could come from either some fixed, exogenous
graph or some endogenous considerations. An interesting
question that emerges when considering these circumstances
is the problem of linguistic diversity. What conditions are
needed for heterogeneous states to persist in the population
with non-vanishing frequency? Can we quantify network
effects on social welfare? These are among the interesting
questions that can be studied by considering generalizations
to the utility functions of this game that move away from the
“everyone talks to everyone” paradigm. These extensions are
being pursued by the authors.
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