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Abstract

We show that the Shapley-Shubik power index on the domain of simple

(voting) games can be uniquely characterized without the e¢ ciency axiom. In

our axiomatization, the e¢ ciency is replaced by the following weaker require-

ment that we term the gain-loss axiom: any gain in power by a player implies

a loss for someone else (the axiom does not specify the extent of the loss). The

rest of our axioms are standard: transfer (which is the version of additivity

adapted for simple games), symmetry or equal treatment, and dummy.

JEL Classi�cation Numbers: C71, D72.
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1 Introduction

Shortly after the introduction of the Shapley (1953) value, Shapley and Shubik (1954)

suggested to use its restriction to the domain of simple (voting) games in order to
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assess the a priori voting power of players. This restriction had since become known

as the Shapley-Shubik power index (SSPI). The SSPI measures the chance each player

has of being critical to the success of a winning coalition, if players join in a random

order. In addition to being an attempt to quantify the elusive voting power, the SSPI

can also be regarded as the utility of playing a simple game under a certain posture

towards risk (see Roth (1977)).

The construction of the SSPI points the way to de�ne other indices with broadly

similar features. The Banzhaf (1965) index is a prime example, with a long history of

successful applications and sustained academic interest. Like the SSPI, it evaluates

players�probabilities of having a swing vote in the game, but under the assumption

that each player joins a coalition or abstains from joining with equal probability

and that the choices of di¤erent players are independent. Yet more general are the

probabilistic assumptions on coalition formation behind the family of semivalues of

Dubey et al (1981), de�ned for all games, whose restriction to the domain of simple

games produces a variety of power indices (studied in Einy (1987) and also termed

semivalues). One way of delineating the di¤erences between indices is the axiomatic

approach �certain critical properties (axioms) of the given index are identi�ed, and

then are shown to uniquely characterize it, thereby setting it apart from other indices.

The Shapley (1953) value was the �rst solution concept of cooperative game theory

to be axiomatized. However, the SSPI, its spin-o¤, received similar treatment much

later (in Dubey (1975)). Dubey (1975) uses the axioms of Shapley (1953), with the

exception of additivity, which has to take up a special form1 due to the non-linear

structure of the set of simple games. The axiom of e¢ ciency, according to which the

total power of the players must be equal to 1, the worth of the grand coalition in

the game, is the primary distinguishing feature of the SSPI. It is, in fact, the only

e¢ cient semivalue on the domain of simple games.2

The normalization of the total voting power to 1, embodied in the e¢ ciency axiom,

is a natural requirement if the power index is used to assess the relative power of each

player in the same game. However, it is not clear whether an e¢ cient index can allow

comparisons of individual voting power across games, since the uniform normalization

to 1 of the total power may in principle rescale individual power di¤erently in di¤erent

1It later became known as the transfer axiom, due to Weber (1988).
2See Theorem 2.5 and Remark 2.7 in Einy (1987).
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games. Thus, a-priori, the e¢ ciency axiom may appear to be too strong in the context

of power indices.

In this paper we propose a new axiomatization of the SSPI, that replaces e¢ ciency

(which has been central in most axiomatizations) by a weaker axiom. We make no

direct assumption on the total power in the game, and concentrate on the individ-

ual voting power instead. Our new axiom, which we term the axiom of gain-loss3,

makes the minimal, ordinal, requirement that is still consistent with the constant-

sum nature of power as measured by the SSPI. According to the gain-loss axiom,

if the power of some player increases as a result of changes in the game, the power

cannot concomitantly increase for all players. That is, any gain in power by a player

implies a loss for someone else �this expresses the intuitive idea that in the "strife for

power", if there are winners then there must also be losers. The axiom is weak since

it speci�es neither the identity of players that lose power, nor the extent of their loss.

The rest of our axioms are standard. We adopt the transfer axiom of Dubey

(1975), and the symmetry and the null player axioms of Shapley (1953). Our The-

orem 1 shows that the four axioms characterize the SSPI up to rescaling. But if

the null player axiom is replaced by the stronger dummy axiom (which is the second

axiom in our set, after gain-loss, to contain a mild aspect of e¢ ciency), the SSPI is

characterized uniquely, as we state in Corollary 2. Moreover, in this characterization,

the symmetry can be replaced by the weaker equal treatment axiom, as shown in

Theorem 3.

In several other works, a characterization of the SSPI or the Shapley value was

done with substitutes for the e¢ ciency axiom. When a power index is viewed as

a utility function that represents a prospective player�s preference over the set of

games, Roth (1977) considers the axiom of "strategic risk neutrality". This axiom

requires that a player be indi¤erent between playing a unanimity game with carrier T ,

and participating in a lottery that assigns probability 1= jT j to being a dictator and
probability 1� 1= jT j to being a null player. It thus determines the index (up to an
a¢ ne transformation) as the e¢ cient SSPI on unanimity games. Also in the context

of treating power indices as utility functions, Blair and McLean (1990) introduce

3We borrow this term from Laruelle and Valenciano (2001), although they use it to refer to a

rather di¤erent property, as we will mention below.
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another substitute of e¢ ciency that pinpoints the e¢ cient Shapley value in the set of

semivalues that they characterize. They require that a player be indi¤erent between

all symmetric simple games in which the minimal winning coalitions have the same

size. This axiom, when restated in our purely game-theoretic setting, is related to

gain-loss. Speci�cally, it is weaker than the combination of gain-loss and symmetry,

and can replace gain-loss in our axiomatization as we point out in Remark 1. We do

not introduce it as an explicit axiom in our setting, however, believing that gain-loss

has a stronger aesthetic and conceptual appeal in many contexts.

More recently, Laruelle and Valenciano (2001) introduced the �constant total gain-

loss balance�axiom, which requires that if a minimal winning coalition S is deleted

from a simple game, then the total loss in power of players in S be the same as the

total gain in power of players in the complement of S. Unlike our gain-loss axiom,

however, this axiom by itself is su¢ ciently close to e¢ ciency. Indeed, it implies that

the total power of the players is constant in all games, and hence is a �xed multiple

of the worth of the grand coalition. This means that the power index is e¢ cient up

to rescaling, provided the total power is non-zero.4

The structure of our paper is as follows: Section 2 introduces simple games and

the de�nition of the SSPI, and Section 3 contains the statements of our axioms, the

characterization results, and two remarks.

2 Simple Games and the Shapley-Shubik Index of

Power

Let N = f1; 2; :::; ng be the set of players. Denote the collection of all coalitions
(subsets of N) by 2N ; and the empty coalition by ;: Then a game on N is given by

a map v : 2N ! R with v (;) = 0: The space of all games on N is denoted by G: A
coalition T 2 2N is called a carrier of v if v(S) = v(S \ T ) for any S 2 2N :
The domain SG � G of simple games on N consists of all v 2 G such that
(i) v(S) 2 f0; 1g for all S 2 2N ;
4Our gain-loss axiom also implies that the power (both individual and total) is constant, but only

in conjunction with the equal treatment axiom, and only for the small class of symmetric games, as

can be easily seen (similarly to (5) in Lemma 1).
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(ii) v(N) = 1;

(ii) v is monotonic, i.e., if S � T then v(S) � v(T ):
A coalition S is said to be winning in v 2 SG if v(S) = 1; and losing otherwise.
A power index is a mapping ' : SG !Rn. For each i 2 N and v 2 SG; the ith

coordinate of ' (v) 2 Rn; ' (v) (i); is interpreted as the voting power of player i in
the game v: The Shapley-Shubik power index (SSPI) 'ss is among the best known.

It is given for each v 2 SG and i 2 N by

'ss (v) (i) =
X

S�Nnfig

jSj! (jN j � jSj � 1)!
jN j! [v(S [ fig)� v(S)] : (1)

For each i 2 N , 'ss (v) (i) is exactly the probability that player i is pivotal in a
random ordering ofN (with the uniform distribution of orderings), i.e., the probability

that the coalition of players preceding i in a random ordering is losing, but becomes

a winning coalition if joined by i.

3 The Axioms and the Results

We start by exploring the degree of similarity to 'ss that a power index on SG must
have if it satis�es the four axioms stated below. As mentioned, one of the axioms

is new, while the other three are standard. The new axiom is a relaxation of the

usual e¢ ciency requirement. The axiom captures what could be expected intuitively

from a measure of power �while it might be the case that the power of some players

increases as a result of changes in the game, power cannot concomitantly increase

for all players. That is, any gain in power by a player must come at the expense of

someone else.

Axiom I: Gain-loss (GL). If

' (v) (i) > ' (w) (i) (2)

for some v; w 2 SG and i 2 N; then there exists j 2 N such that

' (v) (j) < ' (w) (j): (3)
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The standard e¢ ciency axiom requires that the equality
P

i2N ' (v) (i) = 1 hold

for every v 2 SG. Axiom GL is weaker than e¢ ciency and quantitatively less de-

manding. It speci�es neither the identity of j that loses power on account of i�s gain,

nor the extent of j�s loss.

The three axioms that follow and their variants have been used in other character-

izations of the SSPI (see, e.g., Dubey (1975)). To state our next axiom, we introduce

the following notation. For v; w 2 SG de�ne v _ w; v ^ w 2 SG by:

(v _ w) (S) = max fv(S); w(S)g ;

(v ^ w) (S) = min fv(S); w(S)g

for all S 2 2N : (It is evident that SG is closed under operations _;^:) Thus a coalition
is winning in v _ w if, and only if, it is winning in at least one of v or w, and it is
winning in v ^ w if, and only if, it is winning in both v and w:

Axiom II: Transfer (T). ' (v _ w)+' (v ^ w) = ' (v)+' (w) for all v; w 2 SG.

As remarked in Dubey et al (2005), T can be restated in the following equivalent

form. Consider two pairs of games v; v0 and w;w0 in SG, and suppose that the
transitions from v0 to v and w0 to w entail adding the same set of winning coalitions

(i.e., v � v0; w � w0; and v � v0 = w � w0). An equivalent axiom would require that

' (v)� ' (v0) = ' (w)� ' (w0) ;

i.e., that the change in power depends only on the change in the voting game.

Next, denote by�(N) the set of all permutations ofN (i.e., bijections � : N ! N):

For � 2 �(N) and a game v 2 SG, de�ne �v 2 SG by

(�v) (S) = v(�(S))

for all S 2 2N : The game �v is the same as v except that players are relabeled

according to �:

Axiom III: Symmetry (Sym). ' (�v) (i) = ' (v) (� (i)) for every v 2 SG,
every i 2 N; and every � 2 �(N):
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According to Sym, if players are relabeled in a game, their power indices will be

relabeled accordingly. Thus, irrelevant characteristics of the players, outside of their

role in the game v, have no in�uence on the power index.

Axiom IV: Null player (NP). If v 2 SG, and i is a null player in v, i.e.,
v(S [ fig) = v(S) for every S � Nn fig ; then ' (v) (i) = 0:

Theorem 1. A power index ' satis�es GL, T, Sym, and NP if and only if

' = a'ss for some a 2 R:

Proof. It is well known that 'ss satis�es T, Sym, and NP. Axiom GL is

satis�ed since 'ss is e¢ cient, which is a stronger requirement. It is also obvious that

the axioms are invariant under any rescaling of 'ss:

We now show that the axioms uniquely determine 'ss up to rescaling. To this

end, �x a power index ' that satis�es GL, T, Sym, and NP.

Lemma 1. For each s = 0; 1; :::; n� 1; consider the game ws 2 SG given by

ws(S) =

8<: 1; if jSj > s;
0; otherwise.

(4)

Then

' (w0) (i) = ' (w1) (i) = ::: = ' (wn�1) (i) (5)

for every i 2 N:

Proof of Lemma 1. By Sym, for every i; j 2 N and s = 0; 1; :::; n� 1;

' (ws) (i) = ' (ws) (j): (6)

If there were 0 � s0; s00 � n� 1 such that (w.l.o.g.) ' (ws0) (i) > ' (ws00) (i) for some
i 2 N; there would exist j 2 N with ' (ws0) (j) < ' (ws00) (j) by GL, contradicting

(6) taken for s = s0; s00. Hence (5) follows. �
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Following the proof of Lemma in Dubey et al (1981),5 consider the set F of all

power indices on SG that satisfy T, Sym, and NP. Clearly, F is a linear subspace
of the space of all mappings SG !Rn: Now consider, for each T � N; the unanimity
game uT given by

uT (S) =

8<: 1; if T � S;
0; otherwise.

(7)

Any v 2 SG can be written as a maximum of a �nite number of unanimity games:

v = uT1 _ uT2 _ ::: _ uTk ;

where T1; :::; Tk are the minimal winning coalitions in v: Since any f 2 F satis�es T,
Lemma 2.3 of Einy (1987) can be applied to any such f to obtain:

f(v) =
X

I�f1;:::;kg;I 6=?

(�1)jIj+1 f
�
u[m2ITm

�
: (8)

It follows from (8) that the values of a power index f 2 F on unanimity games

uniquely determine the index on the entire SG. Moreover, by Sym and NP, f

is in fact fully determined by the following n values: f
�
uf1g

�
(1) ; f

�
uf1;2g

�
(1) ; :::;

f
�
uf1;2;:::;ng

�
(1) : Thus, the dimension of F is at most n. It is moreover easy to see

that the n power indices f0; :::; fn�1 2 F; where

fs (v) (i) =
X

S�Nnfig;jSj=s

[v(S [ fig)� v(S)]

for each s = 0; 1; :::; n � 1 and v 2 SG, i 2 N; are linearly independent. Thus, in
fact, dimF = n; and f0; :::; fn�1 form a linear basis for F: Consequently, there exists

a collection (ps)
n�1
s=0 of coe¢ cients such that ' =

Pn�1
s=0 psfs; or, put alternatively,

' (v) (i) =
X

S�Nnfig

pjSj [v(S [ fig)� v(S)] (9)

for every v 2 SG and i 2 N:
5Although our aim is to obtain equality (9), which is precisely what is claimed in the Lemma of

Dubey et al (1981), we cannot apply the lemma directly. Indeed, the lemma is stated for semivalues

de�ned on the space G of all games on N , and not just simple games. Moreover, the axioms of
Dubey et al (1981) are more demanding. Our proof introduces an adjustment (the use of (8)) that

needs to be made in the context of power indices for simple games.
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Using (9) for v = ws,

' (ws) (i) =

�
n� 1
s

�
ps (10)

for every s = 0; 1; ::; n� 1; and i 2 N: Denote

a �
n�1X
s=0

�
n� 1
s

�
ps

and observe that (5) in Lemma 1 and (10) yield

ps =
a

n

�
n� 1
s

��1
= a � s!(n� s� 1)!

n!
(11)

for every s = 0; 1; ::; n � 1: Substituting (11) into (9), and comparing the resulting
equality with (1), yields ' = a'ss: �

Now consider the following well-known stronger version of the NP axiom:

Axiom V: Dummy (D). If v 2 SG, and i is a dummy player in v, i.e., v(S [
fig) = v(S) + v(fig) for every S � Nn fig ; then ' (v) (i) = v (fig) :

Note that this is the only axiom in our set that contains a mild quantitative

aspect of e¢ ciency: D implies that
P

i2N ' (v) (i) = 1 in every game v 2 SG where
all players are dummies. However, it su¢ ces to uniquely characterize the SSPI along

with GL, T, and Sym:

Corollary 2. There exists one, and only one, power index satisfying GL, T,

Sym and D, and it is the SSPI 'ss:

Proof. It is well-known that 'ss satis�es D, and the rest of our axioms are

also satis�ed, by Theorem 1. Furthermore, if a power index ' satis�es the axioms,

by Theorem 1 ' = a'ss for some a 2 R. By D, '
�
uf1g

�
(1) = 1 (see (7) for the

de�nition of uf1g) while a'ss
�
uf1g

�
(1) = a; which implies that a = 1: �

Remark 1 (Weakening of GL). Note that in the proof of Theorem 1, the only

use of GL was to derive, in conjunction with Sym, the equality (5) in Lemma 1, i.e.,

that

' (w0) (i) = ' (w1) (i) = ::: = ' (wn�1) (i) (12)
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for every i 2 N; where w0; :::; wn�1 are the games de�ned by (4).6 Thus, the ad

hoc requirement on ' that (12) holds for every i 2 N; which is weaker than the

combination of GL and Sym, can be used as a substitute of GL in Theorem 1 and

Corollary 2.

This requirement was used by Blair and McLean (1990) in the context of charac-

terising "subjective valuations" of playing a game, as the axiom that pinpoints the

e¢ cient Shapley value in the set of (not necessarily e¢ cient) semivalues. We do not

introduce (12) as an explicit axiom, however, as we believe that GL is a natural and

desirable property in most contexts, and that it has a stronger aesthetic appeal.

Remark 2 (Using GL to characterize the Shapley value on the entire

G). Formula (1), applied to every v 2 G, de�nes the Shapley value 'ss : G !Rn on
the entire G. However, in the context of mappings ' : G !Rn the straightforward
extension of axiomGL is of little interest. Indeed, if it is assumed that (2) =) (3) for

any v,u 2 G; then GL does not follow from e¢ ciency unlike in simple games, and in

fact 'ss does not satisfy it. The "right" version of GL for general games would assume

(2) =) (3) provided v(N) = u(N): This version would characterize the Shapley value

on G together with other, standard axioms (linearity, equal treatment, and dummy).7

However, the explicit conditioning on the worth of the grand coalition in the axiom

signi�canly limits its appeal as a weaker substitute for e¢ ciency.

Our last result strengthens Corollary 2 by replacing Sym in the characterization

of the SSPI with the following well-known weaker version:

Axiom VI: Equal Treatment (ET). If i,j 2 N are substitute players in the

game v 2 SG, i.e., for every S � Nnfi; jg v(S [ fig) = v(S [ fjg); then ' (v) (i) =
' (v) (j).

6Note that the same argument as in the proof of Lemma 1 shows that ' (v) (i) is the same for

all symmetric games v 2 SG, and not only for v = w0; :::; wn�1:
7This follows from Corollary 1, since the axioms uniquely determine the restriction of the value

to SG; and in particular for unanimity games. Since these games are a linear basis for G, the value
is in fact uniquely determined on G.
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While Sym postulates that irrelevant characteristics of the players, outside of

their role in the game v, have no in�uence on a power index, the weaker ET merely

forbids discrimination between substitute players (with the same role in the game).

In most axiomatizations ET su¢ ces for the uniqueness of the index on SG (or the
value on G) when the e¢ ciency is included in the set of axioms. The stronger Sym
is necessary primarily in the conext of in�nite number of players (see, e.g., Aumann

and Shapley (1974), Dubey et al (1981)). Our next theorem shows that, even with

GL instead of e¢ ciency, ET can replace Sym in the characterization of SSPI.

Theorem 3. There exists one, and only one, power index satisfying GL, T, ET,

and D, and it is the SSPI 'ss:

Proof. By Corollary 2, 'ss satis�es all the axioms. It remains to show that the

axioms uniquely determine 'ss: Fix any power index ' that satis�es GL, T, ET,

and D.

Lemma 2. For every T � N

' (uT ) = 'ss (uT ) ; (13)

where uT is the unanimity game on T de�ned in (7).

Proof of Lemma 2. Consider the following two cases:

Case 1 : T = N . Let ' be the power index given by

' (v) (i) � 1

n!

X
�2�(N)

' (�v)
�
��1 (i)

�
for every v 2 SG and i 2 N: It is easy to check that ' satis�es T, Sym (and not just

ET), and D.

For every i; j 2 N and s = 0; 1; :::; n� 1;

' (ws) (i) = ' (ws) (j) (14)
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by ET, where ws is the game de�ned in (4). Since �ws = ws for every � 2 �(N), it
follows from the de�nition of ' and (14) that

' (ws) (i) = ' (ws) (i) (15)

for every s = 0; 1; :::; n� 1 and i 2 N: Since Lemma 1 holds with ET instead of Sym
as is easy to check, for every i 2 N

' (w1) (i) = ' (w2) (i) = ::: = ' (wn) (i);

and thus, using (15), also

' (w1) (i) = ' (w2) (i) = ::: = ' (wn) (i): (16)

This shows that ' satis�es (12) in Remark 1 (in addition to T, Sym, and D), and

hence by Remark 1 and Corollary 2, ' = 'ss: Since ' (wn�1) = ' (wn�1) by (15), in

fact

' (wn�1) = 'ss (wn�1) :

But wn�1 = uN ; and thus (13) is established for T = N:

Case 2 : T  N . Denote by SG(T ) the set of simple games on the set of players
T , that can at the same time be viewed as the games in SG whose carrier is a subset
of T: Consider the restricted power index ' jT : SG(T )!RT ; given by (' jT ) (v) (i) �
' (v) (i) for every v 2 SG(T ) and i 2 T: Since by D ' (v) (i) = 0 for every v 2 SG(T )
and i =2 T; the knowledge of ' jT completely determines ' on SG(T ) when viewed as
a subset of SG.
It is easy to see that ' jT satis�es axiomsT, ET, andD on SG(T ). It also satis�es

GL. To check this, assume that (2) holds for some i 2 T and v,u 2 SG(T ): By the
GL property of '; there exists j 2 N satisfying (3). It cannot be that j 2 NnT
since then the inequality in (3) would not be strict by the D property of '; and we

conclude that j 2 T:8

Now, just as in Case 1 (mimic the proof by taking N = T and n � jT j),

(' jT ) (uT ) = ('ss jT ) (uT ) ;
8This is the only place in our proofs where the assumption of strict inequality in (3) is used. For

our previous results, Theorem 1 and Corollary 2, a weak inequality in (3) would have su¢ ced.
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and thus also

' (uT ) = 'ss (uT ) :

Consequently, (13) holds for every T � N: �

By Lemma 2, ' and 'ss coincide on all unanimity games. Using equality (8) in the

proof of Theorem 1 (which holds for any power index f that satis�es T, by Lemma

2.3 of Einy (1987), and in particular for ' and 'ss) �nally implies that ' = 'ss on

the entire SG: �
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