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Abstract

In this paper, in order to come up with a simple entry-exit model, we extend
Cournot and Bertrand models by considering the fact that some firms might choose to
remain as potential entrants in equilibrium. This might be related to less brand name
recognition and consumer loyalty, cost disadvantages, or incapability of differentiating
their products from others. In that regard, we study firms under Cournot and Bertrand
game settings with heterogenous production costs in differentiated product markets and
propose several iteration algorithms to find which potential players produce positive
quantities in equilibrium. Our results show that there is a unique iterated Cournot-
Nash equilibrium. Additionally, we study Bertrand models and present a new approach
for understanding why an established firm can decrease its price in equilibrium when it
is faced with a low threat potential entrant firm. Further, we show several examples in
which pure strategies lead to multiple undominated iterated Bertrand-Nash equilibria.
This result is very different from the existing literature on Bertrand models, where
uniqueness usually holds under a linear market demand assumption. Next, we char-
acterize the set of undominated equilibria for the Bertrand game. Our results provide
additional evidence for why the Bertrand game is more competitive than the Cournot
game. As an application of the model, we show that mergers increase incentives for
market entry, which contradicts to the conventional wisdom.
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INTRODUCTION

Barriers to entry has been widely discussed in the literature. It is argued that estab-
lished firms have comparative advantages over potential entrant firms through various chan-
nels. Those include brand name recognition and consumer loyalty via the use of advertising
strategies, absolute cost advantages due to early entry, sunk costs, inability of differentiating
their products, high capital requirements, international trade restrictions, and so on (McAfee
et. al, 2004). We distinguish three types of potential entrants: 1-) High threat ones, 2-) Low
threat ones, and 3-) No-threat ones. In an incumbent-entrant game, if the monopoly firm
faces with a high threat potential entrant, a duopoly market formation is possible. On the
other hand, low threat and no-threat potential entrant firms cannot enter into the market
due to entry barriers, yet the former has an influence on the pricing decision of the monopoly
firm. The literature is mainly concentrated on the interactions between established firms and
high threat potential entrants. It is suggested that predatory pricing, which means the prac-
tice of a dominant firm selling its product at a very low price to make competition more
difficult for new firms in expectation of getting more profits in the future, might create a
barrier for entry. In many countries predatory pricing is considered anti-competitive and is
illegal under competition laws. Moreover, it is argued that there are not so much real-life
examples of predatory pricing because after the decline in prices, the surviving firms will not
be in an industry with high barriers to entry. Hence, it is difficult to maintain high prices
after some firms are driven out from the business.

We argue that the threat of some potential entrants might be low or none because of the
discussed advantages of the incumbent firms. In that regard, we mainly focus on these types
of potential entrant firms. We present a new approach for understanding why an established
firm can decrease its price when it is faced with a low threat potential entrant firm. We
work in a one-shot game setting and therefore incumbent firms cannot decrease their prices
because of high profit expectations in the future. Nevertheless, they decrease their prices in
total because it is each firm’s optimal strategy to do so given other firms’ strategies in the
current period, a notion known as equilibrium.

Although Nash (1951) introduces the concept of equilibrium for any non-cooperative
game, Cournot (1838) and Bertrand (1883) are the first to come with non-cooperative firm
models based on quantity and price competitions respectively. Friedman (1983) later pro-
vides sufficiency conditions for the existence and uniqueness of equilibrium for these models.
His sufficiency condition for uniqueness requires best response functions to be contractions.
Shapiro (1989) argues that it is very difficult to have a unique equilibrium simply because
best response functions of firms might intersect more than once. However, both firm models
assume that all potential firms produce in equilibrium. In this study, in order to present our
simple entry-exit model, we extend Cournot and Bertrand models by considering the fact
that some firms might choose to remain as potential entrants in equilibrium even in the ab-
sence of any fixed costs. This might be related to bad market conditions, cost disadvantages
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or incapability of differentiating their products from others. It is well known that when two
firms with different marginal cost levels play the Cournot game, it might be optimum for
the cost-inefficient firm to not produce, which makes the cost-efficient firm monopoly in the
market. Theoretically, the best response functions of the firms intersect at the boundary.
To see this possibility, consider the following simple example:

Example 1: Let the set of firms be N = {1, 2} and the marginal cost vector be c =
(8, 9.5). The linear market demand is specified as p = 10−q. Under Cournot competition, the
best response functions of the firms are BR1(q2) =

2−q2
2

and BR2(q1) =
0.5−q1

2
. The related

graphs of these functions are for each i ∈ {1, 2}, Gr(BRi) = {q ∈ R
2 : qi = BRi(q−i)}.

However, these unrefined best response graphs intersect in the negative region (see Figure 1)
and the coordinates of this intersection, i.e. point N ′, are q∗1 = 7/6 and q∗2 = −1/3. However,
negative production is not feasible by definition. Therefore, if firm one produces more than
0.5, it is optimal for the inefficient firm to not produce. Similarly, if firm two produces more
than 2, firm one does not produce. Under this refinement, it is easy to see that the best
response graphs intersect at point N characterized by q∗1 = 1 and q∗2 = 0 as shown in Figure
2. Thus, in the unique Nash equilibrium of this game, firm one is a monopoly and firm two
is the no-threat potential entrant firm, which does not have any effect on the equilibrium
strategy of the monopoly firm, in our terminology.

In this paper, we study firms under Cournot and Bertrand game settings with complete
information of heterogenous production costs in differentiated product markets. To general-
ize the above two-firm example to an n-firm setting, we propose several iteration algorithms
to find which potential players produce positive quantities in equilibrium. These iteration
algorithms divide our initial potential finite number of firms into three: 1-) Incumbent firms
2-) Low threat potential entrant firms 3-) No-threat potential entrant firms, where low-threat
entrants are only specific to the Bertrand game. Note that Friedman’s (1983) uniqueness of
equilibrium proof for the Cournot game is also valid in our extended set-up. We first provide
an alternative proof for the uniqueness and propose a simple algorithm to find the closed
form solution of the extended Cournot game. Our results show that there is a unique iterated
Cournot-Nash equilibrium. Next, we consider a Bertrand game setting with imperfectly sub-
stitutable goods and impose nonnegativity of output constraints. We present theoretically
possible examples in which multiple undominated Bertrand-Nash equilibria exist in pure
strategies. Note that low threat of potential entrant firms force incumbent firms to decrease
their price levels together in equilibrium in our one-shot game setting. Otherwise, if the
potential entrant firm is not taken into account by the incumbent firms and it is efficient
enough, then there might be some demand left to it, which is greater than its marginal cost
of production, and it deviates to produce accordingly. Moreover, we come up with examples
of games such that given any incumbent firm, there are multiple equilibria at which it has
different pricing strategies. However, these examples involve at least three firms, where the
most cost efficient two firms are incumbent and the least efficient one is potential entrant.
This result is very different from the existing literature on Bertrand models, where unique-
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ness usually holds under a linear market demand assumption. In addition, we characterize
the set of multiple undominated iterated Bertrand-Nash equilibria. In each equilibrium, the
most cost efficient n∗ number of firms actively produce, where n∗ is the maximum number
that leads to positive production for the least efficient one(s) among these n∗ firms.

It is argued that Bertrand game is more competitive than the Cournot game (See Vives
(1985), Cumbul (2011)). In this paper, we provide additional evidence for this claim. To
see that, consider a two firm setup, where unrevised best response graphs of Cournot and
Bertrand games lead to negative quantities for firm two, which contradicts with feasibility.
We observe that in the Bertrand game, the efficient firm can sometimes force the inefficient
firm to exit the market only by charging a price lower than the monopoly price in equilibrium.
However, in the Cournot equilibrium, the efficient firm can always produce the monopoly
quantity in order to ensure that the inefficient firm stays as a potential entrant. This simple
argument partially validates the initial claim.

Next, we apply the presented entry-exit model to a merger setting and investigate the
effects of mergers on incentives for market entry. We show that as opposed to the conventional
wisdom, mergers increase incentives for market entry. (to be added..)

We then incorporate the axiomatic theory into the presented IO model and show that
whereas the Cournot rule satisfies population monotonicity, consistency, and converse con-
sistency, it is not replication invariant. However, Bertrand rule is not consistent. In the last
section, we discuss possible generalizations on the cost and demand structures of the models.

The article is organized as follows. In Section 1, we state our formal models and get
equilibrium prices, quantities and profits of firms under the assumption that there is enough
demand for all potential entrant firms so that they all produce actively. In Section 2, we
study the extended versions of the Cournot and Bertrand games respectively by consider-
ing possible demand insufficiencies, cost efficiency gaps, and product differentiation among
firms. In that regard, we provide characterizations of undominated equilibrium(a) in both
types of game settings. In Section 3, we apply the presented entry-exit model to a merger
setting and investigate the effects of mergers on incentives for market entry. In Section 4,
we define Cournot and Bertrand rules and study their axiomatic properties. In Section 5,
we discuss possible generalizations of the models. The Appendix shows the related proofs.
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1 MODEL

1.1 Notations and Assumptions:

Let n ∈ N and N = {1, 2..., n} be a finite set of firms. The constant marginal cost levels
of firms are specified as c1, c2, ..., cn. Assume W.O.L.G. that the firms are ordered from the
most efficient to the least efficient: c1 ≤ c2 ≤ ... ≤ cn−1 ≤ cn. Each firm i is producing a
differentiated product, qi, and the assumed total consumer quadratic utility function over
these products is given by:

U(q1, q2, ..., qn) =
n∑

i=1

Aiqi − 1

2

n∑

i=1

δiq
2
i − θ

n−1∑

i=1

n∑

j>i

qiqj +G (1)

where G = M −∑n
i=1 piqi is the private income spent on other goods, for each i ∈ N , δi ≥ θ,

and the ratio θ/δi ∈ [0, 1] shows how much product i is differentiated from others, and Ai

is the demand parameter, which can capture brand name recognition and consumer loyalty.
For each i ∈ N , taking derivative with respect to each differentiated product qi gives us the
demand function as1:

pi = Ai − δiqi − θ
n∑

j �=i

qj (2)

Note the closer θ is to δi, the higher the degree of substitutability and the level of competition
between firms. For example, as an extreme case, when θ = δi for each i ∈ N , the products
are perfect substitutes and no longer differentiable. On the other hand, when θ = 0 for each
i ∈ N , each firm is a monopoly for the good it produces.

Next, we make the following assumptions:

Assumption 1: Each firm i has a constant marginal cost ci. Firms have full information.

Assumption 2: For each firm i ∈ N , Ai > ci.

Assumption 3: There are no fixed costs and no capacity constraints.

In the next step, we calculate the price, quantity, and profit levels of firms under Cournot
and Bertrand competitions.

1This demand function is also studied by Shapiro (1989).
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1.2 COURNOT COMPETITION:

In the Cournot model, firms maximize their profits by taking other firms’ optimum quantity
levels as given. Hence, each firm faces the following objective function:

max
qi

πi = (Ai − δiqi − θ

n∑

j �=i

qj − ci)qi (3)

For each j ∈ N , let λj = Aj − cj. For each nonempty subset S ⊆ N , each j ∈ N , let

γ−j(S) =
∏S

l �=j (2δl − θ) and γ(S) =
∏

l∈S (2δl − θ). If the induced quantities from the above
optimization problem turn out to be positive, then equilibrium price, quantity and profit
levels of firm i ∈ N are respectively given by

qCi (S) =

λi(γ(S) + θ
∑

j∈S
γ−j(S))− θ

∑

j∈S
λjγ−j(S)

(2δi − θ)(γ(S) + θ
∑

j∈S
γ−j(S))

(4)

pCi (S) = qCi (S) + ci (5)

πC
i (S) = (qCi (S))

2 (6)

where S = N and the capital C denotes the Cournot competition.

1.3 BERTRAND COMPETITION:

For each j ∈ N , let δj = 1, and Aj = A. In the Bertrand model, firms compete through
prices rather than quantities. Hence, they take the optimum price levels of other firms as
given and maximize their profits. To create our optimization problem, we first solve (2) for
quantities and get the unrevised demand functions as

qi = an − bnpi + dn

n∑

j �=i

pj (7)

where an = A
1+θ(n−1)

, bn = 1+θ(n−2)
[1−θ][1+θ(n−1)]

, and dn = θ
[1−θ][1+θ(n−1)]

.
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Note that eq.(7) may result in some negative quantities for some firms which is an in-
feasibility. Accordingly, we first propose the following iteration algorithm to get the revised
demand functional forms.

Iteration Algorithm 0: Let Xi = {1, 2, ..., i}. Take a price vector p = (p1, p2, ..., pn).
WLOG, assume that p1 ≤ p2 ≤ ... ≤ pn.

STEP 0: For all i ∈ Xn, if pi ≤ an+dn
∑

j∈Xn
pj

bn
then qi = an − bnpi + dn

∑
j∈Xn

pj. Oth-

erwise, proceed to the next step 2 .

STEP 1: For all i ∈ Xn−1, if pi ≤ an−1+dn−1
∑

j∈Xn−1
pj

bn−1
, then qi = an−1 − bn−1pi +

dn−1

∑
j∈Xn−1

pj and qn = 0. Otherwise, proceed to the next step.

STEP 2: For all i ∈ Xn−2, if pi ≤ an−2+dn−2
∑

j∈Xn−2
pj

bn−2
, then qi = an−2 − bn−2pi +

dn−2

∑
j∈Xn−2

pj and for all l ∈ N \Xn−2, ql = 0. Otherwise, proceed to the next step.

Since the number of firms is finite, this algorithm stops at a step k. The demand function
that each firm receives can be stated as:

∀i ∈ Xn−k, qi = an−k − bn−kpi + dn−k

∑
j∈Xn−k

pj
∀l ∈ N \Xn−k, ql = 0

(8)

Next, we write down the objective function that a firm faces as

max
pi

πi = max
pi

(an − bnpi + dn
∑

j �=i

pj)(pi − ci) (9)

By taking the derivative with respect to pi and equating it to zero, we get the best
response function of firm i as:

BRi(p−i) = p∗i =
an + dn

∑
X\i pj + bnci

2bn
(10)

where p−i = (p1, p2, ..., pi−1, pi−1, ..., pn) is the price vector that does not contain the ith

dimension. If the induced quantities from the above optimization problem turn out to be
positive, then equilibrium price, quantity and profit levels are respectively given by:

pBi =
an(2bn + dn) + bn(2bn − dn(n− 1))ci + bndnct

(2bn + dn)(2bn − dn(n− 1))
(11)

2Using eq.(7), for all i ∈ Xn, qi ≥ 0 if and only if pi ≤ an+dn

∑
j∈Xn

pj

bn
. The inequalities in the other steps

are found similarly by playing around the set X.
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qBi = bn(p
B
i − ci) (12)

πB
i =

(qBi )
2

bn
= bn(p

B
i − ci)

2 (13)

2 EXTENDED MODELS

2.1 Extended Cournot Game with Potential Entrants

In this section, we study quantity setting games such that the induced quantities from the
optimization problem given in eq(9) is negative for some firms. This might be partially re-
lated to low market demand conditions, cost disadvantages, or incapability of differentiating
their products from others. Therefore, we have to impose non-negativity of production con-
straints. We first propose the following iteration algorithm in order to determine the critical
set N∗ to state our characterization theorem.

Iteration Algorithm 1

STEP 1: Let all firms play the Cournot game. If all equilibrium quantities are positive,
then N∗ = N . If not, denote the firms producing positive quantities by the N1 and proceed
to the next step.

STEP 2: Let firms in N1 play the Cournot game. If all equilibrium quantities are posi-
tive, then N∗ = N1. If not, denote the firms producing positive quantities by the set N2 and
proceed to the next step.

STEP 3: Let firms in N2 play the Cournot game. If all equilibrium quantities are posi-
tive, then N∗ = N2. If not, denote the ones producing positive quantities by the set N3 and
proceed to the next step.

Since the number of firms is finite, the set N∗ will be determined at most n − 1 steps.
Note that this iteration algorithm divide our initial finite number of firms into two: 1-)
Incumbent firms, e.g, firms in N∗ 2-) No-threat potential entrant firms, e.g, firms in N \N∗.
Let N∗ be found by Iteration Algorithm 1. We next state our characterization theorem

Theorem 1 (Characterization): In the unique equilibrium, for each i ∈ N∗, the
production and price vectors of firm i are given by eqs.(4) and (5) respectively, which are
calculated at S = N∗. The remaining firms produce zero.
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Proof: Please see a proof of Theorem 1 in the Appendix.

The bottom line is that a firm is likely to be eliminated through Iteration Algorithm 1 if
it faces a low demand, is incapable of differentiating its products from others, and produces
at high cost level. Therefore, these three conditions are the main determinants of market
entry incentives of firms. Moreover, the existence of no threat potential entrant firms do not
have an effect on the quantity decisions of the incumbent firms.

Applications of Theorem 1:

In this section, we study the applications of Theorem 1 by giving some examples.

Example 2: Let N = {1, 2, 3}, (c1, c2, c3) = (8, 9, 9.5), and θ = 1. The market demand
is given by pi = 10− qi− q−i. The best responses can be calculated as BR1(q2, q3) =

2−q2−q3
2

,

BR2(q1, q3) = 1−q1−q3
2

, and BR3(q1, q2) = 0.5−q1−q2
2

. For each i ∈ {1, 2, 3}, let the un-
revised best response graphs be GR(BRi) = {q ∈ R

3 : qi = BRi(q−i)}. These unre-
fined best response graphs intersect at q = (9/8, 1/8,−3/8). Iteration Algorithm 1 gives
N∗ = {1}. Note that monopoly output of firm 1 is one. Hence, Theorem 1 assures that
q� = (q∗1, q

∗
2, q

∗
3) = (1, 0, 0) is the unique Nash equilibrium of this game. Indeed, in Figure

2, we refine the best response graphs as follows: When firm 2 and firm 3 produce more
than two in total, it is optimal for firm 1 to not produce. Therefore, firm 1’s best response
function becomes the q2 − q3 plane. Similarly, we refine the best response graphs of firms 2
and 3. Note that the refined best response functions graphs meet at a unique equilibrium
point N = (1, 0, 0), as desired.

Example 3: In the above example, we change the marginal cost vector from (c1, c2, c3) =
(8, 9, 9.5) to (c1, c2, c3) = (8, 8.5, 9.2) keeping everything else the same. The reader can easily
verify that the unrefined best response graphs intersect at N ′ = (3.7

4
, 1.7

4
, −1.1

4
) as seen in

Figure 3. Iteration Algorithm 1 gives N∗ = {1, 2} . When firm 1 and firm 2 play the game,
their best response graphs intersect at the positive quadrant of the q1 − q2 plane, i.e. at
N = (2.5

3
, 1
3
). Observe that when we project point N ′ onto the q1 − q2 plane (not necessarily

a perpendicular projection), we get point N . By Theorem 1, point N is the unique Nash
equilibrium of this game. In addition, this point lies at the unique intersection of the refined
best response planes of the firms, as desired.

2.2 Extended Bertrand Game with Potential Entrants

Similar to the Cournot analysis, we study the type of games in such when all firms play the
Bertrand strategies, some of them are supposed to produce negative quantities, which is not
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feasible. Therefore non-negativity of production constraints should be imposed. We mainly
focus on undominated equilibria. In each of the second type of equilibria, the most efficient
n∗ number of firms play the Bertrand game, where n∗ is the maximum number that leads
to a nonnegative production for the least efficient firm among these n∗ firms. Unlike the
Cournot case, if n∗ ≥ 2, there might be multiple equilibria among which an incumbent firm
charge different prices.

Undominated Equilibria:

Let the most efficient n∗ number of firms play the Bertrand game where n∗ is the maxi-
mum number that leads to a nonnegative production for the least efficient firm among these
n∗ firms. We find this n∗ through an iteration algorithm written for Bertrand game as follows:

Iteration Algorithm 2

STEP 1: Let all n firms play the Bertrand game. If all equilibrium prices lead to non-
negative production, then n∗ = n. If not, proceed to the next step.

STEP 2: Let the most efficient n − 1 firms play the Bertrand game. If all equilibrium
prices of firms lead to nonnegative production, then n∗ = n− 1. If not, proceed to the next
step.

STEP 3: Let the most efficient n − 2 firms play the Bertrand game. If all equilibrium
prices of firms lead to nonnegative production, then n∗ = n− 2. If not, proceed to the next
step.

Since the number of firms is finite, n∗ will be determined by at most n − 1 steps. In
particular, there exists a step k such that the most efficient n−k+1 firms play the Bertrand
game and all equilibrium prices of firms lead to nonnegative productions, i.e, n∗ = n−k+1.
Interestingly, with this algorithm, we can identify three types of potential entrants: 1-) High
threat ones, 2-) Low threat ones, and 3-) No-threat ones. Low threat potential entrant firms
cannot enter into the market due to entry barriers, yet they have an influence on the pricing
decision of the incumbent firms.

Next, consider a problem and let the above algorithm gives n = n∗. LetX = {1, 2, ..., n∗}.
We define two critical marginal cost levels for firm n∗ + 1. Let c̄ be the marginal cost level
such that if firm n∗ + 1’s marginal cost level were c̄ (ceteris paribus), it would have pro-
duced exactly zero as a result of the Bertrand game played among the most efficient n∗ + 1
firms. On the other hand, Rn∗+1 denotes the residual demand left to firm n∗ + 1 following
the Bertrand game played among the most efficient n∗ firms. Formally, these levels can be
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written as 3

c̄ =
A(1−θ)(2+θ(2n∗−1))+θ(1+θ(n∗−1))c∗T

2+θ(−3+θ+n∗(3+θ(n∗−3)))

Rn∗+1 =
A(1−θ)(2+θ(2n∗−3))+θ(1+θ(n∗−2))c∗T

(1+θ(n∗−1))(2+θ(n∗−3))

(14)

where c∗T =
∑

i∈X ci.

Let p and p′ denote any arbitrary n∗ and n∗ + 1 dimensional price vectors respectively,
i.e, p = (p1, p2, ..., pn∗) and p′ = (p1, p2, ..., pn∗+1). Next, define simplexes as �n∗−1= {p ∈
R

n∗
+ :

∑
j∈X pj =

bn∗+1cn∗+1−an∗+1

dn∗+1
}, where the superscript n∗ − 1 shows the dimension of the

simplex. Take any i ∈ X. Let BR�
i (.) denote the best response of firm i to other firms’

prices in the n∗ − poly market formed by the most efficient n∗ firms. Similarly, let BR��
i (.)

denote the best response of firm i to other firms’ prices in the (n∗+1)− poly market formed
by the most efficient n∗ + 1 firms. Formally, using eq.(10), these best response functions of
firm i are respectively given by

BR�
i : R

n∗−1
++ → R++ s.t. BR�

i (p−i) =
an∗+dn∗

∑
X\i pj+bn∗ci

2bn∗

BR��
i : Rn∗

++ → R++ s.t. BR��
i (p′

−i) =
an∗+1+dn∗+1(

∑
X\i pj+pn∗+1)+bn∗+1ci

2bn∗+1

where p−i = (p1, ..., pi−1, pi+1, ..., pn∗) and p′
−i = (p1, ..., pi−1, pi+1, ..., pn∗+1). Now define the

unprojected and projected best response graphs as Gru(BR�
i ) = {p ∈ R

n∗
+ : pi = BR�

i (p−i)}
and Grproj(BR��

i ) = {p ∈ R
n∗
+ : pi = BR��

i (p−i, pn∗+1 = cn∗+1)}, where in the latter
we first constraint firm i’s best response curve by letting pn∗+1 = cn∗+1, then project the
resulting constrained set into n∗ dimensional space. Now, take any x ∈�n∗−1 ∩Gru(BR�

i ) and
y ∈�n∗−1 ∩Grproj(BR��

i ). The ith dimension of the price vectors x and y are independent
of the price vectors of firms in X \ {i} and calculated as

xi = p�i =
(bn∗+dn∗ )cn∗+1+bn∗ci

2bn∗+dn∗

yi = p��i =
(bn∗+1+dn∗+1)cn∗+1+bn∗+1ci

2bn∗+1+dn∗+1

(15)

In the Appendix, we prove that for each i ∈ X, p�i > p��i
4.

Proposition 1: Let θ ∈ (0, 1) and pmi = A+ci
2

be the monopoly price charged by firm i.

3These equations are derived in the proof of Proposition 1.
4For a geometrical configuration of these points in two dimensions, please visit Figures 6 and 7, which

are drawn for Example 6.
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a- If cn∗+1 ≥ Rn∗+1, then the following pricing strategies form iterated Bertrand-Nash
equilibria:

∀i ∈ X, p∗i =
an∗ (2bn∗+dn∗ )+bn∗ (2bn∗−dn∗ (n∗−1))ci+bn∗dn∗c∗T

(2bn∗+dn∗ )(2bn∗−dn∗ (n∗−1))

∀j ∈ N \X, p∗j ∈ [cj, p
m
j ]

(16)

At each equilibrium, the equilibrium production levels of firms are given by

∀i ∈ X, q∗i = bn∗(p∗i − ci)
∀j ∈ N \X, q∗j = 0

(17)

b- If cn∗+1 < Rn∗+1, then firms in X charge prices of the form E = {p∗ ∈ R
n∗
+ : p��i ≤ p∗i ≤

p�i and
∑

i∈X p∗i =
bn∗+1cn∗+1−an∗+1

dn∗+1
}, where p�i and p��i are defined in eq(15). Along this equi-

librium path, p∗n∗+1 = cn∗+1, q
∗
n∗+1 = 0; and ∀j ∈ N \{X∪{n∗+1}}, p∗j ∈ [cj, p

m
j ] and q∗j = 0.

Proof: Please see a proof of Proposition 1 in the Appendix.

Next, we state our characterization theorem for the Bertrand case.

Theorem 2 (Characterization): The equilibria stated in Proposition 1 are the only
undominated Bertrand-Nash equilibria of the game.

Proof: Please see a proof of Theorem 2 in the Appendix.

Applications of Proposition 1 and Theorem 2

We discuss the results of Proposition 1 and Theorem 2 in three examples. We stress that
we need at least three firms in order to come up with an example of game with multiple
equilibria among which incumbent firms have different pricing strategies.

Example 4: Let N = {1, 2} and c = (9, 14.1). The market demand is given by pi =
16 − qi − 0.5q−i. We let both firms play the Bertrand game and the interaction of the
unrefined best response functions gives a price vector of p∗ = (12.01, 14.05). Note that
the inefficient firm, i.e. firm 2, charges a price lower than his marginal cost. Given these
prices, the production vector q = (4.02,−0.06) is contradicting the nonnegativity constraint.
Thus, p∗ is not the equilibrium price vector. We let then firm 1 be the monopoly firm. It
consequently charges the monopoly price of pm1 = 12.5 and produces qm1 = 3.5. Given this
monopoly production, the demand left to firm 2 is A − θqm1 = 14.25. However, firm 2 can
make a profit by charging a price of p2 ∈ (14.1, 14.25). That is, firm 1 cannot be a monopoly
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firm in an equilibrium by charging the monopoly price of 12.5 either. Similarly, firm 2 cannot
be a monopoly firm.

We claim that p = (12.2, 14.1) constitutes the unique undominated equilibrium of this
game5.

i-)Existence: First note that when q2 = 0, p1 = 12.2 given by eq.(7). Firm 1 does not
have an incentive to decrease its price level from 12.2, which would cause him to exercise
less monopoly power trivially. Now consider the effect of increasing its price level slightly
from p1 = 12.2 to p̃. The potential entrant, i.e. firm 2, enters into the market and starts
to produce. Given p2 = c2 = 14.1, the duopoly best response of firm 1 is a point given by
p1 = 12.025. However, the original price level 12.2 is closer to 12.025 than p̃ proving that
firm 1 loses. Thus, p = (12.2, 14.1) is an equilibrium point6.

ii-)Uniqueness: In Figure 4, the unrevised best response functions of firms 1 and 2 are
BU

1 (p2) = 8.5 + p2/4 and BU
2 (p1) = 11.05 + p1/4 respectively. The related graphs of these

functions are Gr(BU
1 ) = {p ∈ R

2 : p1 = BU
1 (p2)} and Gr(BU

2 ) = {p ∈ R
2 : p2 = BU

2 (p1)},
which are shown by rays ]CE[ and ]EG[ respectively. They intersect at E, which is associated
with the infeasible production vector q = (4.02,−0.06) . Accordingly, we draw the revised
best response graphs of firms one and two, i.e. Gr(BR1) and Gr(BR2), which are shown by
blue and red lines respectively. W.L.O.G., consider firm two. Gr(BRU

2 ) intersect with c2 at
N = (12.2, 14, 1). Thus, if p1 ≤ 12.2, it is optimal for firm two to not produce. Note that
charging any price weakly above seg[AN ] results in zero production for firm two by iteration
algorithm 0. Moreover, if firm one charges a price higher or equal the total demand, e.g, A,
firm two will be the monopoly firm and her best response is to charge the monopoly price.
Similarly, we revise the best response function of firm one. In sum, both best responses meet
at a unique undominated Nash equilibrium outcome given by N = (12.2, 14, 1). Seg[DN)
constitutes the weakly dominated equilibria of the game.

The bottom line is that there might be a threat of potential entrant firm and this threat
changes the equilibrium pricing strategy of the incumbent firm. This observation gives
additional evidence for why the Bertrand game is more competitive than the Cournot game.
Firm 1 can only keep firm 2 out of the market by charging a smaller price than the monopoly
price of 12.5. However, if we had considered a Cournot game set-up in which the inefficient
firm is supposed to produce negatively, it would have always been optimal for this inefficient
firm to be a potential entrant when the efficient firm produces the monopoly output as in
Example 1.

To show the possibility of multiple undominated equilibria in a two-firm setup, we change
c2 from 14.1 to 15 in the above example. In Figure 5, we draw the revised best response
functions of firms 1 and 2 in a similar fashion as above. Observe that we have multiple

5I am very grateful to Gábor Virág for pointing out this equilibrium in this game.
6Note that, this equilibrium point can itself be interpreted in two ways. First, firm 1 is a monopoly

and charges a price of 12.2 and produces 3.8. Second, firm 1 and firm 2 is a duopoly and they charge
p = (12.2, 14.1). The related production vector is q = (3.8, 0).
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undominated equilibria in which firm 1 charges a monopoly price of pM1 = 12.5 and firm
2 charges any price within [c2, p

M
2 ] = [15, 15.5]. However, firm 2 does not produce in each

equilibrium.
Example 5-Multiple Equilibria with Three Firms: Let N = {1, 2, 3} and c =

(9, 14.8, 14.9). The market demand is given by pi = 17 − qi − 0.5q−i. We let firms play the
Bertrand game and find q∗ = (0.11,−0.09,−0.18), which is not feasible. Iteration algorithm 2
gives n∗ = 1. We let then firm 1 be the monopoly firm. Accordingly, it charges the monopoly
price of pm1 = 13 and produces qm1 = 4. However, R2 = R3 = A − θqm1 = 15 > max{c2, c3}.
Therefore, they both have an incentive to deviate. In order to eliminate a possible deviation
by firm 2, i.e. q2 = 0 and p2 = 14.8, firm 1 should decrease its unconstrained monopoly
price to p∗ = b2c2−a2

d2
= 12.6 coming from eq.(7). A similar argument shows that if p1 ≤ 12.8,

firm 3 does not produce. Clearly, when p1 ≤ 12.6, firm 1 is still the monopoly firm and
does not want decrease his production level because it wants to be as close as possible to the
monopoly optimum price of 13. Now given p2 = 14.8, consider firm 1 increasing his price
level up to p̃. If p̃ ∈ (12.6, 12.8], then only firm 2 starts to produce. Given p2 = 14.8, in a
duopoly market formed by firms 1 and 2, firm 1 optimally charges a price of 12.45 found by
using eq(10). Thus, since 12.6 is more closer to 12.45 than p̃, this deviation is not profitable
for firm 1. If p̃ > 12.8, then both firms 2 and 3 start to produce. Having in mind that
p2 = 14.8 and p2 = 14.9, the optimal price of firm 1 is now 12.28 in the triopoly market.
Hence, firm 1 is again worse off. Altogether, firm 1 charges p1 = 12.6 and produces q1 = 3.6
in the monopoly equilibrium.

Example 6-Multiple Equilibria with Three Firms: We change the marginal cost
vector from c = (9, 14.8, 14.9) to c = (14, 16, 16.1) in the above example. We let firms
play the Bertrand game and find q∗ = (1.78, 0.07,−0.02), which is not feasible. Iteration
algorithm 2 gives n∗ = 2. In the absence of firm 3, using eqs.(12), and (11), the duopoly
equilibrium price and quantity levels are pd = (pd1, p

d
2) = (15.27, 16.07) (Point O in Figure 6)

and qd = (qd1 , q
d
2) = (1.69, 0.09) respectively. However, R3 = A− θ(qd1 + qd2) = 16.11 > c3. In

order to prevent a possible deviation by firm 3, R3 should be less than or equal to 16.1. Using
eq.(7), q3 = 0 simplifies to p1 + p2 = b3c3−a3

d3
= 31.3, which is denoted by the simplex �1 in

Figure 6. Note that charging a total price lower or equal to 31.3 by firms 1 and 2 assures that
firm 3 is not in the market. Given p3 = c3 = 16, for each i ∈ {1, 2}, we draw unprojected and
projected best response graphs of firms 1 and 2, i.e. GrU(BR�

i ) and Grproj(BR��
i ), in duopoly

and triopoly markets denoted by straight and dotted lines respectively. It is important to
note that the dotted and straight lines are respectively only valid on the above and below of
the green line. The coordinates of the critical points are: A = (14, 17.3), B = (15.2, 16.1),
C = (15.24, 16.06), D = (15.242, 16.05), E = (15.26, 16.04), and F = (15.3, 16). We also
have the individual rationality constraints stating that pd1 ≥ c1 and pd2 ≥ c2

7.

7A price lower than marginal cost can only be supported by a zero production level.
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Claim: We claim that any price combination on the line segment seg[CD] shown in
Figure 6 are the only undominated equilibrium.

i-)Existence(Figure 6): Each price combination in seg(AF ) is a candidate for un-
dominated equilibrium. seg(AF ) is a border for firm 3’s production and if either firm 1 or 2
charges a slightly higher price on this segment, firm 3 starts to produce and projected best
response graphs become valid. Whereas the vertical arrows represent the directions of the
possible deviations by firm 2, horizontal arrows show firm 1’s possible deviations. For ex-
ample, on seg(EF ], given other firms’ prices, firm 2 has an incentive to deviate to a slightly
higher price from p2 to p2+ ε with ε > 0, because firm 3 starts to produce after this increase
and the projected best response set of firm 2, i.e, Grproj(BR��

2 ), becomes valid. However,
p2 + ε is more close to Grproj(BR��

2 ) than p2 showing that firm 2 gains. Note that, there is
no profitable deviation by firm 1 or firm 2 on line segment seg[CD], where the feasibility
(Green line) and firm rationality constraints (Yellow lines) are also satisfied. Hence all price
combinations of firms 1 and 2 on the segment seg[CD] constitute an undominated Bertrand-
Nash equilibrium. As a check, for each p̂ ∈ seg[CD], for each i ∈ {1, 2}, p��i ≤ p̂i ≤ p�i and∑

i∈1,2 p̂i = 31.3 as claimed in part b of Proposition 1. Note that along this equilibrium path,
firm 3 charges his marginal cost level, i.e. p3 = 16.1, and produces nothing.

ii-)Characterization(Figure 7): To see the equilibria stated above are the only un-
dominated equilibria, consider a duopoly market formation by firms 1 and 3 playing the game.
The graphs of the best response functions are drawn in a similar way to Figure 6. The criti-
cal points are A = (14.95, 16.5),B = (14.96, 16.04),C = (15.14, 15.85), and D = (15.2, 15.8).
When firms one and three play the game, the duopoly price vector is at the intersection
of unprojected two firm best response graphs, i.e. GRu(BR�

i )
′s, and is given by O but the

demand left to firm 2 is greater than c2. In order to eliminate entry incentives of firm 2,
incumbent firms decrease their total prices to 31. Let �1 = {p ∈ R

2 : p1 + p3 = 31}. But,
arrows show that given other firms’ prices, for every price combination on Δ1, either firm
1 or firm 3 deviates to decrease or increase their price levels. Accordingly, their is not any
equilibrium in a game played among the most and least cost efficient firms. As a check, there
is no price vector p̂ on �1 such that for each i ∈ {1, 3}, p��i ≤ p̂i ≤ p�i and

∑
i∈1,3 p̂i = 31

as claimed in Theorem 2. Similarly, firm 2 and 3 cannot be duopoly firms in equilibrium
because firm 1 does not produce only if p1+p3 ≤ 25, which is not feasible. Moreover, neither
firm 2 nor firm 3 can be monopoly firms, because that would require them to charge a price
lower than their marginal costs, i.e p = 11, to guarantee zero production by firm 1. Lastly,
consider the case where firm 1 is a monopoly. If p1 ≤ 15, firm 2 stays out as a potential
entrant. Also, the optimal monopoly price of firm 1 is pm1 = 15.5. Thus, a decrease from a
price level of 15 is not beneficial for firm 1. However, as he increases his price level slightly,
firm 2 enters into the market, and given p2 = 16, firm 1 optimally sets p◦ = 15.25. Thus,
there is a room for deviation.
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3 An Application to Mergers

In this subsection, we apply the presented entry-exit model to a merger setting. Our main
motivation is identify the effects of mergers on the incentives of the potential entrant firms
to enter into the market. In that regard, we adapt the heterogeneous cost model studied by
Cumbul(2011).

3.1 Notations and Assumptions

Let N = {1, 2..., n} be the finite set of firms and k ∈ [1, n] of them exogenously merge. Let
N = I ∪ O, where I and O denote the sets of insiders and outsiders respectively. For each
j ∈ N , let δj = 1, and Aj = A. Each firm i produces a different product at a marginal cost
of ci. Let firm e be the most cost efficient insider with a marginal cost level of ce. We still
assume that there is a representative consumer, who gets the exact utility given in eq(1) and
therefore each firm i faces the linear demand given in eq(2). We next make the following
assumptions:

Assumption 1: Firms have full information and there are not any fixed costs and ca-
pacity constraints.

Assumption 2: A merger occurs if and only if it is profitable.

Assumption 3: There is rationalization of production and mergers bring full cost syn-
ergies. All insiders’ post merger marginal cost level becomes ce.

We next solve the Cournot and Bertrand models under these assumptions. Assume A1,
A2, and A3 hold.

3.1.1 Cournot Model

Since each insider’s marginal cost level becomes ce following their merger, their optimization
problem becomes symmetric. Therefore, for each insider firm i ∈ I, equilibrium quantity,
price, and profit levels are

q =

A(2− θ)− ce(2 + θ(n− k − 1)) + θ
∑

O

ci

w
(18)

p = (1 + θ(k − 1))q + ce (19)

π = (1 + θ(k − 1))q2 (20)
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where w = 4 + 2θ(n+ k − 3) + θ2(2− k2 + n(k − 2)).

For each outsider firm j ∈ O such that O �= ∅, equilibrium quantity, price, and profits
levels are

xj = U − cj
2− θ

(21)

rj = xj + cj (22)

ρj = xj
2 (23)

where U =
A(2−θ)+θ

∑
O ci−θ(2−θ)kq

(2−θ)(2+θ(n−k−1)))
.

3.1.2 Bertrand Model

For each insider firm i ∈ I, equilibrium quantity, price, and profits levels are

p =
a(2b+d)+(b−d(k−1))(2b−d(n−k−1))ce+bd

∑
O cj

2(b−d(k−1))(2b−d(n−k−1))−d2(n−k)k
(24)

q = (b− d(k − 1))(p− ce) (25)

π = (b− d(k − 1))(p− ce)
2 (26)

For each outsider firm j ∈ O such that O �= ∅, equilibrium quantity, price, and profits
levels are

rj = V +
bcj

2b+ d
(27)

xj = b(rj − cj) (28)

ρj = b(rj − cj)
2 (29)

where V =
(2b+d)(a+dkp)+bd

∑
O cj

(2b+d)(2b−d(n−k−1))
.

To be continued..
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SECTION 4: AXIOMATIC APPROACH:

Converting the Model into the Axiomatic Framework:

We mainly follow the notations of Thomson (1998). There is an infinite set of “potential”
firms indexed by the natural numbers N. Each group of firms N is drawn from the family
N of non-empty finite subsets of N. Let the set of all possible demand functional forms be
P .

An economy is a five-tuple ξ = (N,A,Θ, c, p) ∈ N ×RN
+ ×RN(N−1)/2 ×RN

+ ×PN where
N is the number of firms, A = (Ai)i∈N is the demand parameter vector, Θ = (Θij)i,j∈N,i<j

and Θij is the degree of substitutability between firms i and j’s products, c = (ci)i∈N is the
marginal cost vector; and p = (pi)i∈N is the demand vector. Each firm in an economy is
supposed to determine how much to produce8. Let ζN denotes the set of all possible problems.
Let ζNL be the domain of problems where each firm’s demand is linear as stated in eq.(2);
each has a constant marginal cost; and for each i, j ∈ N , we fix Ai = A and Θi,j = θ where
θ ∈ [0, 1]. A feasible allocation for ξ = (N,A,Θ, c, p) ∈ ζNL is a vector z = (zi)i∈N ∈ RN

+ such

that 0 ≤ ∑N
i=1 zi ≤ A

θ
if θ ∈ (0, 1] and 0 ≤ zi ≤ A if θ = 0. Let Z(ξ) be the set of feasible

allocations of ξ. A solution is a function ϕ : ζNL → RN
+ which associates with each N ∈ N

and for each ξ ∈ ζNL , ϕ(ξ) ∈ Z(ξ). For each i ∈ N , let πi : N ×R+ × (0, 1) ×RN
+ → R++

such that πi = πi(N,A, θ, c) be the profit function that each firm receives. For all i ∈ N , let
Ri be the following binary relation; ∀ξ ∈ ζNL , ∀x, y ∈ Z(ξ), x Ri y iff πi(x) ≥ πi(y).

Next, we define consistency, population monotonicity, and converse consistency to our
model.

CONSISTENCY:

Consistency requires that each remaining firm get his original component of x as a so-
lution to the reduced economy. Let N ∈ N and consider a problem ξ such that N could
face. Let x ∈ ϕ(ξ). Now, consider some of the firms leaving with their components of x. If
N ′ is the subgroup of remaining firms, we denote rxN ′(ξ) as the set of alternatives where the
firms who leave receive their components of x and refer to it as the reduced problem of ξ
with respect to N ′ and x. Note that in the reduced economy, the residual demand that each
remaining firm receives is given by A− θ

∑
N\N ′ xi.

Consistency: For all groups N ∈ N , all problems ξ ∈ ζNL , all subgroups N ′ ⊂ N , all
x ∈ ϕ(ξ), if the reduced problem of ξ with respect to N ′ and x, obtained from ξ by assigning
to all agents in N \N ′ their components of x, belongs to ζN

′
L , then xN ′ ∈ ϕ(rxN ′(ξ)).

8Firms may compete on prices first and found optimal quantities accordingly as in the Bertrand game.
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POPULATION MONOTONICITY:

Population monotonicity postulates that as the number of firms increases in an economy,
the welfare of already existing firms decreases or vice versa. There are mainly two effects of
increasing the number of firms in an economy. It might be the case the newcomers are so ef-
ficient that the number of firms that are actually participating in the game strictly decreases
in the end. We call the change in the number of agents in the economy as the competition
effect. Although a decrease in the number of agents is beneficial for the initial firms that are
still in the game, it also has a cost. The overall efficiency in the market increases. We denote
the second effect as the efficiency effect. The final effect depends on which effect dominates
the other one.

Let N ∈ N and consider a problem ξ such that N could face. Let N ′ ⊆ N . The reduced
economy ξ with respect to N ′ is defined as rN ′(ξ) = (N ′,A |N ′ ,Θ |N ′ , c |N ′ , p |N ′).

Population Monotonicity: A rule ϕ is population monotonic iff for each ξ = (N,A,Θ, c, p) ∈
Z(ξ), each N ′ ⊆ N ;

∀i ∈ N ′ : ϕi(rN ′(ξ)) Ri ϕi(ξ)

CONVERSE CONSISTENCY:

This property deduces that an alternative x is chosen for some problem by the solution if
its restriction to each two-firm subgroup is chosen for the reduced problem associated with
the subgroup and x. Formally,

Converse Consistency: A rule ϕ is conversely consistent iff for each ξ = (N,A,Θ, c, p) ∈
Z(ξ), each x ∈ Z(ξ);

[∀N ′ ∈ N, |N ′| = 2, ∀i ∈ N ′ : ϕi(r
x
N ′(ξ)) = xi] ⇒ x = ϕ(ξ)

Let ξ ∈ ζNL . We define two rules for this problem. W.O.L.G., we order the firms from
the most cost efficient to the least cost efficient as usual. Let N ∈ N and the critical values
n∗ and n∗∗ is found by the iteration algorithms 1 and 3 respectively.

Cournot Rule(ϕ = CN): This rule assigns production levels stated in eq.(4) to the
most efficient n∗ firms and 0 to the remaining firms. Iteration algorithm 1 guarantees the
feasibility of this allocation. We stress that because the Cournot solution is single valued by
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Theorem 1, it is indeed a rule.

Bertrand Rule(ϕ = BN): Let θ ∈ (0, 1). If n∗∗ ≥ 1 and cn∗∗+1 ≥ Rn∗∗+1, then this
rule assigns production levels stated in eq.(12) to the most efficient n∗∗ firms and 0 to the
remaining firms where Rn∗∗+1 is stated in eq.(39). Moreover, if n∗∗ = 1 and cn∗∗+1 ≤ Rn∗∗+1,

firm 1’s production is given by q1 =
a2(b2+d2)−c2(b22−d22)

d
whereas the remaining firms produce

nothing. Iteration algorithm 2 guarantees the feasibility of this allocation 9.

PROPOSITION 2: Let ξ ∈ ζNL . The Cournot rule is population monotonic, consistent,
and conversely consistent.

Proof: Please see a proof of Proposition 3 in the Appendix.

PROPOSITION 3: The Bertrand rule is not consistent.

Proof: We prove it by giving a counter example. In example 4, we have shown that
the Bertrand rule assigns a quantity vector of q = (3.8, 0), which is associated with the
price vector of p = (12.2, 14.1) . However, if firm 2 goes away with his production, which is
zero, the Bertrand rule assigns firm 1 to produce 3.5 and charge the monopoly price of 12.5.
Observe that this production level and the initial level differ by an amount of 0.3, which
creates inconsistency. �

GENERALIZATIONS

We discuss possible generalizations on the cost and demand structures of the models.
(To be added...)

9By Proposition 2, when n∗∗ ≥ 2 and cn∗∗+1 < Rn∗∗+1, the Bertrand Solution is multi-valued. In that
regard, we restrict the domain of problems to define the Bertrand rule.
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CONCLUSION:

In this paper, we developed a simple entry-exit model in which relative cost levels of
the firms are the main determinants of who is producing in the market. In that regard, we
studied the oligopoly models of Cournot and Bertrand in the case where some firms may
have so high costs that they may stay out of the market. We considered a general model
with product differentiation, and constant, but different marginal costs across firms. In the
Cournot model, a unique equilibrium can be found by an iteration algorithm.

On the other hand, when firms engage in price competition, we developed a similar
algorithm that stops at some critical level n∗ like above. However, when n∗ ≥ 2 and we have
at least n∗+1 firms, we showed that there may be multiple equilibria in which firms from 1 to
n∗ charges different prices at each equilibrium. These equilibria are sustained simply because
if firm n∗ +1 is just indifferent between entering or not, the profit functions of participating
firms have kinks. Therefore, the first order conditions can be written as inequalities, which
admit several solutions. In essence, these multiplicity of equilibria issues arise because price
competition games are more competitive than quantity competition games. Hence, efficient
incumbent firms may not simply ignore potential entrant firms and accordingly these firms
altogether lower their prices just to keep the most efficient potential entrant firm out of the
market. This result is very different from the existing literature on Bertrand models, where
uniqueness usually holds under a linear market demand assumption.

In the last section, we converted our model into an axiomatic framework and showed that
whereas Cournot rule is consistent, Bertrand rule is not. The main reason behind this result
is that the existence of potential entrant firms might be effective in determining equilibrium
outcomes as noted above. Moreover, we also see that Cournot rule satisfies population
monotonicity and converse consistency.
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APPENDIX:

Proof of Theorem 1: Consider a problem ξ = (N, θ, (Ai)i∈N , (δi)i∈N , (ci)i∈N). Let
N = {1, 2, ..., n} and N∗ be found by Iteration Algorithm 1. Let U = N \ N∗. For each
nonempty S ⊆ N , let α(S) =

∑
k∈S λkγ−k(S) and β(S) = γ(S) +

∑
k∈S θγ−k(S) where

γ(S) =
∏

l∈S (2δl − θ) and for each j ∈ N , γ−j(S) =
∏S

l �=j (2δl − θ).

a-) Existence: Consider any firm k ∈ U with marginal cost ck = c∗k. Let c̄ be the
(hypothetical) marginal cost level such that qk(N

∗ ∪ k) = 0 if ck = c̄, ceteris paribus 10. By
Iteration Algorithm 1, c∗k > c̄. To calculate c̄, letting qk(N

∗ ∪ k) = 0 and ck = c̄ in eq.(4)
and simplifying the resulting equation yields

c̄ =
β(N∗)Ak − α(N∗)θ

β(N∗)
(30)

Now consider the game played among firms in N∗. Their total production is found by
summing across outputs given in eq(4) as

∑

i∈N∗
qi(N

∗) =
α(N∗)
β(N∗)

(31)

Finally, using eq(4), it can be shown that the residual demand left firm k, i.e. Rk, is
equal to c̄ as follows:

Rk = Ak − θ
∑

i∈N∗
qi(N

∗) = c̄ (32)

Since c̄ < c∗k, in order for firm k to produce a positive quantity, it needs to charge a price
lower than his marginal cost level, which is an impossibility. Hence, equilibrium conditions
are met. �

b-) Uniqueness:
Take any two firms i and j with marginal costs c∗i and c∗j such that i ∈ N∗ but j ∈ U . By

Iteration Algorithm 1, qj(N
∗ ∪ j) ≤ 0 according to unrevised best response graphs. Using

eq.(4), this condition simplifies to

λj

θ
≤ α(N∗)

β(N∗)
(33)

10Depending on the parameters of the problem, c̄ might be negative.
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By Iteration Algorithm 1, qi(N
∗) > 0. Moreover, by using eq.(4) again, qi(N

∗ ∪ j) =
(2δi − θ)qi(N

∗) > 0. Hence, qi(N
∗ ∪ j) > qj(N

∗ ∪ j), which simplifies as

λi(2δj − θ)− λj(2δi − θ)

2θ(δj − δi)
>

α(N∗)
β(N∗)

(34)

Suppose to show a contradiction there exists an equilibrium in which firm j is in it but
firm i is not. Denote the set of firms forming this equilibrium by Z. The same arguments in
the existence proof shows that the demand left to firm i is

Ri = Ai − θ
α(Z)

β(Z)
(35)

qj(Z) > 0 by definition of equilibrium and it simplifies to
λj

θ
> α(Z)

β(Z)
. Combining it with

inequality given in (33) gives

α(N∗)
β(N∗)

>
α(Z)

β(Z)
(36)

Now let Z ′ = Z ∪ i. Combining eq(36) with eq.(34) yields qi(Z
′) > qj(Z

′). But, qj(Z
′) =

(2δj − θ)qj(Z) > 0 and therefore qi(Z
′) > 0 as well. Finally, let c̄ be such that if ci = c̄ then

qi(Z
′) = 0. It becomes trivial that c̄ > c∗i . Following the existence proof, Ri = c̄ > c∗i . Hence

firm i has an incentive to deviate to produce by charging a price in (c∗i , Ri), as desired. �

Proof of Proposition 1:

Consider a problem ξ = (N,A, θ, c). Iteration algorithm 2 gives n = n∗. Let X =
{1, 2, ..., n∗}. If qn∗ = 0, then using eq.(11) and eq.(12)

cn∗ =
an∗(2bn∗ + dn∗) + bn∗dn∗cT

(bn∗ + dn∗)(2bn∗ − dn∗(n∗ − 1))
(37)

where c∗T =
∑

i∈X ci. If qn∗ > 0, as done in the proof of Theorem 1, we find the critical value
c̄ such that if firm n∗+1’s marginal cost level were c̄ (ceteris paribus), it would have produced
exactly zero as a result of the Bertrand game played among the most efficient n∗ + 1 firms.
Since qn∗+1 = 0, using eq.(12), we have pn∗+1 = c̄. Therefore, substituting eq.(11) into this
last equality gives:

c̄ =
an∗+1(2bn∗+1 + dn∗+1) + bn∗+1dn∗+1c

∗
T

(bn∗+1 + dn∗+1)(2bn∗+1 − dn∗+1n∗)− bn∗+1dn∗+1

(38)
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In the next step, we calculate the residual demand left to firm n∗ + 1, i.e, Rn∗+1 = A− θqT
where qT =

∑
i∈X qi and for each i ∈ X, qi is stated in eq.(12) and a, b,and d are calculated

at n = n∗. Accordingly, it is simplified as

Rn∗+1 =
A(1− θ)(2 + θ(2n∗ − 3)) + θ(1 + θ(n∗ − 2))c∗T

(1 + θ(n∗ − 1))(2 + θ(n∗ − 3))
(39)

In case, Rn∗+1 ≤ cn∗+1, firm n∗ + 1 does not have any incentive to deviate. Moreover, firms
that are more inefficient than firm n∗ +1 cannot have profitable deviations. If qn∗ = 0, then
comparing eq.(37) and eq.(39) gives Rn∗+1 = cn∗ < cn∗+1. Indeed, by iteration algorithm 0,
for each i ∈ N \X, qi = 0.

Therefore assume that qn∗ > 0. Accordingly, cn∗ < Rn∗+1. By iteration algorithm 2, we
have cn∗+1 ≥ max{c̄, cn∗}. Hence, we differentiate two cases.

CASE 1: Rn∗+1 ≥ cn∗+1 ≥ c̄ ≥ cn∗

Subtracting eq.(38) from eq.(39) yields:

Rn∗+1 − c̄ =
θ3(1− θ)(An∗ − c∗T )

(1 + θ(n∗ − 1))M1(θ, n∗)
> 0 (40)

which is positive as a result of assumption 2 whenever θ ∈ (0, 1), where M1 : (0, 1)×N+ → R

such that M1(θ, n
∗) = 2 + θ(3(n∗ − 1) + θ(1 + n∗(n∗ − 3))). 11 By lemma 1, when n∗ = 1

and c̄ < c2 < R2, then the uniqueness of iterated Bertrand Nash equilibrium is assured.
Consequently, to finish the proof of Case 1, we prove the following claim:

Claim 1: Let n∗ ≥ 2. If c̄ < cn∗+1 < Rn∗+1, then multiple equilibria exist.

Proof of Claim 1-(Figures 8-9): Let n∗ ≥ 2 and assume that c̄ ≤ cn∗+1 ≤ Rn∗+1.
In order to prevent a possible deviation by firm n∗ + 1, firms in X lower their price levels
accordingly. Given that qn∗+1 = 0, eq.(7) yields

∑
i∈X pi =

bn∗+1cn∗+1−an∗+1

dn∗+1
.

Let p and p′ denote any arbitrary n∗ and n∗ + 1 dimensional price vectors respectively,
i.e, p = (p1, p2, ..., pn∗) and p′ = (p1, p2, ..., pn∗+1). Next, for each cn∗+1 ∈ [c̄, Rn∗+1], define

simplexes as �n∗−1
cn∗+1

= {p ∈ R
n∗
+ :

∑
j∈X pj =

bn∗+1cn∗+1−an∗+1

dn∗+1
}, where the superscript n∗ − 1

shows the dimension of the simplex. Take any i ∈ X. Let BR�
i (.) denote the best response

of firm i to other firms’ prices in the n∗ − poly market formed by the most efficient n∗

firms. Similarly, let BR��
i (.) denote the best response of firm i to other firms’ prices in the

11Note that ∂M1(.)
∂n∗ = θ(3 + θ(2n∗ − 3)) > 0. Thus, M1 is minimized at n∗ = 1 and becomes M1(θ, 1) =

2− θ2 > 0 as desired.
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(n∗ + 1) − poly market formed by the most efficient n∗ + 1 firms. Formally, using eq.(10),
these best response functions of firm i are respectively given by

BR�
i : R

n∗−1
++ → R++ s.t. BR�

i (p−i) =
an∗+dn∗

∑
X\i pj+bn∗ci

2bn∗

BR��
i : Rn∗

++ → R++ s.t. BR��
i (p′

−i) =
an∗+1+dn∗+1(

∑
X\i pj+pn∗+1)+bn∗+1ci

2bn∗+1

where p−i = (p1, ..., pi−1, pi+1, ..., pn∗) and p′
−i = (p1, ..., pi−1, pi+1, ..., pn∗+1). Now define the

unprojected and projected best response planes as Gru(BR�
i ) = {p ∈ R

n∗
+ : pi = BR�

i (p−i)}
and for each cn∗+1 ∈ [c̄, Rn∗+1], Grproj(BR��

i (cn∗+1)) = {p ∈ R
n∗
+ : pi = BR��

i (p−i, pn∗+1 =
cn∗+1)}, where in the latter we first constraint firm i’s best response plane by letting pn∗+1 =
cn∗+1, then project the resulting constrained set into n∗ dimensional space. For each cn∗+1 ∈
[c̄, Rn∗+1], take any x ∈�n∗−1

cn∗+1
∩Gru(BR�

i ) and y ∈�n∗−1
cn∗+1

∩Grproj(BR��
i ). The ith dimension

of the price vectors x and y are independent of the price vectors of firms in X \ {i} and
calculated as

xi = p�i (cn∗+1) =
(bn∗+dn∗ )cn∗+1+bn∗ci

2bn∗+dn∗

yi = p��i (cn∗+1) =
(bn∗+1+dn∗+1)cn∗+1+bn∗+1ci

2bn∗+1+dn∗+1

(41)

We now take the convex hull of all of the price vectors such that any distinct n∗ − 1
number of Gru(BR�

i )’s and �n∗−1
Rn∗+1

intersect. Accordingly, define Z1 = conhull(
⋃n∗

i1=1{p ∈
R

n∗
+ : p ∈ ⋂i2

i=i1
(Gru(BR�

i ) ∩ �n∗−1
Rn∗+1

)}) where i2 ≡ n∗ − 2 + i1 (mod n∗). (In Figures 8 and

9, Z1 = seg[BC] and Z1 = A[ABC] respectively.) Put it differently, we take the convex hull
of

(
n∗

n∗−1

)
critical intersection price vectors to form Z1. Let the set of these price vectors be

U = {A1, A2, ..., An∗}, where for each i ∈ X, Ai = (p��1 (Rn∗+1), p
��
2 (Rn∗+1), ..., p

��
i−1(Rn∗+1),∑

i∈X p�i (Rn∗+1)−
∑

j∈X\i p
��
j (Rn∗+1), p

��
i+1(Rn∗+1)..., p

��
n∗(Rn∗+1)) and p��i (.) is stated in eq.(41-

b). In sum, Z1 = conhull(Ai : i ∈ X). Let Z
′
1 = strictconhull(Ai : i ∈ X).

Similarly, we take the convex hull of all of the price vectors such that any distinct n∗ − 1
number of Φproj

i ’s and �n∗−1
c̄ intersect. Formally, let Z2 = conhull(

⋃n∗
i1=1{p ∈ R

n∗
+ : p ∈⋂i2

i=i1
(Grproj(BR��

i (c̄))
⋂

�n∗−1
c̄ )}) where i2 ≡ n∗ − 2 + i1 (mod n∗). (In Figures 8 and 9,

Z2 = seg[GH] and Z2 = A[DEF ] respectively.). Note that Z2 is formed by the convex hull
of

(
n∗

n∗−1

)
critical intersection points denoted in the set V = {B1, B2, ..., Bn∗}, where for each

i ∈ X, Bi = (p�1(c̄), p
�
2(c̄), ..., p

�
i−1(c̄),

∑
l∈X p��l (c̄) −∑

j∈X\i p
�
j(c̄), p

�
i+1(c̄)..., p

�
n∗(c̄)) where for

each i ∈ X, p�i (.) is stated in eq.(41-a). Hence, Z2 = conhull{B1, B2, ..., Bn∗}. Lastly, define
Z

′
2 = strictconhull{B1, B2, ..., Bn∗}.

Subclaims 1 and 2 assures that feasibility and firm rationality constraints are satisfied.

Subclaim 1 (Feasibility Constraint):
bn∗+1cn∗+1−an∗+1

dn∗+1
> c∗T =

∑
i∈X ci.

Proof Subclaim 1: The left hand side of the inequality is increasing in cn∗+1, therefore
it is enough to prove the inequality holds when cn∗+1 is substituted by its lower bound c̄,
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which is stated in eq.(38). Hence, changing cn∗+1 by c̄ and simplifying the result gives

θ(1− θ)(1 + θn∗)(An∗ − c∗T )
(1 + θ(n∗ − 1))M1(θ, n∗)

> 0 (42)

where M1(.) > 0 is stated in eq.(40), as desired.

Subclaim 2 (Firm Rationality Constraint): For each i ∈ X and each cn∗+1 ∈
{c̄, Rn∗+1}, p�i (cn∗+1) > p��i (cn∗+1) > ci.

Proof Subclaim 2: Take any i ∈ X. Let cn∗+1 ∈ {c̄, Rn∗+1}. Since ci < cn∗+1 by
iteration algorithm 2, p��i (cn∗+1) > ci by eq.(41-b). Next, define D : (0, 1)×N+×R

2
+ → R++

such that D(θ, n∗, ci, cn∗+1) = p�i (cn∗+1) − p��i (cn∗+1). By using eq.(41), taking the deriva-

tive of the function D(.) with respect to cn∗+1 and ci respectively yields ∂D(.)
∂cn∗+1

= −∂D(.)
∂ci

=
θ2

(2+θ(2n∗−1))(2+θ(2n∗−3))
> 0. Additionally, when ci = cn∗+1 = c̄, D(.) becomes zero. However,

Iteration Algorithm 2 provides cn∗+1 > ci, which proves the claim.

Subclaim 3: For each i ∈ X, the price vectors Ai and Bi are both defined in the firm
rational set F = {p ∈ R

n∗
++ : ∀j ∈ X, pj > cj}.

Proof Subclaim 3: Take any i ∈ X. First, for each j ∈ X \ {i}, p��j (Rn∗+1) > ci and
p�j(c̄) > ci by subclaim 2. Therefore, it is enough to show that the ith dimensions of price
vectors Ai and Bi are both defined in F . To show the former, by subclaim 2, for each i ∈ X,
bn∗+1Rn∗+1−an∗+1

dn∗+1
=

∑
i∈X p�i (Rn∗+1) >

∑
j∈X\i p

��
j (Rn∗+1) + ci proving that for each i ∈ X,

the price vector Ai is defined on the firm rational region.
To show the ith argument of Bi is positive, we claim that

bn∗+1c̄−an∗+1

dn∗+1
=

∑
l∈X p��l (c̄) >

∑
j∈X\i p

�
j(c̄). Now, define E : (0, 1) × N+ × R

n∗
++ × R++ → R+ such that E(θ, n∗, c, c̄) =∑

l∈X p��l (c̄)−∑
j∈X\i p

�
j(c̄) where c = (c1, c2, ..., cn∗). Substituting the related price vectors

and the value of c̄ respectively stated in eq.(41) and eq.(38) into E(.) yields

E(θ, n∗, c∗, c̄) =
A(1− θ)(2 + θ(−3 + θ + 2M0)) + c∗T θ(1 + θ(−1 +M0)) +M2ci

(2 + θ(2n∗ − 3))M1

(43)

where c∗T =
∑

i∈X ci, M0 = n∗(2 + θ(n∗ − 2)) > 1, M1 > 0 is defined in eq.(42), and

M2 = (1 + θ(n∗ − 2))M1. Since
∂E(.)
∂ci

= M2

(2+θ(2n−3))M1
> 0, for a given value of n∗ and θ, E(.)

gets its minimum at ci = 0. However, E(ci = 0) > 0 by eq.(43) and consequently, E(.) > 0
verifying the claim.

In the next step, we show the uniqueness of the equilibrium at the extreme values that
cn∗+1 can take.
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Subclaim 4: The set
⋂

i∈X
Gru(BR�

i )∩ �n∗−1
Rn∗+1

is a singleton and denoted by {N1}. More-

over, {N1} ∈ Z
′
1.

Proof Subclaim 4: Let cn∗+1 = Rn∗+1. We first claim that for each i ∈ X, Gru(BR�
i )

and �n∗−1
Rn∗+1

intersect at a fix point N1
12. To see that, using eq.(41-a) it is enough to prove

that
bn∗+1Rn∗+1−an∗+1

dn∗+1
=

∑
i∈X pi(Rn∗+1) as follows:

bn∗+1Rn∗+1 − an∗+1

dn∗+1

=
∑

i∈X

(bn∗ + dn∗)Rn∗+1 + bn∗ci
2bn∗ + dn∗

(44)

Rewriting eq.(44) gives the residual demand equation, i.e, Rn∗+1, stated in eq.(39), as
desired.

We claim that N1 ∈ Z
′
1. Indeed, N1 =

∑
i∈X αiAi where αi =

p�i (Rn∗+1)−p��i (Rn∗+1)

p�T (Rn∗+1)−p��T (Rn∗+1)
, where

p�T (Rn∗+1) =
∑

i∈X p�i (Rn∗+1) and p��T (Rn∗+1) =
∑

i∈X p��i (Rn∗+1). Note that
∑

i∈X αi = 1
trivially. We claim that for each i ∈ X, 0 < αi < 1. Take any i ∈ X. By subclaim 2,
p�i (Rn∗+1) > p��i (Rn∗+1) and therefore p�T (Rn∗+1) > p��T (Rn∗+1) proving that αi > 0. More-
over, p�T (Rn∗+1) > p��T (Rn∗+1) + p�i (Rn∗+1)− p��i (Rn∗+1) by the same subclaim showing that
αi < 1. Hence, N1 ∈ Z

′
1.

Subclaim 5: The set
⋂

i∈X
Grproj(BR��

i (c̄))∩ �n∗−1
c̄ is a singleton and denoted by {N2}.

Moreover, {N2} ∈ Z
′
2.

Proof Subclaim 5: Assume that cn∗+1 = c̄. We claim that for each i ∈ X, Grproj(BR��
i (c̄))

and �n∗−1
c̄ intersect at a fix point N2. To see that, by using eq.(41-b), it is enough to prove

that
bn∗+1c̄−an∗+1

dn∗+1
=

∑
i∈X p��i (c̄) as follows:

bn∗+1c̄− an∗+1

dn∗+1

=
∑

i∈X

(bn∗+1 + dn∗+1)c̄+ bn∗+1ci
2bn∗+1 + dn∗+1

(45)

Rewriting eq.(45) gives exactly eq.(38), as desired. We now claim that N2 ∈ Z
′
2. We note

that N2 =
∑

i∈X βiBi where βi =
p�i (c̄)−p��i (c̄)

pT (c̄)−p��T (c̄)
. Similar to Subclaim 3, using subclaim 2, we

can show that 0 < βi < 1 and
∑

i∈X βi = 1, which shows the claim.
Finally, define W1 = conhull(Z1, N2) and W2 = conhull(Z2, N1). By construction,

seg(N1, N2) ∈ W1 ∩ W2. By Subclaims 3,4, and 5, the convex hull Z1 and the point N2

12We sketched this intersection in markets formed by three and four firms, where n∗ = 2 and n∗ = 3
respectively, as drawn in Figures 13 and 14.
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are both defined in the firm rational region. Accordingly, their convex hull, W1 and there-
fore the grand intersection W1 ∩W2 are defined in the firm rational region of the problem.

Subclaim 6: For each i ∈ X and each cn∗+1 ∈ (c̄, Rn∗+1), every price vector in
W1 ∩W2∩ �n∗−1

cn∗+1
constitutes an undominated Bertrand-Nash equilibrium13.

Proof of Subclaim 6 : Consider the profit level of firm i, i.e, πi(.), is stated in eq.(9).
We prove the claim under two sub-subclaims.

Sub-Subclaim 1: For each i ∈ X, for each price vector p̌ ∈ W1,
∂πi(A,θ,n∗+1,ci,p)

∂pi
|p̌≤ 0.

Proof of Sub-Subclaim-1: Take any firm i ∈ X and consider a price vector p̌ ∈ W1.
Let cn∗+1 = c� be such that the simplex �n∗−1

c� passes through p̌. Note that, this simplex
is uniquely defined by continuity. Let Ž1 = W1∩ �n∗−1

c� . Indeed, by linearity, eq.(41)

assures that Ž1 is a monotonic transformation of Z1. Noting that ∂πi(A,θ,n∗+1,ci,p)
∂pi

|p̌=
an∗+1+dn∗+1(

∑
l∈X p̌l(c

�)−p̌i)+bn∗+1ci−2bn∗+1p̌i and substituting
∑

l∈X p̌l(c
�) =

bn∗+1c
�−an∗+1

dn∗+1

into this last equality gives ∂πi(A,θ,n∗+1,ci,c
�)

∂pi
= (bn∗+1+dn∗+1)c

�+ bn∗+1ci− (2bn∗+1+dn∗+1)p̌i.

Note that p̌ ∈ Ž1 = conhull(Ǎi : i ∈ X) where Ǎi is equal to Ai stated in Case 1 but

calculated at cn∗+1 = c�. Hence, for each i ∈ X, we get p̌i ≥ p��i (c�) =
(bn∗+1+dn∗+1)c

�+bn∗+1ci
2bn∗+1+dn∗+1

proving the claim. What is more, for every p̃ ∈�n∗−1
c� \W1, there exists a firm j ∈ X such

that p̃j < p��j (c�) showing that he has a profitable deviation by increasing its price, i.e,
∂πj(A,θ,n∗+1,cj ,p)

∂pj
|p̃> 0.

Sub-Subclaim-2:For each i ∈ X, for each price vector p̂ ∈ W2, we claim that ∂πi(A,θ,n∗,ci,p)
∂pi

|p̂≥
0.

Proof of Sub-Subclaim-2: Take any price vector p̂ ∈ W2. Let cn∗+1 = c�� be such
that the simplex �n∗−1

c�� passes through p̂. Let Ẑ2 = W2∩ �c�� . Indeed, by linearity, eq.(41)
assures that Ẑ2 is a monotonic transformation of Z2. Take a firm i ∈ X. We claim that
∂πi(A,θ,n∗,ci,p)

∂pi
|p̂≥ 0. Noting that ∂πi(A,θ,n∗,ci,p)

∂pi
|p̂= an∗ +dn∗(

∑
l∈X p̂l(c

��)− p̂i)+ bn∗ci− 2bn∗ p̂i

and substituting
∑

l∈X p̂l(c
��) =

bn∗+1c
��−an∗+1

dn∗+1
into this last equality gives ∂πi(A,θ,n∗,ci,p)

∂pi
|p̂=

bn∗+1dn∗c��+bn∗dn∗+1ci
dn∗+1

− (2bn∗ + dn∗)p̂i. Note that p̂ ∈ Ẑ2 = conhull(B̂i : i ∈ X) where B̂i is

equal to Bi stated in Case 2 but calculated at cn∗+1 = c��. Thus, for each i ∈ X, we have

p̂i ≤ p�i (c
��) =

dn∗bn∗+1c
��+bn∗dn∗+1ci

dn∗+1(2bn∗+dn∗ ) proving the claim. Moreover, for every p̃ ∈�c�� \W2,

there exists a firm j ∈ X such that p̃j > p�j(c
��) showing that he has a profitable deviation

13In Figure 9, W1 ∩W2 is shown by the green region.

29



by decreasing its price, i.e,
∂πj(A,θ,n∗,cj ,p)

∂pj
|p̃< 0.

For each i ∈ X, since the best response graphs Gru(BR�
i ) and Grproj(BR��

i ) become only
valid in case of a decrease and an increase of firm i’s unilateral price deviations respectively,
the intersection W1 ∩ W2 characterizes the undominated Bertrand-Nash equilibria of the
game for possible cn∗+1 variations. Indeed, for each cn∗+1 ∈ (c̄, Rn∗+1), �n∗−1

cn∗+1
intersects with

W1 ∩W2 \ {N1, N2} at multiple price vectors proving the claim.

CASE 2: Rn∗+1 ≥ cn∗+1 ≥ cn∗ ≥ c̄

Claim 2: Let n∗ ≥ 2. If cn∗ < cn∗+1 < Rn∗+1, then multiple equilibria exist.

Proof of Claim 2: The proof of this case is similar to Case 1. Assume that Rn∗+1 ≥
cn∗+1 ≥ cn∗ > c̄ and let W3 = {p ∈ R

n∗
+ :

∑
i∈X pi ≥ cn∗}. Next, we make the following

subclaim.

Subclaim 7: For every i ∈ X, when cn∗+1 ≥ cn∗ , p�i (cn∗+1) ≥ p��i (cn∗+1) > ci.

Proof of subclaim 7: For all i ∈ X, since cn∗+1 ≥ ci, the proof of Subclaim 2 of Case
1 also works here. Indeed when cn∗+1 = cn∗ , pn∗(cn∗) = p��n∗(cn∗) by eq.(41).

Next, we form N1, N2, Z1, Z2,W1, and W2 in an identical way to Case 1. Indeed, by sub-
claim 7, for each i ∈ X and each cn∗+1 > ci , we get

∑
i∈X pi(cn∗+1) >

∑
j∈X\i p

��
j (cn∗+1) + ci

proving that the price vectors in W1 ∩W3, so does in W1 ∩W2 ∩W3, are defined in the firm
rational region. Finally, we claim that for each cn∗+1 ∈ (c∗n, Rn∗+1), �cn∗+1

∩W1∩W2∩W3 �= ∅
at multiple price vectors and the firms in X have different pricing strategies along this equi-
librium path. The proof is identical to last steps of the proof of Case 1. Moreover, by
subclaim 7, when n∗ = 1 and c1 = c2, firms in X have a unique pricing strategy (Please see
Figure 10). However, as the dimensionality increases, i.e n∗ ≥ 2, we still find firms in X
having different pricing strategies.

Last of all, we point out the undominated equilibrium strategies of firms in N \X and
finish our proof.

Claim 2: Let pmi be the monopoly price charged by firm i. If cn∗+1 > Rn∗+1, then for
each i ∈ N \ X, p∗i ∈ I = [ci, p

m
i ]. Moreover, if cn∗+1 ≤ Rn∗+1, then pn∗+1 = cn∗+1 and

∀j ∈ N \ {X ∪ {n∗ + 1}}, p∗j ∈ [cj, p
m
j ].

Proof: Let cn∗+1 > Rn∗+1. Hence, there is no constraint on firm n∗ + 1. Take a firm
i ∈ N \ X. By iteration algorithm 0, qi = 0. Every price p < ci is weakly dominated by
charging ci trivially. Similarly, when all firms in N \ i charge a price of total demand A or
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higher, firm i optimally charges the monopoly price of pmi = A+ci
2

found by eq.(10). Hence,
setting the monopoly price of pmi weakly dominates charging a price above this level, which
proves the claim. Now, consider the case cn∗+1 < Rn∗+1. Accordingly, firms in X lower their
prices such that firm n∗ + 1 is indifferent between entering into or remaining as a potential
entrant in the market. But, in such a case, pn∗+1 = cn∗+1 in equilibrium. However, the
inefficient firms in N \ {X ∪ {n∗ + 1}} still have the same pricing strategies as in the first
case, as desired. �

Proof of Theorem 2 (Characterization):

Consider a problem ξ = (N,A, θ, c) and letX = {1, 2..., n∗} where n∗ is found by iteration
algorithm 2. We examine two cases:

CASE 1: Take any two firms i and j such that ci < cj. Suppose to the contrary there
exist an equilibrium, V2, where firm j is in it, but firm i is not. Let V2 be formed by ñ
number of firms denoted by the set Ñ . Let firm k be the least efficient firm among these
firms. Next, we calculate the critical value c̄ such that if we add one more firm, say firm l,
with marginal cost level c̄ into these ñ number of firms, firm l would produce exactly zero.
Use eq.(11) to get:

c̄ =
añ+1(2bñ+1 + dñ+1) + dñ+1bñ+1c

∗
T

(bñ+1 + dñ+1)(2bñ+1 − dñ+1ñ)− bñ+1dñ+1

(46)

where c∗T =
∑

i∈Ñ ci.
Also we have,

ci < ck ≤ c̄ (47)

Moreover, qk ≥ 0 in equilibrium V2. Hence using eq.(11) and eq(12), we get

ck ≤ añ(2bñ + dñ) + bñdñc
∗
T

(bñ + dñ)(2bñ − dñ(ñ− 1))
(48)

But, the right hand side of this inequality is equal to the residual demand left to any firm
outside the firms forming equilibrium V2. Thus, in particular, we have ck ≤ Ri. Additionally,
the relationship given in eq.(40) calculated at n = ñ assures that Ri > c̄. Altogether we
would have,

ci < ck ≤ c̄ < Ri (49)

Thus, the residual demand left to firm i is greater than his marginal cost level. That is, he
has an incentive to deviate. Accordingly, firms that are forming V2 lower their prices. Let
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�ñ−1
Ri

= {p ∈ R
ñ
+ :

∑
i∈Ñ pi =

bñ+1ci−añ+1

dñ+1
}. We claim that at every price vector p ∈�ñ−1

Ri
, for

every firm j ∈ Ñ such that cj > ci, firm j has an incentive to either decrease or increase
his price level, pi. W.O.L.G. let j = k and consider a price vector p◦ ∈�ñ−1

Ri
. Next, we take

the derivative of the profit function that firm k faces that is calculated at n = ñ + 1 and is
stated in eq.(9) and substitute

∑
i∈Ñ p◦i =

bñ+1ci−añ+1

dñ+1
into the resulting equation as follows:

∂πk(A, θ, ñ+ 1, ci, p)

∂pk
| p◦ = (bñ+1 + dñ+1)ci + bñ+1ck − (2bñ+1 + dñ+1)p

◦
k (50)

It is important to note that if p◦k < K1 = (bñ+1+dñ+1)ci+bñ+1ck
2bñ+1+dñ+1

, then ∂πk(A,θ,ñ+1,ci,p)
∂pk

| p◦ > 0

showing that firm k has an incentive to increase his price level. Finally, the same derivative
is calculated at n = ñ and we substitute the same constraint into it thereafter as follows:

∂πk(A, θ, ñ, ci, p)

∂pk
| p◦ = bñ+1dñc

i + bñdñ+1ck
dñ+1

− (2bñ + dñ)p
◦
k (51)

We stress that if p◦k > K2 = bñdñ+1c
i+bñ+1dñck

dñ(2bñ+1+dñ+1)
, then ∂π(A,θ,ñ,ci,p)

∂pk
| p◦ < 0 proving that firm

k has an incentive to decrease his price level. In the final step, we claim that K1 > K2.
Consider the function D : (0, 1)×N+ ×R

2
+ → R++ such that D(θ, ñ, ck, ci) = K2 −K1 that

was defined in the proof of Subclaim 1 of Proposition 1 14. We have already noted that when
ck = ci = c̄, then D(θ, ñ, c̄, c̄) = 0 and ∂D(.)

∂ci
= −∂D(.)

∂ck
> 0. However, given eq.(47), we have

c̄ ≥ ck > ci, which proves that K2 < K1. Hence, for every feasible price vector on p ∈�ñ−1
Ri

,
firm k has an incentive to deviate as desired.

CASE 2: Let 1 ≤ n̈ < n∗. We claim that firms in Y = {1, 2..., n̈} cannot form an
equilibrium. Assume they can. By Iteration Algorithm 2, qn̈+1 > 0. Hence using eq.(11)
and eq.(12), we get

cn̈+1 ≤ an̈+1(2bn̈+1 + dn̈+1) + bn̈+1dn̈+1c
∗
T

2b2n̈+1 − bn̈+1dn̈+1n̈+ 2bn̈+1dn̈+1 − d2n̈+1n̈
(52)

where c∗T =
∑

i∈Y ci. To ensure that firm n̈ is out of the market, firms in Y lower their

prices and we have
∑

i∈Y pi =
bcn̈+1−a

d
. We claim that there exist a firm j ∈ Y such that

pj <
(bn̈+1+dn̈+1)cn̈+1+bn̈+1ci

2bn̈+1+dn̈+1
. Otherwise, we have bn̈+1cn̈+1−an̈+1

dn̈+1
<

(bn̈+1+dn̈+1)n̈cn̈+1+bn̈+1c
∗
T

2bn̈+1+dn̈+1
,which

can be simplified as follows:

cn̈+1 >
an̈+1(2bn̈+1 + dn̈+1) + bn̈+1dn̈+1c

∗
T

2b2n̈+1 − bn̈+1dn̈+1n̈+ bn̈+1dn̈+1 − d2n̈+1n̈
(53)

which is a direct contradiction to eq.(52). Using the proved claim and following the proof in
Case 1, firm j has an incentive to increase its price. �

14In this context, cn∗+1 = ci and ci = ck.
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Figure 1: Motivating Example: Let N = {1, 2}, c = (8, 9.5); and the market demand
is p = 10 − q. Under Cournot competition, the best response functions of the firms are
BR1(q2) = 2−q2

2
and BR2(q1) = 0.5−q1

2
. The related graphs of these functions are for each

i ∈ {1, 2}, Gr(BRi) = {q ∈ R
2 : qi = BRi(q−i)}. However, these unrefined best response

graphs intersect in the negative region and the coordinates of this intersection, i.e. point
N ′, are q∗1 = 7/6 and q∗2 = −1/3. However, negative production is not feasible by definition.
Therefore, if firm one produces more than 0.5, it is optimal for the inefficient firm to not
produce. Similarly, if firm two produces more than 2, firm one does not produce. Under this
refinement, it is easy to see that the best response graphs intersect at point N characterized
by q∗1 = 1 and q∗2 = 0 as shown in Figure 2. Thus, in the unique Nash equilibrium of this
game, firm one is a monopoly and firm two is the low threat potential entrant firm, which
does not have any effect on the equilibrium strategy of the monopoly firm in our terminology.33



Figure 2: Let N = {1, 2, 3}, (c1, c2, c3) = (8, 9, 9.5), and θ = 1. The market demand is
given by pi = 10− qi − q−i. The best responses can be calculated as BR1(q2, q3) =

2−q2−q3
2

,

BR2(q1, q3) =
1−q1−q3

2
, and BR3(q1, q2) =

0.5−q1−q2
2

. For each i ∈ {1, 2, 3}, let the unrevised
best response graphs be GR(BRi) = {q ∈ R

3 : qi = BRi(q−i)}. These unrefined best
response graphs intersect at q = (9/8, 1/8,−3/8). Iteration Algorithm 1 gives N∗ = {1}.
Note that monopoly output of firm 1 is one. Hence, Theorem 1 assures that q� = (q∗1, q

∗
2, q

∗
3) =

(1, 0, 0) is the unique Nash equilibrium of this game. Indeed, we refine the best response
graphs as follows: When firm 2 and firm 3 produce more than two in total, it is optimal for
firm 1 to not produce. Therefore, firm 1’s best response function becomes the q2 − q3 plane.
Similarly, we refine the best response graphs of firms 2 and 3. Note that the refined best
response functions graphs meet at a unique equilibrium point N = (1, 0, 0), as desired.
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Figure 3: Let N = {1, 2, 3}, (c1, c2, c3) = (8, 8.5, 9.2), and θ = 1. The unrefined best response
graphs intersect at N ′ = (3.7

4
, 1.7

4
, −1.1

4
). Iteration Algorithm 1 gives N∗ = {1, 2}. We refine

best response graphs of the firms and these graphs become planes eventually in the related
spaces. Hence, they intersect at a unique equilibrium point, say N = (2.5

3
, 1
3
). At this point,

the most efficient two firms play the Cournot game in the absence of the potential entrant
firm, i.e. firm three.
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Figure 4: Unique Bertrand-Nash Equilibrium in Two-Firm Case: Let N = {1, 2};
c = (9, 14.1); and pi = 16− qi − 0.5q−i. In this figure, the unrevised best response functions
of firms 1 and 2 are BU

1 (p2) = 8.5+p2/4 and BU
2 (p1) = 11.05+p1/4 respectively. The related

graphs of these functions are Gr(BU
1 ) = {p ∈ R

2 : p1 = BU
1 (p2)} and Gr(BU

2 ) = {p ∈ R
2 :

p2 = BU
2 (p1)}, which are shown by rays ]CE[ and ]EG[ respectively. They intersect at E,

which is associated with the infeasible production vector q = (4.02,−0.06) . Accordingly,
we draw the revised best response graphs of firms one and two, i.e. Gr(BR1) and Gr(BR2),
which are shown by blue and red lines respectively. W.L.O.G., consider firm two. Gr(BRU

2 )
intersect with c2 at N = (12.2, 14, 1). Thus, if p1 ≤ 12.2, it is optimal for firm two to not
produce. Note that charging any price weakly above seg[AN ] results in zero production for
firm two by iteration algorithm 0. Moreover, if firm one charges a price higher or equal
the total demand, e.g, A, firm two will be the monopoly firm and her best response is to
charge the monopoly price. Similarly, we revise the best response function of firm one. In
sum, both best responses meet at a unique undominated Nash equilibrium outcome given
by N = (12.2, 14, 1). Seg[DN) constitutes the weakly dominated equilibria of the game.
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Figure 5: Multiple Bertrand-Nash Equilibrium in Two Firms Case: Let N = {1, 2};
c = (9, 15); and pi = 16 − qi − 0.5q−i. In this figure, the unrevised best response functions
are given by B1(p2) = 8.5 + p2/4 and B2(p1) = 11.5 + p1/4. The related unrevised best
response graphs intersect at E, which is associated with the infeasible production vector
q = (4.18,−0.62). Accordingly, we draw the revised best response graphs of firms one
and two as above and see that they intersect at multiple points. Hence, we get multiple
undominated equilibria in which firm one charges the monopoly price pM1 = 12.5 and firm 2
charges any price between c2 = 15 and pM2 = 15.5.
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Figure 6: Multiple Undominated Equilibria When Only Firms One and Two Ac-
tively Produce in the Bertrand Game: Let N = {1, 2, 3}; c = (14, 16, 16.1); and
pi = 17− qi − 0.5q−i. When firms 1 and 2 play the Bertrand game in the absence of firm 3,
the outcome is given point O. However, the potential entrant, i.e, firm 3, has an incentive
to produce. Therefore, firms 1 and 2 decrease their total prices to 31.3 to eliminate firm 3’s
deviation. Each price combination in seg(AF ) is a candidate for undominated equilibrium.
seg(AF ) is a border for firm 3’s production and if either firm 1 or 2 charges a slightly higher
price on this segment, firm 3 starts to produce and projected best response graphs become
valid. Whereas the vertical arrows represent the directions of the possible deviations by
firm 2, horizontal arrows show firm 1’s possible deviations. For example, on seg(EF ], given
other firms’ prices, firm 2 has an incentive to deviate to a slightly higher price from p2 to
p2+ ε with ε > 0, because firm 3 starts to produce after this increase and the projected best
response set of firm 2, i.e, Grproj(BR��

2 ), becomes valid. However, p2 + ε is more close to
Grproj(BR��

2 ) than p2 showing that firm 2 gains. Note that, there is no profitable deviation
by firm 1 or firm 2 on line segment seg[CD], where the feasibility (Green line) and firm
rationality constraints (Yellow lines) are also satisfied. Hence all price combinations of firms
1 and 2 on the segment seg[CD] constitute an undominated Bertrand-Nash equilibrium. As
a check, for each p̂ ∈ seg[CD], for each i ∈ {1, 2}, p��i ≤ p̂i ≤ p�i and

∑
i∈1,2 p̂i = 31.3 as

claimed in part b of Proposition 1. Note that along this equilibrium path, firm 3 charges his
marginal cost level, i.e. p3 = 16.1, and produces nothing.
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Figure 7: Nonexistence of Equilibrium When Only Firms One and Three Actively
Produce in the Bertrand Game: Let N = {1, 2, 3}; c = (14, 16, 16.1); and pi = 17 −
qi − 0.5q−i. In this figure, we consider a market candidate formed by firm one and three and
search for the undominated Bertrand Nash equilibrium. The graphs of the best response
functions are drawn in a similar way to Figure 6. The critical points are A = (14.95, 16.05),
B = (14.96, 16.04), C = (15.15, 15.85), and D = (15.2, 15.8). When firms one and three play
the game, the doupoly price vector is given by O but the demand left to firm 2 is greater
than c2. In order to eliminate entry incentives of firm 2, incumbent firms decrease their total
prices to 31. Let �1 = {p ∈ R

2 : p1 + p3 = 31}. But, arrows show that given other firms’
prices, for every price combination on Δ1, either firm 1 or firm 3 deviates to decrease or
increase their price levels. Accordingly, their is not any equilibrium in a game played among
the most and least cost efficient firms. As a check, there is no price vector p̂ on �1 such
that for each i ∈ {1, 3}, p��i ≤ p̂i ≤ p�i and

∑
i∈1,3 p̂i = 31 as claimed in Theorem 2.
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Figure 8: The Proof of Proposition 1 is Sketched with Three Firms and n∗ = 2:
Each problem is associated with a specific level of c3 and this figure identifies multiple
equilibria (or possibly unique) for possible c3 variations in [c̄, R3]. For each i ∈ {1, 2} and
each c3 ∈ {c̄, R3}, let Gru(BR�

i ) and Grproj(BR��
i (c3)) denote the unprojected and projected

best response graphs of firm i associated with a marginal cost level of c3. Whereas the
unprojected best response functions of firms is fix in c3, the projected ones changes with c3
monotonically. Moreover, the simplex, i.e, �1

c3
, is also a function of c3. As c3 changes from c̄

to R3, seg[N2B] and seg[N2C] are the locus of the critical intersections of Grproj(BR��
1 (c3))

and Grproj(BR��
2 (c3)) with�1

c3
respectively. When c3 = c̄, point N2 is the unique equilibrium

of the game. Similarly, point N1 is the unique equilibrium of the game whenever c3 = R3.
However, for each c3 ∈ (c̄, R3), the multiple equilibria is given by the intersection of the green
region with �1

c3
. We finally note that ĉ cost level of firm 3 can cause a similar deviation

arguments for the firms as in Example 6.
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Figure 9: The Proof of Case 1 of Proposition 1 is Sketched with Four Firms and
n∗ = 3: In this figure, we show the multiple equilibrium price vectors by changing the
marginal cost level of firm four along the interval [c̄,R4]. Note that {E,F,D,N2} ⊆ �2

c̄ ,
{A,B,C,N1} ⊆ �2

R4
, Z1 = conhull(ABC), Z2 = conhull(DEF ), N1 ∈ Z1, and N2 ∈ Z2.

Let W1 = conhull(Z1, N2) and W2 = conhull(Z2, N1). When c4 = c̄, the projected best
response graphs of firms 1, 2, and 3, i.e, GrprojBR��

i (c̄) intersect at N2. Moreover, for each
i ∈ {1, 2, 3}, its unprojected best response graph, i.e. Gru(BR�

i ) is drawn and we have
conhull{N1, E,D} ⊆ Gru(BR�

1), conhull{N1, E, F} ⊆ Gru(BR�
2), and conhull{N1, F,D} ⊆

Gru(BR�
3). Accordingly, point N1 lies at the intersection of these planes and is the unique

equilibrium of the game whenever c4 = R4. The blue dotted lines represent the intersection
of projected best response functions of firms 1, 2, and 3 with �2

R4
. For each c4 ∈ (c̄, R4), the

multiple equilibria is given by the intersection of W1

⋂
W2, which is shown by the purple

pyramid on the right, with the simplex �2
c4
. 41



Figure 10: The Proof of Case 2 of Proposition 1 is Sketched with Three Firms
and n∗ = 2: Let W1 = conhull(A,B,N2) and W2 = conhull(C,D,N1). In this figure, we
show the multiple equilibrium price vectors by changing the marginal cost level of firm three
along the interval [c2, R3]. We draw the related best response functions and their critical
intersections with the simplexes as in Figure 8 and see that for each c3 ∈ (c2, R3), the multiple
equilibria is given by the intersection of W1

⋂
W2 with the simplex �1

c3
.
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