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Abstract

Inspired by problems in cyber defense, we propose interdependent
defense (IDD) games, a computational game-theoretic framework to
study aspects of interdependence of risk and security under deliberated
external attacks. Our model adapts interdependent security (IDS)
games, a model due to Heal and Kunreuther, to explicitly model the
source of the risk: the attackers’ behavior. We provide a complete
characterization of the set of Nash equilibria (NE) of an important
subclass of IDD games. Some interesting properties of the (almost
surely unique) NE immediately fall off the characterization, as well
as the design of a simple polynomial-time algorithm for computing
NE in that subclass. We propose a generator of random instances of
IDD games based on the real-world Internet-derived AS graph (∼ 27K
nodes and ∼ 100K edges as measured in March 2010 by the DIMES
project). Preliminary experiments applying simple learning-in-games
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heuristics to compute (approximate) NE in such randomly-generated
game instances are promising. Finally, we discuss several extensions,
current and future work, and present several open problems.

1 Introduction

Interdependent security (IDS) games, originally introduced by economists
Kunreuther and Heal [Kunreuther and Heal, 2003], model general abstract se-
curity problems in which an individual within a population considers whether
to voluntarily invest in some protection mechanisms or security against a risk
they may face, knowing that the cost-effectiveness of the decision depends on
the investment decisions of others in the population because of transfer risks
(i.e., the “bad event” may be transferable from a compromised individual to
another). In IDS games, each player’s pure strategies are whether to invest
or not. The cost (i.e., negative payoff) functions encode the fact that the
actual level of safety afforded by the investment is a function not only of the
individual player’s choice but also on the choices of other players in the pop-
ulation. Kunreuther and Heal [2003] devised the model for these games and
studied some of their properties analytically, while Kearns and Ortiz [2003]
later proposed algorithms for computing equilibria.

As a canonical example of the real-world relevance of IDS settings and the
applicability of IDS games, Kunreuther and Heal used this model to describe
problems such as airline baggage security [Heal and Kunreuther, 2005]. Indi-
vidual airlines may choose to invest in additional complementary equipment
to screen passengers’ bags and check for hazards such as bombs that could
cause damage to their passengers, planes, buildings, or even reputations.
Regardless of the outcome, airlines wish to avoid the bad event. However,
mainly due to the large amount of traffic volume, it is impractical for an air-
line to go beyond applying security checks to bags incoming from passengers
and include checks to baggage or cargo transferred from other airlines. So,
even if an airline invests in security, they can still experience a bad event if
the bag was transferred from an airline that does not screen incoming bags,
rendering their investment useless. Even if full screening were performed,
the Chrismas day episode in Detroit last year [O’Connor and Schmitt, 2009]
is a painful reminder that transfer risk still exists. Thus, we can see how
the cost-effectiveness of an investment can be highly dependent on others’
investment decisions.
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In cyberspace, the situation is similar but slightly different in nature.
Consider a network where all computers fully trust all other computers and
freely exchange information. Each user has complete control over his own
computer and can decide if he wants to protect his computer from hackers
by installing a firewall, for example. However, he cannot control if others on
the network protect themselves as well. So, in order for one to feel secure in
storing his information on the network, he not only has to think about his own
security, but also the security of other computers on the internal network,
because any other computer may access his as well. If any computer were
hacked, his information would potentially be exposed to the outside world.

Two potential outcomes immediately arise out of the cyber security sce-
nario. If one doesn’t think enough people have invested in security, then one
will not invest either, because any investment will contribute negligibly to
the overall protection of one’s data. If none of the other people invest, one
would not want to invest. Also, and this is the aspect that perhaps differen-
tiates the most the cyberspace from the airline security scenario previously
discussed, if nearly everyone has invested in security, one may no longer feel
the need to protect oneself because the network is already mostly secure and
the amount of work required to protect oneself outweighs the minimal change
in overall security. Thus, as many invest, fewer may want to invest.

In general, scenarios like the ones just described have two important com-
ponents: a bad event (e.g., virus, worm, hacking) which all players attempt
to avoid as it will cause losses (e.g., monetary, privacy, data) for the player,
and an investment decision which reduces the risk of the bad event but has
an associated cost (e.g., monetary, time, work) to the player.

But there is a third important component implicit in the previous discus-
sion: the source of the risk! In both the airline and cyber security scenario
the source of the risk results from the potential deliberate attack or action
taken by agents often “external” to the system (e.g., the terrorist and/or the
hacker).

Inspired in part by problems in the cyber domain, in this work, we adapt
IDS games to cases in which the abstract “bad event” results from the delib-
erate action of one or several “external agents,” whom we refer to (somewhat
interchangeably) as the “attackers,” “aggressors” or “bad actors.” The “in-
ternal agents” (e.g., airlines and computer network users), whom we also
often refer to as “sites,” have the voluntary choice to individually invest in
security to defend themselves against a direct or indirect offensive attack,
modulo, of course, the cost-effectiveness to do so. As a result of the adapta-
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tion, we formally define a new model we call interdependent defense (IDD)
game. We study this new class of games and provide preliminary results on
characterizations of Nash equilibria, as well as representational and compu-
tational properties. We also propose a process to generate random instances
of large interdependent defense games based on the actual network structure
of real ISPs in the current Internet as a benchmark to evaluate the qual-
ity and study the behavior of algorithms for computing equilibria in these
games. We report preliminary results evaluating a simple learning-in-games
heuristic [Fudenberg and Levine, 1999] as a way to obtain an approximate
Nash equilibrium of large interdependent game generated according to the
proposed process. We conclude with a brief discussion of extensions, future
work, open problems and a summary of our contributions.

2 Interdependent Security Games

We start by looking at IDS games and define the parameters and rules gov-
erning this model. Each player i has a choice of whether or not to invest,
which we denote by ai such that ai ∈ {0, 1} where “1” corresponds to in-
vesting and “0” to not investing. For player i, an investment will cost Ci
and the bad event will induce a loss Li. Naturally, the case where Ci > Li
is not interesting because the player always reduces his costs more by not
investing. Hence, IDS models are mostly interesting in cases when Li � Ci
so that the player can potentially greatly reduce his overall cost by investing.
More important is the ratio of the two parameters, the player’s “cost-to-loss”
ratio, which we define as ρi ≡ Ci/Li.

Bad events can occur through both direct and indirect means. Direct
risk, or internal risk, is the chance of a player experiencing a bad event
due to direct contamination, e.g., if you didn’t have anti-virus software and
downloaded a virus from the web to your own computer. The IDS model
assumes that investing will completely protect the player from direct con-
tamination; hence, internal risk is only possible when ai = 0. We denote by
pi the probability that player i will experience a bad event because of inter-
nal risk. Indirect risk results from the possibility that a player experiences a
bad event because of a transfer from other player; from another computer on
the network, for example. The IDS model also assumes that the interactions
between players are unaffected by investment, so regardless of one’s invest-
ment, one’s transferred risk is the same. We denote by qji the probability
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that player j is directly contaminated/infected/targeted, does not experience
the bad event but transfers it to player i who ends up experiencing the bad
event. Note that there is an implicit global constraint on these parameters,
by the axioms of probability: pi +

∑n
j=1 qij ≤ 1 for all i.

We now formally define a (directed) graphical-games [Kearns et al., 2001,
Kearns, 2007] version of IDS games, as first introduced by Kearns and Ortiz
[2003]. Denote by [n] ≡ {1, . . . , n} the set of n players. Note that the
parameters qij’s induce a directed graph G = ([n], E) such that, for all i, j ∈
[n], directed edge (i, j) ∈ E if and only if qij > 0; more formally, E ≡ {(i, j) |
qij > 0}. Let Pa(i) ≡ {j | qji > 0} be the set of players that are parents of
player i in G (i.e., the set of players that player i is exposed to via transfers),
and by PF(i) ≡ Pa(i) ∪ {i} the parent family of player i, which includes i.
Denote by ki ≡ |PF(i)| the size of the parent family of player i. Similarly,
let Ch(i) ≡ {j | qij > 0} be the set of players that are children of player i
(i.e., the set of players to whom player i can present a risk via transfer) and
CF(i) ≡ Ch(i) ∪ {i} the (children) family of player i, which includes i. .

The probability that player i is safe from player j, as a function of player
j’s decision, is

eij(aj) ≡ aj + (1− aj)(1− qji) = (1− qji)1−aj (1)

because if j invests, then it is impossible for j to transfer the bad event, while
if j does not invest, then j either experiences the bad event or transfers it to
another player, 1 but never both.

Denote by a ≡ (a1, . . . , an) ∈ {0, 1}n the joint action of all n players.
Also denote by a−i ≡ (a1, . . . , ai−1, ai+1, . . . , an) the joint-action of all players
except i. For any subset I ⊂ [n] of players, 2 denote by aI ≡ (ai : i ∈ I) the
sub-component of the joint action corresponding to those players in I only.
We define i’s overall safety from all other players as 3

si ≡ si(aPa(i)) ≡
∏

j∈Pa(i)

eij(aj) =
∏

j∈Pa(i)

(1− qji)1−aj (2)

1The player receiving the transfer still has the chance of not experiencing the bad event.
However, without some form of screening of transfers, this chance is usually very low.

2Here we use as convention that ⊂ need not mean “a proper subset” (i.e., A ⊂ B,
includes A = B).

3Throughout the document, when clear form context, we often drop the arguments of
functions to reduce notational clutter.
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and equivalently his overall risk from some other players is

ri ≡ ri(aPa(i)) ≡ 1− si(aPa(i)) = 1− si. (3)

Note that each players’ external safety (and risk) is a direct function of its
parents only, not all other players.

From these definitions, we obtain player i’s overall cost, the cost of joint
action a ∈ {0, 1}n, corresponding to the (binary) investment decision of all
players, is

Mi ≡Mi(aPF(i)) ≡Mi(ai, aPa(i))

≡

{
Ci + riLi, if ai = 1 (player i invests),

(pi + (1− pi)ri)Li, if ai = 0 (player i does not invest).

= ai(Ci + riLi) + (1− ai)(pi + (1− pi)ri)Li . (4)

Whether players invest is dependent solely on what they can gain or lose
by investing. If the overall cost of investing is less than the overall cost of
not investing, the player will invest. Applying this logic to cost function Mi,
player i will invest if

Ci + riLi < [pi + (1− pi)ri]Li
so that the investment cost and the losses due to a transferred event do not
outweigh the losses from an internal or transferred bad event. Similarly, if
the inequality in the last expression is reversed or is replaced by equality,
player i will not invest or would be indifferent, respectively. Rearranging
the expression for the best-response conditions given in the last equation
and letting ∆i ≡ ρi/pi = Ci

piLi
, the cost-to-expected-loss ratio of player i, we

get the following best-response correspondence BRi : {0, 1}ki−1 → 2{0,1} for
player i:

BRi(aPa(i)) ≡


{1}, if si > ∆i,

{0}, if si < ∆i,

{0, 1}, if si = ∆i.

(5)

In other words, whether it is cost-effective for player i to invest or not depends
on a simple threshold condition on his safety: Does he feel safe enough from
others?

Definition 1. A joint-action a∗ ∈ {0, 1}n is a pure-strategy Nash equilib-
rium (PSNE) of an IDS game if a∗i ∈ BRi(a

∗
Pa(i)) for all players i (i.e., a∗ is

a mutual best-response).
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3 Interdependent Defense Games

In this section, we present our adaptation of IDS to the setting of deliberate
attacks. From now on we will call this setting interdependent defense and use
the acronym IDD to emphasize its connection to IDS. eventually leading to
our new proposed model: interdependent defense (IDD) games. The formulas
up to this point have mostly already been defined in previous work. We begin
by introducing some new concepts that are particularly relevant to settings
in which the source of the risk of experiencing the bad event are deliberate
attacks, such as in the cyber domain.

3.1 Protection Investment May Reduce Transfer Risk

The first modification we introduce to the traditional IDS games is to allow
the possibility that investing in protection not only makes us safe from direct
attack but may also partially reduce (or even eliminate) the transfer risk.
The cyber domain provides a motivation for the modification. 4 The cost
of checking all communications or transfers within a computer network can
be significantly high, but at least some data can be checked in a reasonable
amount of time. We can imagine that if a player invests, some checking
can be done for transferred events. We incorporate this factor by introducing
a new real-valued parameter αi ∈ [0, 1] representing the probability that a
transfer of a potentially bad event will go unblocked by i’s security, assuming
i has invested. Thus, we redefine player i’s overall cost as 5

Mi ≡Mi(aPF(i)) ≡ ai[Ci + αiriLi] + (1− ai)[piLi + (1− pi)riLi] (6)

A similar extension was also proposed by Heal and Kunreuther [2007].

3.2 Introducing the Aggressor

We also change how bad events are modeled. We introduce an additional
player, the aggressor or attacker, who deliberately initiates bad events. (So
that now bad events are no longer “chance occurances” without any delib-
eration.) Instead of having an investment decision like other players, the

4Problems related to vaccination against a contagious disease are other source of mo-
tivation for the proposed modification.

5A possible generalization, which we do not pursue here, may also consider αi a function
of Pa(i).
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aggressor has a target decision for each player - a choice whether or not
to attack that player. We introduce a new action variable for each player,
bi ∈ {0, 1}, where bi = 1 represents that a bad event is attempted to be
initiated on player i. Hence, the aggressor’s pure strategy is denoted by the
vector b ∈ {0, 1}n.

Changing from “random” non-strategic attacks whose probability of oc-
currence is determined independent of the actions of the internal players,
to intentional attacks, ones that are deliberately carried out by an external
actor, gives reason for us to alter pi and qij because their original definitions
actually imply extra meaning with respect to the new aggressor.

3.2.1 Risk Parameters Depend on Aggressor’s Actions

The game parameter pi is the probability that player i will experience a
bad event due to internal risk, which implicitly “encodes” bi because bi = 0
implies pi = 0. Thus, we redefine

pi ≡ pi(bi) ≡ bip̂i

so that player i has intrinsic risk p̂i, and only has internal risk if targeted (i.e,
bi = 1). The new parameter p̂i represents the (conditional) probability that
an attack is successful at player i given that player i was directly targeted
and did not invest in protection.

A similar situation arises for qij, the probability that player i will trans-
fer a bad event to player j (implying that qij “encodes” bi = 1, because a
prerequisite is that i is targeted before it can transfer the bad event to j).
We redefine

qij ≡ qij(bi) ≡ biq̂ij

so that q̂ij is the intrinsic transfer probability from player i to player j, inde-
pendent of bi. The new parameter q̂ij represents the (conditional) probability
that an attack is successful at player j given that it originated at player i,
did not occur at i but was transferred undetected to j.

Note that just as it was the case with traditional IDS games, there is an
implicit constraint on the risk-related parameters: p̂i +

∑
j∈Ch(i) q̂ij ≤ 1, for

all i.
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3.2.2 The Internal Players’ Costs

Because the pi’s and qij’s depend on the aggressor’s action b, so does the
safety and risk functions. In particular, we now have

eij(aj, bj) ≡ aj + (1− aj)(1− bj q̂ji) = (1− q̂ji)bj(1−aj),

si ≡ si(aPa(i),bPa(i)) ≡
∏

j∈Pa(i)

eij(aj, bj) =
∏

j∈Pa(i)

(1− q̂ji)bj(1−aj)

and
ri ≡ ri(aPa(i),bPa(i)) ≡ 1− si.

Hence, for each player i, the cost function becomes

Mi ≡Mi(aPF(i),bPF(i))

≡

{
Ci + αiriLi, if ai = 1 (player i invests),

bip̂iLi + (1− bip̂i)riLi, if ai = 0 (player i does not invest),

= ai[Ci + αiriLi] + (1− ai)[bip̂iLi + (1− bip̂i)riLi] . (7)

The Internal Players’ Best-Responses. Letting ∆̂i ≡ ρi/p̂i = CibpiLi
the

adapted cost-to-expected-loss ratio of internal player i, and

ŝi ≡ ŝi(aPa(i),bPF(i))

≡ bisi +
1− αi
p̂i

ri = bisi +
1− αi
p̂i

(1− si)

=

(
bi −

1− αi
p̂i

)
si +

1− αi
p̂i

,

we get that the following best-response correspondence BRi : {0, 1}ki−1 ×
{0, 1}ki → 2{0,1}:

BRi(aPa(i),bPF(i)) ≡


{1}, if ŝi > ∆̂i,

{0}, if ŝi < ∆̂i,

{0, 1}, if ŝi = ∆̂i.

(8)
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3.2.3 The Aggressor’s Payoff and Best-Response

The aggressor is assumed to have opposite goals to those of all other internal
players: to cause as much damage as possible. One possible utility/payoff
function U quantifying the objective of the aggressor is 6

U ≡ U(a,b) ≡
n∑
i=1

ui(aPF(i),bPF(i))− biC0
i ,

where

ui(aPF(i),bPF(i)) ≡Mi− aiCi = (aiαiri + (1− ai)(bip̂i + (1− bip̂i)ri))Li , (9)

which adds the expected players costs (for targeted and transferred bad
events) over all players, minus C0

i , the aggressor’s own “cost” to target player
i. 7

We close out this section by presenting the attacker’s best-response cor-
respondence BR0 : {0, 1}n → 2{0,1}

n
:

BR0(a) ≡ arg max
b∈{0,1}n

U(a,b) . (10)

Definition 2. A joint-action (a∗,b∗) ∈ {0, 1}2n is a PSNE of an interde-
pendent defense game if, for each player i, a∗i ∈ BRi(a

∗
Pa(i),b

∗
PF(i)), and for

the aggressor, b∗ ∈ BR0(a
∗).

3.3 Limiting the Aggressor’s Power

Note that the aggressor has in principle an exponential number of pure strate-
gies! That is, the aggressor has the ability to attack any subset of the sites.
We begin our study assuming that the aggressor has limited capabilities and
restrict the number of possible attacks (e.g., at most k sites can be simul-
taneously attacked). Future work will consider restricting the space of pure
strategies by, for example, limiting distributional assumptions over possible
pure strategies (e.g., the aggressor’s set of pure strategies belongs to the set
of joint-attack vectors corresponding to at most K attacks) .

6Note that we can also consider the case in which the aggressor can target only a subset
T ⊂ {1, . . . , n} of all the sites. Of course, in that case, only nodes in Text ≡ ∪i∈T CF (i)
can be affected by an attack, either direct or indirect. Thus, under reasonable values of
the parameters, a∗[n]−Text

equals either 1 or 0.
7Note that in this model, this cost can include the cost of getting caught or retaliated,

among other things.
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3.3.1 Limiting the Number of Simultaneous Attacks

Let us start simple and assume that there is at most a single simultaneous
attack.

Assumption 1. The set of pure strategies of the aggressor is

B =

{
b ∈ {0, 1}n

∣∣∣∣∣
n∑
i=1

bi ≤ 1

}
. (11)

Any pure strategy in B is either a vector of all 0’s, or exactly one 1.
We first note that in the case of at most one attack (Assumption 1), some

of the expressions involving external risk/safety simplify considerably. For
instance, in this case, we have

si ≡ si(aPa(i),bPa(i)) =

{∑
j∈Pa(i) bjeij(aj), if bj = 1 for some j ∈ Pa(i),

1, if bj = 0 for all j ∈ Pa(i),

= 1−
∑

j∈Pa(i)

bj(1− aj)q̂ji,

so that
ri(aPa(i),bPa(i)) =

∑
j∈Pa(i)

bj(1− aj)q̂ji,

and
bisi = bi.

Also, if the interdependent defense game has a PSNE (a∗,b∗) in the single-
attack case, then the aggressor’s payoff in it is

U(a∗,b∗) =

max
i∈[n]

(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a
∗
jαj + (1− a∗j))Lj

− C0
i

+

where for any real number z ∈ R, the operator [z]+ ≡ max(z, 0); in addition,
if b∗k = 1 for some k ∈ [n], then

(1− a∗k)

p̂kLk +
∑

j∈Ch(k)

q̂kj(a
∗
jαj + (1− a∗j))Lj

− C0
k ≥ max

i∈[n]−{k}
(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a
∗
jαj + (1− a∗j))Lj

− C0
i

+

. (12)
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We will now show that in this case, under reasonable parameter values,
there is no PSNE in interdependent defense games! We begin by introducing
some assumptions on the game parameters.

The first assumption states that every site’s investment cost is positive
and (strictly) smaller than the conditional expected direct loss if the site
were to be directly attacked (bi = 1).

Assumption 2. For all sites i ∈ [n], 0 < Ci < p̂iLi.

The next assumption states that, for all sites i, the aggressor’s cost to
attack i is positive and (strictly) smaller than the expected loss (i.e., gains
from the perspective of the attacker) achieved if an attack initiated at site i
is successful, either directly at i or at one of its children (after transfer). Or,
roughly speaking, for every site, there is always the possibility that the site
could be attacked if the conditions are “right” (i.e., neither the site nor its
children are protected).

Assumption 3. For all sites i ∈ [n], 0 < C0
i < p̂iLi +

∑
j∈Ch(i) q̂ijαjLj.

The following proposition eliminates PSNE as a solution concept for “nat-
ural” interdependent defense games in which at most one attack is possible.
The main significance of this result is that it allows us to concentrate our
efforts on mixed-strategy Nash equilibria (MSNE), a topic we consider in the
following section.

Proposition 1. No interdependent defense game in which Assumptions 1, 2
and 3 hold has a PSNE.

A Short Remark on Extensions. We can further relax our restrictions
on the set of pure strategies of the attacker in several directions. One is by
extending our previous discussion and caping the number of attacks toK > 1.
A further generalization along the same lines is to impose other more complex
restrictions such as subdividing or creating a partition of the players/sites
into groups, and limiting the maximum number of attacks both globally and
within each group. The analysis under those alternative restrictions is likely
to be significantly more involved than the case of one attack presented earlier,
of course. We leave such an analysis for future work.
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4 Allowing Mixed Strategies

We now extend the capabilities of the players by allowing them to play mixed
strategies.

4.1 Notation and Preliminaries

For all player i, denote by xi ≡ P(Ai = 1) the mixed strategy of player i: the
probability that player i invests. 8 In other words, the random variable Ai ∼
Bernoulli(xi) models the (possibly randomized) decision of player i, with
{Ai = 1} corresponding to the event that player i invests. Similarly, B ≡
(B1, . . . , Bn) is a vector of Bernoulli, not necessarily independent random
variables, y ≡ yB : {0, 1}n → [0, 1] denotes the joint PMF of B corresponding
to the aggressor’s mixed strategy so that for all b ∈ B, y(b) ≡ yB(b) ≡
P(B = b) is the probability that the aggressor chooses joint-attack vector
b. 9

Our model works within a non-cooperative setting (i.e., each player plays
based on its own mixed strategy independently). Thus, the joint mixed-
strategy of play is, for all joint pure-strategies (a,b) ∈ A× B,

P(A = a,B = b) = P(B = b)
n∏
i=1

P(Ai = ai) = y(b)
n∏
i=1

xai
i (1− xi)1−ai

where A ≡ {0, 1}n denotes the joint pure-strategy of the sites.
For simplicity, it will be convenient to denote the marginal PMF over a

subset I ⊂ [n] of the internal players by yI ≡ yBI
such that for all bI ∈

BI , yI(bI) ≡ yBI
(bI) ≡ P(BI = bI) =

∑
b−I∈B−I

yBI ,B−I
(bI ,b−I) is the

(marginal) probability that the aggressor chooses a joint-attack vector in
which the sub-component decisions corresponding to players in I are as in
bI . It will also be convenient to denote by yi ≡ y{i}(1) ≡ P(Bi = 1) the
marginal probability that the aggressor chooses an attack vector in which
player i is directly targeted.

8We can also view xi as a kind of investment level of protection of player i and define
the game such that the pure strategies of each player i are given by the interval [0, 1] ⊂ R.

9We are intentionally considering a general set of possible pure strategies of the ag-
gressor, denoted by B, to allow for possible restrictions on this set, some of which were
presented and discussed in the previous section. Of course, B = {0, 1}n when the aggres-
sor’s pure strategies are unconstrained, and the aggressor is thus allowed to consider an
attack pure-strategy on any possible subset of the sites.

13



Slightly abusing notation, we redefine some of the functions previously
introduce in the context of pure-strategies to the mixed strategy setting. For
instance, the function eij for how safe i is from j is now of type [0, 1]2 → R
so that

eij(xj, yj) ≡ E[eij(Aj, Bj)] = xj + (1− xj)(1− yj q̂ji).

Because eij(xj, 0) = 1, in the discussion below we abuse notation by ignoring
the dependency on yj and use

eij(xj) ≡ eij(xj, 1) = xj + (1− xj)(1− q̂ji) = 1− (1− xj)q̂ji

when it is clear from context. (Similarly for other previously-defined func-
tions such as si, ri, etc.)

To simplify notation, we define the random variables Si ≡ si(APa(i),BPa(i))
and Ri ≡ 1− Si .

4.2 The Expected Costs of the Internal Players

In general, the expected cost of protection to site i, with respect to a joint
mixed-strategy (x, y), is now

Mi(x, y) ≡Mi(xPF(i), yPF(i)) ≡ E[Mi(APF(i),BPF(i))]

= xi (Ci + αiE[Ri]Li) + (1− xi) (p̂iE[BiSi] + E[Ri])Li , (13)

where E[Ri] = 1− E[Si],

E[Si] =
∑

I⊂Pa(i)

yI,Pa(i)−I(1,0)
∏
j∈I

(1− (1− xj)q̂ji) ,

and

E[BiSi] =
∑

I⊂Pa(i)

y{i},I,Pa(i)−I(1,1,0)
∏
j∈I

(1− (1− xj)q̂ji) .

4.3 The Attacker’s Expected Payoff

For each internal player i, define the random variable Ui ≡ ui(APF(i),BPF(i)).
Define the random variable U ≡

∑
i Ui − biC0

i .
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The expected payoff of the aggressor is simply

U(x, y) ≡ E[U ] = E

[∑
i

Ui − biC0
i

]
=
∑
i

E[Ui]− yiC0
i

where

E[Ui] = ((1− xi)p̂iE[BiSi] + (xiαi + (1− xi))E[Ri])Li

≡ ui(xPF(i), yPF(i)) .

4.4 Best-Response Correspondences of Internal Play-
ers

Let

ŝi ≡ ŝi(xPa(i), yPF(i)) ≡ E[BiSi] +
1− αi
p̂i

E[Ri].

Denote by Pm the set of all possible joint probability mass functions over
m Bernoulli random variables. Recall that ki ≡ |PF(i)|. The best-response
correspondence BRi : [0, 1]ki−1 × Pki → [0, 1] of site i is

BRi(xPa(i), yPF(i)) ≡


{1}, if ŝi > ∆̂i,

{0}, if ŝi < ∆̂i,

[0, 1], if ŝi = ∆̂i.

(14)

It is important to remember that BRi of player i depends only on its par-
ents’ mixed strategies xPa(i) and aggressor’s mixed-strategy marginal over i’s
parent family. This point will become particularly relevant when considering
restrictions on the complexity of the aggressor’s mixed strategies.

4.5 The Aggressor’s Best-Response Correspondence

The best-response correspondence for the aggressor is simply

BR0(x) ≡ arg max
y∈Pn

U(x, y). (15)

We can also express the conditions for the aggressor’s best response as, y∗ ∈
BR0(x) if and only if

n∑
i=1

ui(xPF(i), y
∗
PF(i))− y∗iC0

i ≥
n∑
i=1

ui(xPF(i),bPF(i))− biC0
i
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for all b ∈ {0, 1}n.

Definition 3. A joint mixed-strategy (x∗, y∗) is a mixed-strategy Nash equi-
librium (MSNE) of the interdependent defense game if (1) for all sites i ∈ [n],
x∗i ∈ BRi(x

∗
PF(i), y

∗
PF(i)) and (2) y∗ ∈ BRi(x

∗).

4.6 A Characterization of the MSNE

Recall that the space of pure strategies of the aggressor is, in its most general
form, exponential in the number of internal players. This is an obstacle to
tractable computational representations in large-population games.

In the following result, we establish an equivalence class over the ag-
gressor’s mixed strategy that allows us to only consider “simpler” mixed
strategies in terms of their probabilistic structure.

Proposition 2. For any mixed strategy of the interdependent defense game
(x∗, y∗), with the aggressor’s utility defined as above, there exists another
mixed strategy (x∗, ỹ), such that

1. the joint PMF ỹ decomposes as 10

ỹ(b) ∝
n∏
i=1

ΦPF(i)(bPF(i))

for some non-negative functions ΦPF(i) : {0, 1}ki → [0,∞), and all
b ∈ {0, 1}n,

2. for all i ∈ [n], the parent-family marginal PMFs ỹPF(i) = y∗PF(i) agree,
and

3. the sites and the aggressor achieve the same expected cost and utility,
respectively, in (x∗, ỹ) as in (x∗, y∗): for all i ∈ [n],

Mi(x
∗
PF(i), ỹPF(i)) = Mi(x

∗
PF(i), y

∗
PF(i)),

and
U(x∗, ỹ) = U(x∗, y∗).

10In other words, ỹ is a Gibbs distribution with respect to the undirected “moralized”
graph that results from adding an (undirected) edge among every pair of parents of every
node to the original directed graph of the game and ignoring the directions of the edges
in the original game graph.
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Corollary 1. For any interdependent defense game, let kmax ≡ maxi∈[n] ki
be the size of the largest parent-family in the game graph. The representation
size of any mixed strategy of the aggressor in the game is O

(
2kmax

)
, modulo

expected-payoff equivalence.

4.7 The Case of at Most One Attack

In this case, the expressions given previously simplify considerably. 11 Let
y0 ≡ P (b = 0). In particular, we have

∑n
i=0 yi = 1,

E[Si] = 1−
∑

j∈Pa(i)

yj(1− xj)q̂ji ,

so that E[Ri] =
∑

j∈Pa(i) yj(1− xj)q̂ji, and

E[BiSi] = P(Bi = 1,BPa(i) = 0) = yi .

This leads to a simplification of the expected cost of the internal players:

E[Mi] = xiCi + (1− xi)yip̂iLi+

(xiαi + (1− xi))Li
∑

j∈Pa(i)

yj(1− xj)q̂ji .

5 Interdependent Defense Games under Sin-

gle Attack and Full Transfer Vulnerability

In this section, we provide a polynomial-time algorithm to compute a MSNE
in interdependent defense games in which investment in security provides
no protection from transfers (i.e., αi = 1 for all internal players i) and the
aggressor’s capabilities are limited to at most one attack (i.e., Assumption 1
holds).

11Also, in this case, we can view yi as a kind of level of effort by the aggressor to each
target i ∈ [n], similar to the alternative view of xi presented previously, and define the game
such that the pure strategies of the aggressor are given by the n-simplex {(z0, z1, . . . , zn) ∈
Rn+1 |

∑n
i=0 zn = 1 and zi ≥ 0 for all i}.
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5.1 Preliminaries

We begin by formally stating our assumption on the α’s.

Assumption 4. For all internal players i ∈ N , the probability αi = 1 that
player i’s investment in security does not protect the player from transfers.

This is the same assumption implicit in the original IDS games.

Definition 4. We say an interdependent defense game is transfer-vulnerable
if Assumption 4 holds.

Also, recall that Assumption 1, in the context of mixed strategies, implies∑n
i yi + y0 = 1.

Definition 5. We say an interdependent defense game is a single-attack
game if Assumption 1 holds (i.e., at most one attack is possible).

Combining Assumptions 1 and 4 allows us to greatly simplify the best-
response condition of the internal players because now ŝi = yi.

Let L0
i (xi) ≡ (1 − xi)(p̂iLi +

∑
j∈Ch(i) q̂ijLj). Later it will be convenient

to denote by L
0

i ≡ L0
i (0) = p̂iLi +

∑
j∈Ch(i) q̂ijLj, so that we can express

L0
i (xi) = (1 − xi)L

0

i , to highlight that L0
i is linear function of xi. Similarly,

it will also be convenient to let M0
i (xi) ≡ L0

i (xi) − C0
i , and denote M

0

i ≡
M0

i (0) = L
0

i − C0
i . Let η0

i ≡ C0
i /L

0

i .
The best-response condition of the attacker also simplifies under the same

assumptions because now E[U ] =
∑n

i=1 yiM
0
i (xi).

We will make use of Assumption 3 stated earlier. That assumption is also
reasonable in our new context because, under Assumption 4, if there were
a player i with η0

i > 1, the aggressor would never attack i, and as a result
player i would never invest. In that case, we can safely remove j from the
game, without any loss of generality.

5.2 Characterizing the MSNE

We now characterize the space of MSNE in interdependent defense games in
a way that leads immediately to a polynomial-time algorithm for computing
a single MSNE.

We will start by partitioning the space of games into three, based on
whether

∑n
i=1 ∆̂i is (1) less than, (2) equal to, or (3) greater than 1.
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Proposition 3. The joint mixed-strategy (x,y) is an MSNE of a single-

attack transfer-vulnerable interdependent defense game in which
∑n

i=1 ∆̂i < 1
if and only if it satisfies the following properties.

1. There may not be an attack: 1 > y0 = 1−
∑n

i=1 ∆̂i > 0.

2. Every internal player has non-zero chance of being attacked, and this
probability equals the respective internal player’s cost-to-expected-loss
ratio: for all internal players i ∈ [n], yi = ∆̂i > 0.

3. Every internal player invests some but none does fully, and in par-
ticular, the probability a player does not invest equals the respective
cost-to-loss ratio to the attacker: for all internal players i ∈ [n], 0 <
xi = 1− η0

i < 1.

Proposition 4. The joint mixed-strategy (x,y) is an MSNE of a single-

attack transfer-vulnerable interdependent defense game in which
∑n

i=1 ∆̂i = 1
if and only if it satisfies the following properties.

1. There is always an attack: y0 = 0.

2. Every internal player has non-zero chance of being attacked, and this
probability equals the respective internal player’s cost-to-expected-loss
ratio: for all internal players i ∈ [n], yi = ∆̂i > 0.

3. No internal player invests fully, and the possible investment probabili-
ties are connected by a bounded 1-d interval (manifold) in Rn:

xi = 1− v + C0
i

L
0

i

for all i ∈ [n]

with 0 ≤ v ≤ mini∈[n]M
0

i .

Proposition 5. The joint mixed-strategy (x,y) is an MSNE of a single-

attack transfer-vulnerable interdependent defense game in which
∑n

i=1 ∆̂i > 1
if and only if it satisfies the following properties.

1. There is always an attack: y0 = 0.

2. There exists a non-singleton, non-empty subset I ⊂ [n], such that

mini∈IM
0

i ≥ maxk/∈IM
0

k, if I 6= [n], and the following holds.
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(a) No internal player outside I invests or is directly attacked: xk = 0
and yk = 0 for all k /∈ I.

(b) Let J ≡ arg min
i∈I

M
0

i . No internal player in J invests and the prob-

ability of that player being directly attacked is at most the player’s
cost-to-expected-loss ratio: for all i ∈ J , xi = 0 and 0 ≤ yi ≤ ∆̂i;
in addition,

∑
i∈J yi = 1−

∑
t∈I−J ∆̂i.

(c) Every internal player in I−J partially invests and is attacked with
probability equal to the player’s cost-to-expected-loss ratio: for all
i ∈ I − J , yi = ∆̂i and

0 < xi = 1− mint∈IM
0

t + C0
i

L
0

i

< 1.

Hence, from the proof of the last proposition we can infer that if the

M
0

l ’s form a complete order, then the last condition allows us to search for
an MSNE by exploring only n− 2 sets, as opposed to 2n−2 if done naively.

It turns out a complete order is not necessary. The following claim allows

us to safely move all the internal players with the same value of M
0

i in a
group as a whole inside or outside I.

Claim 1. Let I ⊂ [n], such that I ′ ⊂ I, |I ′| < |I| < n − 1. Suppose we
find an MSNE (x,y) such that I ′ = {i | yi > 0}, with the property that

minl∈I′M
0

l = maxk/∈I′M
0

k. In addition, suppose I satisfies minl∈I′M
0

l =

minl∈IM
0

l ≥ maxk/∈IM
0

k. Then, we can also find (x,y) using partition I.

5.3 Algorithms

Propositions 3, 4 and 5 provide an extremely simple characterization of the
MSNE of single-attack transfer-vulnerable interdependent defense games.
That characterization leads immediately to a polynomial-time algorithm for
computing (essentially) all MSNE in these games. First note that the equilib-

rium in the case of IDD games with
∑n

i=1 ∆̂i ≤ 1 has essentially an analytic

closed-form. Hence, we concentrate on the remaining case of
∑n

i=1 ∆̂i > 1.
Armed with Proposition 4 and Claim 1, we now describe the part of the

algorithm corresponding to single-attack transfer-vulnerable interdependent
defense games with

∑n
i=1 ∆̂i > 1. We start by sorting the indices of the
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internal players in descending order based on M
0

i ’s. Let Val(l) and Idx(l) be
the lth value and index in the resulting sorted list, respectively. Find t such
that 1− ∆̂Idx(t) ≤

∑t−1
l=1 ∆̂Idx(l) < 1. Let k = arg max{l ≥ t | Val(l) = Val(t)}

(i.e., continue down the sorted list of values until a change occurs). For

i = 1, . . . , t − 1, let l = Idx(i) and set xl = 1 − Val(t)+C0
l

L
0
l

and yl = ∆̂l. For

i = k + 1, . . . , n, let l = Idx(i) and set xl = 0 and yl = 0. For i = t, . . . , k,
let l = Idx(i) and set xl = 0. Finally, represent the simplex defined by
the following constraints: for i = t, . . . , k, let l = Idx(i) and 0 ≤ yl ≤
∆̂l;

∑k
i=t yIdx(i) = 1 −

∑t−1
i=1 ∆̂Idx(i). The running time of the algorithm is

O(n log n) (because of the sorting needed).
Having established and discussed the appropriate definitions, we now

state our main computational result.

Theorem 1. There exists a polynomial-time algorithm to compute all MSNE
of a single-attack transfer-vulnerable interdependent defense game.

To re-emphasize, note that in the cases in which the equilibria is not
unique, it can be generated via simple sampling of either a simple linear
system or a simplex. In either case, one can compute a single MSNE from
that infinite set in polynomial time.

Let us revisit the types of games that may have an infinite MSNE set.
Note that the case in which

∑n
i=1 ∆̂i = 1 has measure zero within the space

of parameters. It is also quite brittle in the sense that adding or removing
a player breaks the equality. For the case in which

∑n
i=1 ∆̂i > 1, which

seems like the most reasonable of all three cases, if the value of the M
0

i ’s are
distinct, 12 then there is a unique MSNE!

5.4 Some Remarks

Note that if, at equilibrium, an internal player invests in security with positive
probability, then that probability of investing not only depends on the cost to
the attacker (which is expected), but also on the expected losses the player’s
non-investing could cause to the player’s children. So, the player’s probability
of investing is a function of the player’s family (i.e., the player and the player’s
children), which includes the player itself. More formally, at equilibrium x,

12Actually, as can be seen from Proposition 5 and the description of the algorithm, a
weaker requirement is enough to achieve a unique MSNE. All we need is for the set at
which the sum goes over one to guarantee unique MSNE.
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if player i’s probability of investing xi > 0, the probability of not investing is
proportional to the cost C0

i incurred by the aggressor to attack i and inversely
proportional to the expected loss p̂iL+

∑
j∈Ch(i) qijLj that could cause to the

player i’s family an attack on that player i should i not invest in security. It
is kind of reassuring the at equilibrium, which is the (almost-surely) unique
stable outcome of the system, the probability of investing increases with the
potential loss a player’s non-investment decision could cause to the system:
The higher the expected loss from not investing to a player’s children, the
higher the probability of that player investing.

Hence, behavior in a stable system implicitly “forces” all players to in-
directly account for or take care of their own children. This may sound a
bit paradoxical at first given that we are working within “noncooperative”
setting and each player’s cost function is only dependent on the investment
decision of the player’s parents. What is happening here is that the existence
of the attacker in the system is inducing an (almost-surely) unique stable
outcome in which an implicit form of “cooperation” occurs. An internal
player’s best response is independent of their parents, the source of transfer
risk, if investment in security does nothing to protect that player from trans-
fers (i.e., αi = 1). This makes sense because the player cannot control the
transfer risk. Said differently, there is nothing the player can do to prevent
the transfer, even though the original potential for transfers does depend on
the parents’ investment strategies.

In short, rational/optimal noncooperative behavior for each player is not
only to protect for the player’s own losses but also “cooperate” to protect
the player’s children.

How does the network structure and the equilibrium relate? As seen
above, the values of the equilibrium strategy of each player are local in the
sense that they depend on information from the attacker, the player and
the player’s children only. It was evident from the previous discussion that
a player’s probability of investing at the equilibrium increases with the ex-
pected loss sustained from a “bad event” occurring as a result of a transfer
from a player to the player’s children. So overall, the higher the player’s
children losses, the higher the probability of investing.

Let us explore this last point further. Consider the case of uniform-
transfer probabilities. Analogous to uniform-transfer IDS games [Kunreuther
and Heal, 2003, Kearns and Ortiz, 2003], in that case transfer probabilities are

only a function of the source, not the destination: q̂ij ≡ δ̂i. The expression for
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the equilibrium probabilities of those players who have a positive probability
of investing would simplify to

xi = 1− v + C0
i

p̂iLi + δi
∑

j∈Ch(i) Lj
,

for some constant v. The last expression suggests that what differentiates
the probability of investing between players is just the sum of the children’s
losses,

∑
j∈Ch(i) Lj. That would suggests the larger the number of children

the larger the probability of investing. A scenario that seems to further lead
us to that conclusion is when we make the further assumption that the value
of all the loss parameter Li ≡ L is the same for all players. Then, we would
get

xi = 1− v + C0
i

L (p̂i + δi|Ch(i)|)
.

We can go even further and assume a homogeneous system in the sense that,
in addition to the above, each type of parameter has the same value across
all players: p̂i ≡ p̂, δi ≡ δ, and C0

i ≡ C0. 13 We finally obtain

xi = 1− v + C0

L (p̂+ δ|Ch(i)|)
.

So the probability of not investing is inversely proportional to the number of
children the player has.

However, what is missing from the discussion above is that the risk-related
parameters are constrained: p̂i +

∑
j∈Ch(i) q̂ij ≤ 1. Considering the previ-

ous two cases of uniform-transfer and homogenous-parameters/players, the
resulting conditions would be δi|Ch(i)| ≤ 1 − p̂i and δ|Ch(i)| ≤ 1 − p̂, re-
spectively. So, clearly, we cannot increase the number of children of a player
arbitrarily without decreasing the uniform or constant transfer probability.
So our discussion above holds as long as the conditions just stated on the
risk-related parameters hold. If we fix the maximum number of children, that
would impose an upper bound on the transfer probabilities, and vice versa. It
is important to understand the implicit assumptions we would be making by
fixing either the maximum number of children or the transfer probabilities.
For example, if we fix the transfer probabilities we are implicitly assuming

13Note that this does not mean that the expected loss caused by a player that does not
invest but is attacked, L (p̂+ δ|Ch(i)|), is the same for all players.
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that adding a new child that a player can transfer to does not change the
total probability of transfer to the previously existing children, it just adds
to the total probability, so that no normalization takes place.

Let us now explore the properties of the set of internal players that the
aggressor could potentially attack at equilibrium (i.e., the support of the
attacker’s mixed strategy; formally, I ≡ {i | yi > 0}). This set has the
property that internal players for which the attacker’s cost-to-expected-loss
is higher are “selected” first in the algorithm. In other words, the expected
payoff to the attacker is in this sense, the “minimum” possible. In addition, if
the size of that set is t, and there is a lower bound on the internal players’ cost-
to-expected-loss ratio ∆̂i > ∆̂, and

∑n
i=1 ∆̂i > 1, then t/n < 1/(∆̂n) is an

upper-bound on the proportion of players that could potentially be attacked
(where t is of course the size of that set). Also, if we have a game with
homogeneous parameters, then the probability of an attack will be uniform
over that set I (almost surely), so that every player in that set is attacked
with exactly the same probability. Finally, all but one of the players in that
set I invest in security with some non-zero probability (almost surely).

6 Experiments

We obtain the structure and topology of the Internet from DIMES (net-
dimes.org) [Shavitt and Shir, 2005]. Namely, we use the Autonomous Sys-
tems (AS) graphs of the Internet. The dataset consists of a set of AS level
nodes and AS level edges which were found in March 2010 and were seen at
least twice. The connection between any two nodes is defined as the edge
between them. The data set consist of 27106 nodes and 100402 edges. The
data set consist of 27106 nodes (683 of them are isolated nodes) and 100402
edges. The graph length (diameter) is 6253 and the density (number of edges
divided by number of possible edges) is 1.9920 × 10−5. Figure 1 shows the
indegree and outdegree distribution of the graph.

For this experiments, we consider single-attack IDD games with arbitrary
transfer vulnerability ααα. We do not have any algorithm tailored for the case
of arbitrary transfer vulnerability. We use best-response gradient-dynamics
heuristic, a well-known technique from the work on learning in games [Fuden-
berg and Levine, 1999, Singh et al., 2000, Kearns and Ortiz, 2003, Heal and
Kunreuther, 2005, Kearns, 2005], to search for an ε-approximate MSNE, 14

14An ε-approximate MSNE is a joint mixed strategy in which the gain for individual
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Figure 1: The bar graph on the left and on the right shows the number of
node with a particular outdegree value and indegree value, respectively. (The
graphs only showing the in/out degrees with non-zero number of node.)

under an properly normalized payoffs/costs functions. During the initializa-
tion phase of the program, we construct a (network) graph using the data
from DIMES. We also compute the transfer vulnerability and initialize all
the parameter values for each node in the network, as explained in the next
paragraph. Note that in this step, we randomly initialize the yi and xi values
of each node. At each iteration, we compute and update each player’s util-
ity (normalized), attacker’s utility, yi and xi for each node, and other data
according to the IDD model. In addition, we output the top 360 nodes with
the highest yi along with xi, ∆i, and other statistics. In the experiments, we
run the process until it reaches a ε-MSNE or a maximum of 1000 iterations.

Given the heuristic nature of best-response gradient dynamics, we ex-
perimentally evaluated the running-time convergence behavior. We ran ten
simulations for each of the ε value and recorded the number of iterations until
convergence, or 1000 if the run did not converge, which in this case happened
only twice, and it occurred when ε = 0.001.

In Figure 2, we observe the number of iterations took for varies epsilon-
MSNE to converge. We can see that the trend lines of the graph is very close
to 1

x
with R2 relatively close to 0.9 (including the two non-convergence data

point for ε = 0.001). This is a good indication that the running-time conver-
gence behavior of best-response gradient dynamics is captured by function
close to 1

ε
.

We ran two sets of experiments based on randomly generated or fixed

unilateral deviation is no larger than ε. Hence, a 0-approximate MSNE is an exact MSNE.
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Figure 2: The x-axis represents the ε value and the y-axis represents the
number of iteration until convergence (or 1000 iterations) to some ε-MSNE
(left: fixed parameters, right: randomly generated parameters). The trend
line is fitted to the graph and is shown at the upper right corner of the graph
along with its R2 value. It roughly behaves like a low degree polynomial of
1/x, which is somewhat consistent with some theoretical results on learning
dynamics.

parameters. In the experiments with fixed parameters, we set the parame-
ters as follow: α = 0.5/20, Li = 108 + (109) ∗ 0.5, Ci = 105 + (106) ∗ 0.5,
pi = 0.8 + 0.5/10. For the experiments with randomly generate parame-
ters, we simply replace all the ”0.5”’s in the expressions above by a ran-
dom number distributed uniformly over [0, 1]. In both sets of the exper-
iment, the value of the transfer risk probability parameters qij’s is set as
qij ∝ Zij × (|Ch(j)|+ |Pa(j)|), where the random (variable) factor Zij ∼
Uniform([0.2, 0.4]) i.i.d., for all j ∈ Ch(i). As stated previously, the yi’s
and xi’s are independently, identically distributed random variables with a
uniform distribution over [0, 1]. Finally, we set ε to 0.005 and the maximum
number of iterations to 1000. In the sequel, we show typical plots of the
solution obtained in each run.

As shown in Figure 3, the experiments suggest that there is a correlation
between xi and yi; the sites that have lower yi values tend to have a higher
xi

yi
value.

In Figure 4, we plot the topological structure of the top sites (in this case
360) with the highest yi and their immediately neighbors. We do similarly
for xi.

Notice that there are a few numbers of isolated individual nodes and
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Figure 3: The graphs on the left (fixed parameters) and on the right (ran-
domly generated parameters) show the xi

yi
value of a node. The nodes are

ordered decreasingly based on the yi value.

few small networks, but in general, the graph tends to have a cluster-like
structure as seen in the fixed parameters case. One of the reason the isolated
nodes are target is that they do not invest enough and therefore result in a
higher utility gain for the attacker.

Figure 4 also shows the number of connected components of the network
for the subgraph of the nodes most likely to being attacks (and their neigh-
bors) as well as those of the network for the subgraph of the nodes with the
highest probability of investment, along with some additional properties of
the graphs.

The plots in Figure 5 show the in-degree and out-degree of the 360 sites
with highest yi and xi. One of the reason that the top 360 nodes (with the
highest yi) have higher in degree than out degree in general is because those
nodes have high out degree decided to protect themselves, if they don’t have
”high enough” xi, the attacker would attack them because the attacker would
gain more utility compare to those with low out degree.

On the other hand, it might make sense that those do not have high out
degree being targeted because they felt safe in turns of the attacker’s utility
and lower their xi therefore we are seeing this such relationship. One thing
we notice in Figure 5 is that there is not a correlation between the yi or
the xi and its corresponding in-degree and out-degree (which,. Similarly we
cannot see any pattern in the case of fixed parameters. Also, note that the αi
we are using for each player is relatively low (i.e., uniformly distributed over
[0, 1/40]); yet, interestingly, such a behavior is also predicted by the theory
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for the case αi = 1.

7 Future Work

Attackers Can Affect Transfer Probabilities. We could extend the
strategy space of the attacker by allowing the attacker to affect transfer.
One particular instantiation of this idea is to have the network graph edges
represent the attacker’s targets, as opposed to just the node. The attacker’s
pure strategies would now be based on the edges (i, j), such that binary
action variable bij would now represent the attack, taking a value of one if
the attackers wants to attack j but only via a transfer from i.

Multiple Attackers with Multiple Attacks. While dealing with mul-
tiple attackers is outside the scope of this paper, we have in fact extended
the model in a natural way in that direction. However, we were able to
extend the representation results, but not the characterization or computa-
tional/algorithmic results. We leave that endeavor for future work. In prin-
ciple, the best-response gradient dynamics can also be used as a heuristic in
the multiple attackers’ case.

Open Problems. A thorough characterization of the equilibria of interde-
pendent defense games is lacking, specially for the case of multiple potential
attacks by multiple aggressors. Also, we need a better understanding of the
effect of network structure of the game and restrictions on the aggressors’
available strategies on the equilibria of the game.

Many computational problems in the context of interdependent defense
games remain open.

1. What is the computational complexity of the problem of computing
equilibria of interdependent defense games with arbitrary transfer vul-
nerability? (e.g., a single, multiple or all MSNE? MSNE with particular
properties?)

2. What is the computational complexity of the problem of identifying
“influential” agents, in the sense of Irfan and Ortiz [2011] (see also,
Kleinberg [2007] and the references therein)?
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3. How is the complexity affected by network structure or restrictions on
the aggressors’ available strategies? For example, what if the network
graph is some type of chain, cycle or tree?

8 Summary of Contributions

In this paper, we propose IDD games, an adaptation of IDS games to the
setting in which the attack is deliberate and the attacker is explicitly mod-
eled. We consider the special case of the single attack scenario as a way to
limit the attackers power, and prove that no PSNE exists in such subclass of
games. We then consider randomized strategies and derive the appropriate
expressions for the expected costs of the internal players and the expected
payoff of the attacker, and consequently their respective best-response cor-
respondence.

We study in depth the case in which only one attack is possible and
investment in security does nothing to protect the players from the transfer
risk (which is the same implicit assumption made in the original IDS work).
We completely characterize the MSNE of such a subclass of IDD games. We
prove that, almost surely, every game in that subclass has a unique MSNE,
which can be almost determined analytically.

That result immediately lead to a simple algorithm for computing the
equilibrium that only requires a sorting of the cost-to-expected-loss ratio
gain of the attacker for each player. Hence, the algorithm runs in O(n log n),
where n is the number of internal players.

We then discuss some corollaries of the characterization and highlight
the connection between the network structure and the investment of play-
ers at equilibrium. In particular, we show how investment probabilities at
equilibrium essentially reflect some degree of “cooperation” (in a fully non-
cooperative setting), in that players want to protect their own children in
the network graph (i.e., for each player i, the set of players to which player i
can transfer), and have no direct dependence on the player’s parents, which
are the true source of the risk to the player. In particular, we show how the
probability of investment can increase with the number of children.

Finally, we built a generative model of single-attack IDD games based
on real Internet graph (at the AS level) obtained from DIMES [Shavitt and
Shir, 2005]. Using the graphs for March 2010 (the last ones available) and
a simple best-response gradient heuristic from learning in games [Fudenberg

29



and Levine, 1999], we perform a series of experiments to both show the large-
scale feasibility and scalability of the model and approach, and explore the
behavior of the internal players and the attacker in the resulting equilibria
and network-structure properties.
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Figure 4: The Structure of an Attack to the Internet. The 3-d graphs (top)
correspond to the top 360 Internet nodes most likely to be attacked (left) and to invest
in defense/security measures (right), according to our model, and their neighbors (i.e.,
both parent and children family). The graphs in the middle are 2-d projections of the
respective 3-d graphs on top. The self-loops mark the nodes that are actually attacked
(left) and/or investing (right). Note that, for the most part, both graph structures have
a very dense cluster, with the “highest defense/security investment” graph (right) being
denser than the “most vulnerable” graph. This roughly suggests that, overall, the internal
agents most likely to invest (and their neighbors) form a more tightly connected cluster
within the network, than those more likely to be attacked. The bar graphs (bottom)
correspond to the number of connected components of the top 360 Internet nodes most
likely to be attacked (left) and to invest in defense/security measures (right)), according
to our model. Some properties of the graph corresponding to the network structure are
shown on the upper corner of the graphs.
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Figure 5: The two graphs on top show the corresponding yi (x-axis) and
its in-degree and out-degree in log scale. Similarly, the two graphs at the
bottom show the corresponding xi (x-axis) and its in-degree and out-degree
in log scale.
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