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Abstract

Interactive epistemology in dynamic games studies forms of strategic reasoning like
backward and forward induction by means of a formal representation of players’ beliefs
about each other, conditional on each history. Work on this topic typically relies on epis-
temic models where states of the world specify both strategies and beliefs. Strategies are
conjunctions of behavioral conditionals of the form “if history h occurred, then player i
would choose action ai.” In this literature, strategies are literally interpreted as (objective)
behavioral conditionals. But the intuitive interpretation of “strategy” is that of (subjective)
“contingent plan of action.” As players do not delegate their moves to devices that mechan-
ically execute a strategy, plans cannot be anything but beliefs of players about their own
behavior. In this paper we analyze strategic reasoning in dynamic games with perfect in-
formation by means of epistemic models where states of the world describe the actual play
path (not behavioral conditionals) and the players’ conditional probability systems about
the path and about each other conditional beliefs. Therefore, the players’ beliefs include
their contingent plans. We define rational planning as a property of beliefs, whereas material
consistency connects plans with choices on the actual play path. Material rationality is the
conjunction of rational planning and material consistency. In perfect information games
of depth two (the simplest dynamic games), correct belief in material rationality only im-
plies a Nash outcome, not the backward induction one. We have to consider stronger
assumptions of persistence of belief in material rationality in order to obtain backward
and forward induction reasoning.

1 Introduction

Interactive epistemology in dynamic games studies forms of strategic reasoning like backward

and forward induction by means of a formal representation of the players’ beliefs about each

other at each history.1 Work on this topic typically relies on epistemic models where states of

1For surveys on this topic see Battigalli and Bonanno (1999), Perea (2001) and Brandenburger (2007).
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the world specify both strategies and beliefs. Strategies are conjunctions of behavioral condi-

tionals of the form “if h then ai,” or more descriptively, “if h occurred, player i would choose

ai.” In this literature, strategies are literally interpreted as objective behavioral conditionals:

if the strategy of player i at a state is si, this means that, at that state, si is necessarily exe-

cuted and every conditional “if h occurred, i would choose ai” is true if and only if ai = si(h),
independently of whether h occurs or is counterfactual at the state. But a more intuitive in-

terpretation of “strategy” is that of a subjective “contingent plan of action.” If the extensive

form describing the dynamic game is taken seriously, players cannot commit in advance (not

even secretly) to play a strategy, as such commitment should appear as an explicit move in a

larger, all-encompassing extensive form. Thus, “strategies as plans” cannot be anything but

beliefs of players about their own behavior. Beliefs about own contingent behavior and beliefs

about the contingent behavior of others provide a framework within which actual actions are

rationally chosen at any given information set, as they allow to assign an expected value to

each action. Some authors have explicitly addressed the issue of “strategies as behavioral

conditionals vs. strategies as beliefs.” For example, Battigalli and Siniscalchi (1999) model

first-order beliefs as conditional probability systems over strategy profiles (including own strate-

gies) and assume that a rational player assigns probability one to her actual strategy whenever

possible, i.e. conditional on each information set consistent with the given strategy.2 Thus, a

player j who believes in the rationality of i, equates the (rational) contingent plan of i to what i
would actually do at each of her information sets; this allows j to make conditional predictions

about i’s behavior.3

Unlike strategies, that express behavioral conditionals, conditional probability systems ex-

press epistemic conditionals of the form “if i learned h, then i would believe that . . . .” Epistemic

conditionals in the form of conditional probability systems have been axiomatized. Building

on Samet (2000), Di Tillio, Halpern, and Samet (2010) show that an agent’s conditional beliefs

Bp
i (E|C) (i believes E with probability at least p conditional on C) satisfy a list of reasonable

axioms if and only if there is a mapping assigning to each state of the world a conditional

probability system on the set of states.

While we do not claim that including behavioral conditionals in the state of the world is

conceptually incorrect, we submit that we have a better understanding of how epistemic con-

ditionals can be embedded in states of the world. Therefore we propose to study interactive

epistemology in dynamic games by means of epistemic models whereby states of the world

describe the play path (not the behavioral conditionals) and the players’ conditional belief sys-

2In their analysis, the specification of a strategy at information sets inconsistent with it is immaterial: only the
classes of realization-equivalent strategies matter.

3See also the discussion in Battigalli and Dufwenberg (2009), who note that interpreting strategies as beliefs is
crucial in the context of games with belief-dependent preferences (so called “psychological games”).
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tems (that is, the epistemic conditionals). This methodological move, first advanced by Samet

(1996) in the context of conditional knowledge,4 forces the analyst to interpret strategies as sys-

tems of conditional beliefs about own behavior, which in our view is the correct interpretation

in a context where players cannot delegate their choices to mechanical devices or trustworthy

agents. On the other hand, this move presents interesting challenges in representing even

the most elementary forms of strategic reasoning. We define a seemingly natural notion of

rationality of a given player, say i, called material rationality,5 made of two parts:

Rational Planning: this is a property of player i’s system of conditional beliefs, and in

particular her beliefs about behavior (including her own) at the various nodes; these condi-

tional beliefs define a profile of behavior strategies (bi, b−i); the behavioral strategies of the

opponents, b−i, define a subjective decision tree, and rational planning of i requires that bi is

obtained by dynamic programming on this subjective decision tree.

Material Consistency: this property relates i’s conditional beliefs with her actual behavior:

on the actual path, i never takes actions excluded by her beliefs, that is, by her plan of action.

Let us test the power of these concepts in the simplest dynamic games: generic perfect

information games of depth two, e.g., leader-follower games. First, we rehearse the standard

argument. The existing literature suggests that assuming rationality and initial (or, uncon-

ditional) belief in rationality is enough to obtain the standard backward induction solution:

Rationality (in its sequential version) implies that the second mover best-responds to the first-

mover choice; this pins down the strategy of the second mover. Initial belief in rationality

implies that the first-mover assigns probability one to this strategy. Finally, rationality of the first

mover implies that she best responds to it. Such intuitive argument can be given a formal

representation when objective behavioral conditionals are part of the state of the world, there-

fore the conjunction of conditionals “for each action a1 of the leader, if a1 were chosen then

the follower would take the best response to a1” is an event to which the leader can assign

probability one. But our methodological move of putting only the play path (not the behav-

ioral conditionals) in the state of the world means that we cannot afford the luxury of having

players who assign probabilities to behavioral conditionals. Instead, we work with material

rationality and beliefs, including conditional beliefs.

As we have said, material rationality is the conjunction of rational planning and material

consistency. What are the consequences of material rationality and belief in material rational-

ity? Of course, this depends on how “belief” is defined. If we mean “initial belief,” as above,

then we cannot obtain the backward induction outcome even in leader-follower games. But we

can recover the backward induction outcome if we assume stronger forms of belief. Suppose

4We briefly discuss the relationship with Samet’s paper in Section 5.
5See also Aumann (1998).
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that material rationality holds and that the leader keeps believing in the material rationality

of the follower whenever possible, in particular, after each of her own initial actions. Such

post-action beliefs are crucial because they define the subjective decision tree of the leader:

the subjective value to the leader of each action a1 is determined by what she believes about

the follower conditional on taking a1. If the leader believes in the material rationality of the

follower, conditional on each initial action a1, then each a1 has the backward induction value:

thus, the materially rational leader’s choice and the materially rational follower’s response are

their respective backward induction actions.

This brief discussion suggests that assuming material rationality and some degree of per-

sistency in beliefs may allow an interesting formal analysis of strategic thinking in dynamic

games. It is worth noting that the concept of “strong belief” in an event E (E is believed

whenever possible) is at the heart of the epistemic analysis of forward induction reasoning,

and that forward induction reasoning yields the backward induction path in generic games

with perfect information (Battigalli and Siniscalchi, 2002). Such results are obtained in epis-

temic models that have behavioral conditionals in the states of the world. We show that similar

results hold within the more parsimonious epistemic models considered here.

1.1 An illustrative example: the Stackelberg mini-game

Consider a quantity-setting duopoly where each of two firms, Ann and Bob, can choose either

a low quantity or a high quantity, and Ann moves first. The extensive form of the game and

the payoffs associated to the various combinations of outputs are given in the figure below;

note that the backward induction path is the Stackelberg sequence (U, L).

high (up) 3, 1 0, 0

low (down)

low (left)

2, 2 1, 3

high (right)

Ann

6U

?
D

Bob
�
��*
R

0, 0
H
HHY

L

3, 1

Bob
HHHj

l

2, 2
����

r

1, 3

Let us review the standard epistemic analysis of this game. A state of the world speci-

fies a strategy and a type for each firm, where a type determines (conditional) beliefs about

strategies and types of the other firm. In this context, rationality of Bob means that he would
respond with L to U, and with r to D. If Ann believes in Bob’s rationality, she assigns proba-
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bility one to the strategy just described. Thus, if she is herself rational, she plays U, and the

backward induction path obtains. Now consider the Nash equilibrium (D,Rr). In the standard

framework with strategies in the states, path (D,r) is inconsistent with rationality and belief in

rationality. In the framework we propose, however, this imperfect Nash equilibrium is consis-

tent with material rationality and initial belief in material rationality. In order to restore the

backward induction solution, we have to add the assumption of Ann’s strong belief in Bob’s

rationality.

In our framework, a state of the world (for this example) is a list (z, tA, tB), where Ann’s

(Bob’s) type tA (resp. tB) specifies her beliefs on paths and Bob’s (resp. Ann’s) types, con-

ditional on each decision node of the game. Thus, each type ti of each player i has an un-

conditional belief βi(ti)(·|∅), where ∅ denotes the initial node, and two conditional beliefs

βi(ti)(·|U) and βi(ti)(·|D),6 related to the unconditional belief via the chain rule of conditional

probabilities. Ann’s plan is determined by her unconditional belief, while Bob’s is determined

by his conditional beliefs given U and D. In every state (z, tA, tB) consistent with Bob’s material

rationality, MRB, we must have either z = (U, L) or z = (D, r). However, if βA(tA)(U|∅) = 0,

then even assuming that βA(tA)(MRB|∅) = 1, we cannot conclude that βA(tA)(L|U) = 1 and

βA(tA)(r|D) = 1. Thus, it is indeed possible that z = (D, r), while (z, tA, tB) exhibits material

rationality for both players and also Ann’s unconditional belief in Bob’s material rationality.

In general, we show that in generic perfect information games of depth two, material

rationality and (unconditional) belief in material rationality only imply a Nash equilibrium

path, not the backward induction path (Proposition 1). Then we prove that in generic games

of depth two, the backward induction path does obtain, if we assume material rationality

and strong belief in material rationality within a sufficiently rich epistemic structure (Propo-

sition 2, Corollary 1). For more complex games, such as centipede games of depth three or

more, we show that (correct) common belief in material rationality does not even guarantee

a Nash equilibrium path. On the other hand, building on Battigalli and Siniscalchi (2002),

we show that common strong belief in the other players’ material rationality (an assumption that

captures forward induction reasoning) implies the backward induction path in generic games

of perfect information (of any depth), provided that the epistemic structure is sufficiently rich

(Proposition 5).

6In our analysis we allow also beliefs conditional on terminal nodes, but we do so mainly for notational
convenience.
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2 Preliminaries

2.1 Games with perfect information

Throughout the paper we fix a finite game with perfect information, using the standard nota-

tion in Osborne and Rubinstein (1994). Thus we assume the following:

• a finite set I of players and a finite set A of actions;

• a finite set H of histories, that is, a finite set of finite sequences in A, containing the empty

sequence ∅, which we call the initial history, and such that, for every (a1, . . . , ak) ∈ H
and ` < k, the corresponding subsequence is also a history, that is, (a1, . . . , a`) ∈ H; for

h ∈ H, A(h) = {a ∈ A : (h, a) ∈ H} is the set of actions available at h; if A(h) = ∅, then

h is said to be terminal, and the set of terminal histories, or paths, is denoted by Z; we let

δ denote the depth of the game, i.e. the number of elements in the longest sequence in H;

• a function ι : H \ Z → I; for each player i, we let Hi = ι−1(i);

• for each player i, a payoff function ui : Z → R.

The induced weak and strict precedence relations on H will be denoted by � and ≺, re-

spectively. Thus, for h, h′ ∈ H we write h � h′ whenever h is a subsequence of h′, and we

write h ≺ h′ if in addition h 6= h′. The terminal successors of a history h are those in the set

Z(h) = {z ∈ Z : h � z}. For h ∈ H \ Z and h′ ∈ H with h ≺ h′, we write α(h, h′) for the

unique a ∈ A such that (h, a) � h′.

To avoid discussions of relatively minor issues, we focus our attention on the case where

for every two distinct terminal histories z, z′, the player who moves at their last common

predecessor is not indifferent between them:

Assumption (No relevant ties). For every i ∈ I, h ∈ Hi and a, a′ ∈ A(h),

a 6= a′ ⇒ {ui(z) : z ∈ Z(h, a)} ∩ {ui(z) : z ∈ Z(h, a′)} = ∅.

2.2 Conditional probability systems

Given a compact metrizable space X, endowed with its Borel σ-algebra F , and a finite family

C ⊂ F of clopen (closed and open) events, containing X itself, called conditions or hypotheses, a

conditional probability system is a collection of probability measures (µ(·|C))C∈C on X satisfying

the following properties:

• µ(C|C) = 1 for all C ∈ C;
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• µ(E|C) = µ(E|C′)µ(C′|C) for all E ∈ F and C, C′ ∈ C with E ⊆ C′ ⊆ C.

The set of all conditional probability systems is denoted ∆C(X). Under the stated as-

sumptions, ∆C(X) is a compact metrizable space—see Battigalli and Siniscalchi (1999). In our

analysis, the family C corresponds to the collection of events that the players can observe in the

game, namely, the histories.

2.3 Strategies and conditional beliefs

Given the game described above, the standard definition of a strategy for player i is that of a

mapping from i’s histories into available actions, that is,

si ∈ Si = X
h∈Hi

A(h).

In this paper we keep the latter formal definition of strategy, but we depart from the received

literature on interactive epistemology for dynamic games, in that we do not assume that

players can reason directly about strategies. Instead, we model a player’s belief about behavior

at a history (including her own), as her conditional belief on the set of paths, given the event

that (she observes that) the path goes through that history.

Thus, in our framework a state of the world (or simply a state) specifies a path z ∈ Z and a

type ti ∈ Ti for each player i, where Ti is a compact metrizable space. Types encode the players’

conditional beliefs, and conditional beliefs about each other’s conditional beliefs, where for

each player i the set of conditions C is the family of events of the form Z(h)× T−i,7 with h ∈ H.

This family of events is obviously isomorphic to H itself, and therefore in what follows, for

every h ∈ H, we will often write h instead of the more cumbersome Z(h)× T−i. Moreover, we

will write [h] instead of Z(h)× Ti× T−i to denote the set of states where the path goes through

h. Thus we assume: for each player i, there is a continuous function βi : Ti → ∆H(Z × T−i)

satisfying, for each ti ∈ Ti,

• βi(ti)(h|h) = 1 for all h ∈ H;

• βi(ti)(E|h) = βi(ti)(E|g)βi(ti)(g|h) for all g, h ∈ H with h � g and E ⊆ Z(g)× T−i.

Note the obvious but important fact that that histories are uninformative (to player i) about

beliefs (of the other players), since our state space has a product structure and the conditioning

events concern only one “side” of the product, namely the paths.

7As usual, we define T−i = ×j∈I\{i}Tj. Similar notations will be used, without notice, throughout the paper.
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In what follows we call a tuple (Ti, βi)i∈I as described above, a type structure, and we say

that it is complete if for every player i, the mapping βi is onto.8

For each i ∈ I and ti ∈ Ti, it is convenient to view the probability measures βi(ti)(·|h)
as probability measures on the whole state space Z × Ti × T−i. Thus, given an event E ⊆
Z× Ti × T−i, we say that player i believes in E conditional on h at a state (z, ti, t−i), provided that

βi(ti)({(z′, t′−i) ∈ Z× T−i : (z′, ti, t′−i) ∈ E} | h) = 1,

and we denote by Bi(E|h) the set of such states.9 For h = ∅ we write simply Bi(E), and we

say that i believes in E. Finally, there is (correct) common belief in E at every state in the event

CB(E) = E ∩ B(E) ∩ B(B(E)) ∩ · · · ,

where for every event E we write B(E) as an abbreviation for ∩i∈I Bi(E).

3 Rational planning and material consistency

For every player i and every type ti of hers, the probabilities βi(ti)((h, a)|h) describe a behavior
strategy for every player j, as h varies in Hj and a varies in A(h). In particular, for j = i, they

describe a behavior strategy for player i herself. However, we stress that despite this formal

equivalence, such probabilities only represent i’s beliefs, and nothing in our basic framework

requires that i will act accordingly; formally, a type structure can have a state (z, ti, t−i) such

that βi(ti)((h, α(h, z))|h) = 0 for some history h ∈ Hi with h ≺ z.

Thus, we interpret those probabilities as the result of i’s planning: starting from conditional

beliefs about the other players’ behavior, i solves the corresponding subjective decision tree by

dynamic programming, breaking ties arbitrarily; while this does not imply any commitment,

it does deliver a rational plan, that is, a belief by player i that at each history of hers, she would
follow the (optimal) recommendation of the dynamic programming solution, should that his-

tory indeed occur. Once the plan is in i’s mind, together with the beliefs about others that she

started with, the entire profile of behavior strategies ((βi(ti)((h, ·)|h))h∈Hj)j∈I is determined.

The continuation value for type ti of player i, corresponding to action a ∈ A(h) at history

h ∈ Hi, is her expected payoff, conditional on history (h, a), namely∑
z∈Z(h,a)

βi(ti)(z|(h, a))ui(z).

8On completeness see Brandenburger (2003). Battigalli and Siniscalchi (1999) prove by construction that a
complete type structure exists: it is the canonical structure where each Ti is the set of hierarchies of conditional
probability systems satisfying collective coherency.

9This implies that i is always certain of her true type and, therefore, of her belief revision rule.
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Thus, for all i ∈ I, ti ∈ Ti and h ∈ Hi, we define the set of locally optimal actions at h as

A∗(h, βi(ti)) = arg max
a∈A(h)

∑
z∈Z(h,a)

βi(ti)(z|(h, a))ui(z). (1)

If type ti believes that she would indeed take an optimal action at h, should the latter be

reached, then βi(ti)((h, ·)|h) must be supported in A∗(h, βi(ti)). This motivates the following:

Definition 1. Player i satisfies rational planning at state (z, ti, t−i) if for all h ∈ Hi and a ∈ A(h),

a /∈ A∗(h, βi(ti)) ⇒ βi(ti)((h, a)|h) = 0.10

Let RPi denote the set of such states, and let RP = ∩i∈I RPi.

As we have already argued, and as is indeed clear from its definition, rational planning

is a property of beliefs, per se it has no implication about actual behavior. Hence, a player’s

belief in rational planning of other players need not have any implication on her belief about

their behavior. In order to obtain such implications, we have to add the belief that the other

players’s behavior is consistent with their plan. This leads to the following:

Definition 2. Player i is materially consistent at state (z, ti, t−i) if for every h ∈ Hi,

h ≺ z ⇒ βi(ti)((h, α(h, z))|h) > 0.

Let MCi denote the set of such states, and let MC = ∩i∈I MCi.

In other words, i is not materially consistent if at some history along the realized path,

she takes an action that she planned to exclude, conditional on that history being reached.11

The conjunction of rational planning and material consistency plays an important role in our

analysis, and therefore it deserves its own name:12

Definition 3. Player i is materially rational at each state in MRi = MCi ∩ RPi. MR = ∩i∈I MRi.

3.1 Common belief in material rationality

A standard result of the literature on interactive epistemology for simultaneous moves games

states that an outcome is consistent with rationality and common belief in rationality if and

10By the one-shot deviation principle, if i plans rationally at (z, ti, t−i) then the behavioral strategy implied by ti

is dynamically optimal in the decision tree implied by ti.
11In logic, a material implication is an if-then statement that holds false if and only if its antecedent is true while

the consequent is false. We use the term “material” because here, analogously, lack of i’s material consistency
occurs if the material implication “if h is reached, then i acts according to her plan” is false for some history h of i.

12Our definition of material rationality is similar to that of Aumann (1998).
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only if it is rationalizable. It is therefore natural to consider similar epistemic assumptions in

the present context. The assumptions of material rationality and common belief thereof are

represented by the event

CB(MR) = MR ∩ B(MR) ∩ B(B(MR)) ∩ · · · .

The latter is not a vacuous assumption, since it holds in the BI structure, which is defined as

follows. By no relevant ties, there is a unique backward induction (henceforth BI) strategy

profile sBI which induces the unique BI path zBI . Then, the BI structure is the type structure

where each player has only one type, and for each nonterminal history h ∈ H\Z, this type

assigns probability one to action sBI(h) given h. In the BI structure, CB(MR) holds.

Definition 4. A type structure (Ti, βi)i∈I contains the BI structure if there is a profile of types

(tBI
i )i∈I ∈ ×i∈I Ti such that for all i ∈ I and h ∈ H \ Z, βi(tBI

i )(Z(h, sBI(h))× {tBI
−i}|h) = 1.

We now present a preliminary result. Despite its simplicity, the proof requires some care

and it illustrates the features of the adopted framework.

Proposition 1. Assume that δ = 2. For every type structure (Ti, βi)i∈I and every state (z∗, t∗) ∈
MR∩ B(MR), z∗ is a (mixed) Nash equilibrium path. Conversely, for every (mixed) Nash equilibrium
path z, there exists a type structure (Ti, βi)i∈I and a profile of types t∗ in it, such that (z∗, t∗) ∈
MR ∩ B(MR), and in fact, (z∗, t∗) ∈ CB(MR).13

Proof. Since the game has depth two, we may assume without essential loss of generality that

each state has the form ((a1, a2), t). Fix a type structure (Ti, βi)i∈I and a state ((a∗1 , a∗2), t∗) ∈
MR ∩ B(MR). We show that the behavioral strategy profile implied by the type of the first

mover, t∗ι(∅), is a Nash equilibrium that gives positive probability (indeed, probability one)

to (a∗1 , a∗2). Let i = ι(∅) be the first mover. By the assumption of no relevant ties, MR−i ⊆
{((a1, a2), t) : a2 = sBI(a1)}, where sBI denotes the backward induction strategy profile. Since

((a∗1 , a∗2), t∗) ∈ Bi(MR−i), we also have

βi(t∗i )({((a1, a2), t−i) : a2 = sBI(a1)}|∅) = 1.

Hence, for all a1 ∈ A(∅), βi(t∗i )(a1|∅) = βi(t∗i )((a1, sBI(a1))|∅). But the right-hand side of the

latter equals βi(t∗i )((a1, sBI(a1))|a1)βi(t∗i )(a1|∅) by the chain rule, so βi(t∗i )((a1, sBI(a1))|a1) =

1 for all a1 with βi(t∗i )(a1|∅) > 0. Since ((a∗1 , a∗2), t∗) ∈ RPi, for all a1 with βi(t∗i )(a1|∅) > 0,

a1 ∈ arg max
a′1∈A(∅)

∑
a′2∈A(a′1)

βi(t∗i )((a′1, a′2)|a′1)ui(a′1, a′2).

13We can show that the converse holds for all perfect information games with no relevant ties.
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All this implies that the behavior strategy profile described by βi(t∗i ) is a Nash equilibrium.

Since ((a∗1 , a∗2), t∗) ∈ MCi, βi(t∗i )((a∗1 , a∗2)|∅) = βi(t∗i )(a∗1 |∅) > 0 and (a∗1 , a∗2) is a Nash equilib-

rium path. For the second claim in the proposition, see Appendix A.1. �

This simple result has obvious limitations, since it assumes depth two, and moreover, even

games of depth two may have non-BI Nash equilibria. So we have not established that (correct,

unconditional) common belief in material rationality yields the BI outcome. The following two

examples address these limitations. The first example shows that assuming common belief in

material rationality, even in games of depth two, we cannot go very far. The reason is that the

material implication “if h is reached, i’s action is consistent with his plan” is trivially satisfied

at each state where h is not reached.

Example 1. In the game below, by Proposition 1, the imperfect Nash equilibrium outcome D
is consistent with material rationality and common belief in it.

Ann

?

D

1, 1

-C Bob

?

d

0, 0

-c 2, 2

Example 2. In centipede games the BI outcome is also the unique Nash outcome. The fol-

lowing centipede example shows that in games with depth three or more, material rationality

and common belief thereof, do not even give a Nash outcome.

Ann

?

D

1, 0

-C Bob

?

d

0, 2

-c Ann

?

D′

3, 0

-C′ 0, 3

The BI solution is to go always down. However, in Appendix A.2 we exhibit a type structure

with a state in CB(MR) where the path is (C, c, D′). Intuitively, at this state Ann surprises

Bob and tricks him into thinking that she is not materially rational; Bob’s beliefs are incorrect,

but he is indeed unconditionally certain that path D occurs, that material rationality holds,

and that Ann unconditionally believes in CB(MR). Path (C, c, D′) obtains from strategies

that survive one round of weak dominance followed by iterated strict dominance, as in Dekel

and Fudenberg (1990); we can show that all such paths are consistent with common belief in

material rationality.
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3.2 Common strong belief in material rationality

The examples in the previous section indicate that in order to obtain the BI path, some per-

sistence of belief in material rationality is needed. In this section we introduce strong belief in

material rationality, which captures precisely this idea.

Definition 5. Fix a type structure (Ti, βi)i∈I and an event E in it. Player i has strong belief in E
at state (z, ti, t−i) if for every h ∈ H,{

(z′, t′) ∈ E : h ≺ z′
}
6= ∅ ⇒ βi(ti)(E|h) = 1.

Let SBi(E) denote the set of such states.

Strong belief in material rationality yields the BI outcome in simple games, provided that

the type structure is sufficiently rich, as the following result shows.

Proposition 2. Suppose that δ = 2 and fix a type structure (Ti, βi)i∈I that contains the BI structure.
Then material rationality and strong belief of the first mover in the other players’ material rationality
imply the BI path: let i = ι(∅), then for every (z, t) ∈ MR ∩ SBi(MR−i), z is the BI path.

Proof. Let i = ι(∅) be the first mover and fix (z, t) ∈ MR ∩ SBi(MR−i). Pick any a1 ∈ A(∅)
and let j = ι(a1) be the player who moves after a1 (if it is not terminal). Let sBI

i and sBI
j be the

strategies that select the BI move at every history. As a preliminary observation, note that for

every (z′, t′) ∈ MRj, if a1 ≺ z′ then z′ = (a1, sBI
j (a1)) (see the proof of Proposition 1). Now

consider the conditional belief βi(ti)(·|a1). If j = i, that is, if i plays again after a1, then (z, t) ∈
RPi implies βi(ti)((a1, sBI

i (a1))|a1) = 1. Otherwise, assume j 6= i, and let us show that (z, t) ∈
SBi(MR−i) implies βi(ti)((a1, sBI

j (a1))|a1) = 1. Since the structure contains the BI structure, it

contains the state ((a1, sBI
j (a1)), ti, tBI

−i). It is easily checked that ((a1, sBI
j (a1)), ti, tBI

−i) ∈ MR−i.

Thus, (z, t) ∈ SBi(MR−i) implies βi(ti)(MR−i|a1) = 1 and hence βi(ti)(MRj|a1). By the

preliminary observation above, we then obtain βi(ti)((a1, sBI
j (a1))|a1) = 1. This is true for

every a1 ∈ A(∅), so i assigns the BI value to every such action. Since (z, t) ∈ MR, this implies

that z is the BI path. �

Corollary 1. Suppose that δ = 2 and fix a complete type structure (Ti, βi)i∈I . Then material ratio-
nality and strong belief of the first mover in the other players’ material rationality imply the BI path in
this structure: let i = ι(∅), then for every (z, t) ∈ MR ∩ SBi(MR−i), z is the BI path.

Proof. By Lemma 1 in Appendix A.3, each complete type structure contains the BI structure.

The thesis then follows from Proposition 2. �

Building on Battigalli and Siniscalchi (2002), the result can be extended to all perfect in-

formation games with no relevant ties, i.e. without restrictions on the depth of the game δ,

12



by looking at material rationality and common strong belief in the other players’ material ratio-

nality. In order to establish this result, we define strong belief and common strong belief for

profiles of events, as follows. For E = (Ei)i∈I , where for every player i, Ei ⊆ Z × Ti × T−i is

measurable, define ∩E = ∩i∈I Ei and ∩−iE = ∩j 6=iEj, and let

CSB(E) =
(
Ei ∩ SBi(∩−iE)

)
i∈I .

Note that with this notation, ∩CSB(E) is the event that each Ei obtains, and each player i
strongly believes in ∩j 6=iEj. Then, recursively for all m ≥ 1, letting CSB0(E) = E by convention,

CSBm(E) = CSB(CSBm−1(E))

Definition 6. There is (correct) common strong belief in the other players’ material rationality at

each state in

CSBMR =
⋂

m≥0
∩ CSBm((MRi)i∈I

)
.

As a preliminary result, we show that in every type structure, there is a unique path

consistent with common strong belief in material rationality; then we show that this path is,

in fact, a Nash equilibrium path. Before we state the result, note that if player i strongly

believes in the other players’ material rationality, and the latter is compatible with a history h
where i moves, then player i must be certain of the other players’ material rationality, when

conditioning on h being reached and any action a ∈ A(h). Moreover, since histories are

uninformative about beliefs, the same is true when considering the event that, in addition,

the other players’ beliefs lie in a certain set E−i. Formally, for all i ∈ I, h ∈ Hi, a ∈ A(h) and

measurable E−i ⊆ T−i, letting E = Z× Ti × E−i,

(Z(h)× Ti × T−i) ∩ E ∩MR−i 6= ∅ ⇒ SBi(MR−i ∩ E) ⊆ Bi(MR−i ∩ E|(h, a)). (2)

In the proof of the following proposition, this fact will be used inductively, to show that for

every history h that is compatible with common strong belief in rationality, and for every

action a available at h, the player moving at h expects a unique path following a, that is, her

beliefs given (h, a) are concentrated on a single path.

Proposition 3. Fix a type structure. Every state in CSBMR specifies the same path.

Proof. Let MR = (MRi)i∈I . For every path z and history h ≺ z, let d(h, z) denote the length

of the subpath from h to z.14 We prove by induction in m ≥ 0, that for every i ∈ I, every

h ∈ Hi with maxz∈Z(h) d(h, z) ≤ m + 1 and [h] ∩ ∩CSBm(MR) 6= ∅, and every a ∈ A(h) with

[(h, a)] ∩MRi 6= ∅, there exists zh,a ∈ Z such that

MRi ∩
m⋂

k=0
SBi
(
∩−i CSBk(MR)

)
⊆ Bi([zh,a]|(h, a)).

14If z = (h, α(h, z)) then d(h, z) = 1, if z = (h, α(h, z), α((h, α(h, z)), z)) then d(h, z) = 2, and so on.

13



Note that this implies that at every state (z, ti, t−i) in the event on the left-hand side, if h ≺ z,

then α(h, z) must be, by no relevant ties, the unique locally optimal action for ti at h. In other

words, there exists a∗h ∈ A(h) such that

[h] ∩MRi ∩
m⋂

k=0
SBi
(
∩−i CSBk(MR)

)
⊆ [(h, a∗h)].

For m = 0, our claim is trivially true. Let n ≥ 1, assume the claim holds for all 0 ≤ m ≤ n− 1,

and fix i ∈ I, h ∈ Hi with maxz∈Z(h) d(h, z) ≤ n + 1 and [h] ∩ ∩CSBn(MR) 6= ∅, and a ∈ A(h)
with [(h, a)] ∩MRi 6= ∅. Note that the induction hypothesis implies

MRi ∩ Bi

(⋂
j 6=i

(
[(h, a)] ∩MRj ∩

n−1⋂
k=0

SBj
(
∩−j CSBk(MR)

))∣∣∣(h, a)
)
⊆ MRi ∩ Bi([zh,a]|(h, a)). (3)

By our definitions,

∩−i CSBn(MR) =
⋂

j 6=i

(
MRj ∩

n−1⋂
k=0

SBj
(
∩−j CSBk(MR)

))
. (4)

From [h]∩∩CSBn(MR) 6= ∅ it follows that [h]∩∩−iCSBk(MR) 6= ∅ for all 0 ≤ k ≤ n− 1 and

hence, using (2) and the induction hypothesis,

MRi ∩
n⋂

k=0
SBi
(
∩−i CSBk(MR)

)
⊆ MRi ∩

n⋂
k=0

Bi
(
∩−i CSBk(MR)

∣∣(h, a)
)

= MRi ∩ Bi
(
∩−i CSBn(MR)

∣∣(h, a)
)

= MRi ∩ Bi

(⋂
j 6=i

(
MRj ∩

n−1⋂
k=0

SBj
(
∩−j CSBk(MR)

))∣∣∣(h, a)
)

(by (4))

= MRi ∩ Bi

(⋂
j 6=i

(
[(h, a)] ∩MRj ∩

n−1⋂
k=0

SBj
(
∩−j CSBk(MR)

))∣∣∣(h, a)
)

⊆ MRi ∩ Bi([zh,a]|(h, a)) (by (3)).

�

Using the latter proposition, we then obtain the following:15

Proposition 4. Fix a type structure. Every state in CSBMR specifies a (mixed) Nash equilibrium
path.

Proof. See Appendix A.4. �

In Appendix A.5 we prove that in a complete type structure, a path is consistent with

common strong belief in rationality if and only if it is consistent with Pearce’s (1984) extensive

15See Battigalli and Friedenberg (2010, Corollary 8.1, Proposition 8.2).
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form rationalizability, a non-empty solution concept. The proof of the following proposition

then follows from Battigalli’s (1997) result that in perfect information games with no relevant

ties, all extensive form rationalizable profiles induce the BI path.

Proposition 5. Fix a complete type structure. Every state in CSBMR specifies the BI path.

Proof. See Appendix A.5. �

4 Discussion and Extensions

In this paper we used epistemic structures for games with perfect information where states

include only the play path and interactive conditional beliefs to elucidate how assumptions

about rationality and beliefs are related to standard solution concepts. Some of our results are

similar to those obtained in the literature by means of epistemic structures that put “objective

strategies” in the states of the world. Here we further discuss the relationships with that

literature, and we hint about an extension to games with imperfect information.

4.1 Hypothetical knowledge

The epistemic structures of Samet (1996), like ours, constitute a major departure from the

standard model in which strategies are specified at each state of the world. In such structures,

each state specifies what each players hypothesizes about his epistemic state should any node

h occur. Note that we can give a similar interpretation to the beliefs of a type ti conditional

on h, βi(ti)(·|h). In Samet’s epistemic structures, just like in ours, strategies are not primitive;

instead, they are constructed from the hypotheses that the player makes about the actions

he would take at each of his nodes, should it be reached. Unlike our structures, Samet’s

structures do not specify conditional probabilistic beliefs, but rather conditional knowledge.

In the game-theoretic analysis of that paper, which also deals only with perfect information

games, a hypothesis is a node: for any given state and node, the player at that node is rational
at the node if the node is reached at the given state, and the player does not know that his

action, at the given node, gives him strictly less than what he hypothesizes another action

would give.

Similarly to what we illustrate in Proposition 1 and Example 1, Samet (1996) provides

an example showing that common knowledge of rationality does not imply the backward

induction path. And similarly to our Proposition 5, Samet proves that if there is a common
hypothesis of node rationality, then the players play the backward induction path. Like strong

belief captures persistence of belief, the notion of common hypothesis embodies persistence

of knowledge: roughly, it requires that for every node h, starting from the root and iteratively
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hypothesizing that the actions leading to h are taken, the players know that node rationality

at h holds.

4.2 Imperfect information

Rational planning, an essential ingredient of our analysis, is based on the possibility to assign

a continuation value to an action a taken at history h using beliefs conditional on (h, a). In

order to be consistent with the analysis of perfect information games given earlier, it becomes

necessary to extend the set of hypotheses to include more than just information sets. Consider

the following matching pennies example:

Ann

�
�

�	

La @
@
@R

Ra

Bob
�
�

�	

Lb A
A
AU

Rb @
@
@R

Lb �
�
��

Rb

(1,−1) (−1, 1) (−1, 1) (1,−1)

�
 �	

Write zLL for the path (La, Lb) and define zLR, zRL and zRR analogously. What is Bob’s

expected utility, given that (his information set is reached and) he chooses Lb? In order to

give a formal answer that is consistent with our analysis of the perfect-information case, the

set of paths {zLL, zRL} must be added as a hypothesis, and Bob’s expected utility must be

computed using his beliefs given this set. Similarly, in order to evaluate his other choice Rb,

the set of paths {zLR, zRR} must be added as a hypothesis. This, however, opens the door

to the following possibility: Bob believes, conditional on his information set being reached

and on himself choosing Lb, that his expected utility is strictly negative, and he expects the

same when considering Rb. This goes against the traditional expected utility argument that a

rational Bob cannot expect to receive less than zero, whatever his beliefs about Ann may be.

For the said possibility to materialize, all we need is a type of Bob who attaches probability

strictly smaller than 1/2 to Ra, conditional on {zLL, zRL}, and strictly larger than 1/2 to Ra,

given {zLR, zRR}. Note that such beliefs violate a natural independence property: the sets of

paths {zLL, zRL} and {zLR, zRR} only differ because of Bob’s own action, and yet Bob holds

different beliefs about Ann conditional on such events. Conversely, imposing independence

would prevent Bob holding beliefs of this kind: if Bob’s beliefs conditional on {zLL, zRL} and

{zLR, zRR} are the same, it is clear that the expected values of Lb and Rb must sum to zero,

whatever those beliefs are, as per the traditional expected utility argument.
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A Appendices

A.1 Proof of the second claim in Proposition 1

Fix a Nash equilibrium in behavioral strategies b∗ = (b∗i )i∈I . Since the game has perfect

information and no relevant ties, b∗ yields some path z∗ = (a∗1 , a∗2) with probability one. We

construct a simple type structure with a state (z∗, t∗) ∈ CB(MR).

For each player there is only one type with beliefs determined by b∗ as follows: for all

i ∈ I, a1 ∈ A(∅), a2 ∈ A(a1),

Ti = {t∗i },

βi(t∗i )(a∗1 , a∗2 , t∗−i|∅) = 1,

βi(ti)(t∗i )(a1, a∗2 , t−i|a1) =

{
b∗ι(a1)

(a2|a1), if i 6= ι(a1),

sBI(a1), if i = ι(a1).

First note that, just by construction, all players plan to use their optimal action in the second

stage off the z∗ path. Since b∗ is an equilibrium, a∗2 = sBI(a∗1). Thus, all players different from

the first mover ι(∅) are materially rational at (z∗, t∗). To see that also the first mover is mate-

rially rational at this state, consider that, since b∗ is a Nash equilibrium, if ι(a1) = ι(∅) then

uι(∅)(z∗) ≥ uι(∅)(a1, sBI(a1)), if ι(∅) 6= ι(a1) then uι(∅)(z∗) ≥
∑

a2∈A(a1)
ui(a1, a2)b∗ι(a1)

(a2|a1).

Thus (z∗, t∗) ∈ MR, furthermore, by construction, at (z∗, t∗) every player unconditionally

believes (z∗, t∗). This implies (z∗, t∗) ∈ CB(MR).

A.2 The type structure of Example 2

Ann’s set of types is Ta = {t∗a , tBI
a , t̂a} and Bob’s is Tb = {t∗b , tBI

b }. The beliefs of each type

of Ann are described by a table where each row corresponds to a path z, each column corre-

sponds to a conditioning event (a non-terminal history h), and for each (z, h) the correspond-

ing cell describes the type’s beliefs over {z} × {t∗b , tBI
b } conditional on h (for example, looking

at row (C, d) and column C of matrix tBI
a , we see that tBI

a assigns probability one to path (C, d)
and type tBI

b conditional on C). Analogous matrices represent, for each type of Bob, his beliefs
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over {z} × {t∗a , tBI
a , t̂a}.

t∗a ∅ C C, c

D 0, 0 0, 0 0, 0

C, d 0, 0 0, 0 0, 0

C, c, D′ 1, 0 1, 0 1, 0

C, c, C′ 0, 0 0, 0 0, 0

tBI
a ∅ C C, c

D 0, 1 0, 0 0, 0

C, d 0, 0 0, 1 0, 0

C, c, D′ 0, 0 0, 0 0, 1

C, c, C′ 0, 0 0, 0 0, 0

t̂a ∅ C C, c

D 0, 0 0, 0 0, 0

C, d 0, 0 0, 0 0, 0

C, c, D′ 0, 0 0, 0 0, 0

C, c, C′ 1, 0 1, 0 1, 0

t∗b ∅ C C, c

D 0, 1, 0 0, 0, 0 0, 0, 0

C, d 0, 0, 0 0, 0, 0 0, 0, 0

C, c, D′ 0, 0, 0 0, 0, 0 0, 0, 0

C, c, C′ 0, 0, 0 0, 0, 1 0, 0, 1

tBI
b ∅ C C, c

D 0, 1, 0 0, 0, 0 0, 0, 0

C, d 0, 0, 0 0, 1, 0 0, 0, 0

C, c, D′ 0, 0, 0 0, 0, 0 0, 1, 0

C, c, C′ 0, 0, 0 0, 0, 0 0, 0, 0

The beliefs of types tBI
a and tBI

b correspond to the backward induction plans and path. The

backward induction state is ((D), tBI
a , tBI

b ), whereas ((C, c, D′), t∗a , t∗b) is a state where Ann sur-

prises Bob and tricks him into thinking that she is not materially rational. It is clear that tBI
a

and tBI
b satisfy rational planning, and it can be checked that t∗a and t∗b also do. Indeed, at state

((C, c, D′), t∗a , t∗b) there is (correct, unconditional) common belief in material rationality, and a

non-Nash outcome occurs. To see this, first note that

((D), tBI
a , tBI

b ) ∈ MR ∩ B(MR) ∩ B(B(MR)) ∩ · · · ⊆ Bi(MR ∩ B(MR) ∩ B(B(MR)) ∩ · · · ).

It is easily checked that at ((C, c, D′), t∗a , t∗b) both players are materially consistent and plan ra-

tionally and that Ann’s beliefs (conditional and unconditional) are correct. Bob’s beliefs are in-

correct, but he unconditionally assigns probability one to state ((D), tBI
a , t∗b), hence Bob (uncon-

ditionally) believes MR and that Ann unconditionally believes MR ∩ B(MR) ∩ B(B(MR)) ∩
· · · . This implies that ((C, c, D′), t∗a , t∗b) ∈ MR ∩ B(MR) ∩ B(B(MR)) ∩ · · · .

A.3 Complete structures contain the BI structure

Lemma 1. A complete type structure contains the BI structure.

Proof. For every h, let zBI(h) and sBI(h) denote, respectively, the BI path in the subgame

starting at h, and the BI action at h (if h is nonterminal). We construct by recursion a sequence

of type profiles (tn)∞
n=0 that converges to some tBI satisfying

∀i ∈ I, ∀h ∈ H, βi(tBI
i )({(zBI(h), tBI

−i)}|h) = 1 (5)

Fix a type profile t0 arbitrarily. For the inductive step of the recursive construction, suppose

we have constructed a type profile tn−1, n = 1, 2, ...; then for each player i there is a unique
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conditional probability system µn
i ∈ ∆H(Z× T−i) such that

∀h ∈ H, µn
i ({(zBI(h), tn−1

−i }|h) = 1.

By completeness, there is some type tn
i such that βi(tn

i ) = µn
i . Suppose we have constructed

types tn
i , i ∈ I, n = 1, 2, .... By compactness, the sequence (tn)∞

n=0 has a convergent subse-

quence (tnk)∞
k=1. Call tBI the limit of this subsequence. We must show that tBI satisfies (5). By

continuity of βi, βi(tBI
i ) = limk→∞ βi(t

nk
i ). All the conditional probability systems βi(t

nk
i ) are

arrays of Dirac measures δk
i,h (h ∈ H) where each δk

i,h is concentrated on point (zBI(h), tnk−1
−i ).

Since (zBI(h), tnk−1
−i ) converges to (zBI(h), tBI

−i), δk
i,h converges to δBI

i , the Dirac measure concen-

trated on (zBI(h), tBI
−i). Therefore (5) is satisfied. �

A.4 Proof of Proposition 4

Fix a state (z∗, t∗) ∈ CSBMR and an arbitrary player i ∈ I. At this state, i has beliefs about

his own behavior represented by the behavioral strategy b∗i with b∗i (a|h) = βi(t∗i )((h, a)|h) for

each h ∈ Hi, and he has beliefs about the opponents’ behavior represented by the unique

behavioral strategy profile b∗i,−i with b∗i,−i(a|h) = βi(t∗i )((h, a)|h) for each h ∈ H−i. Since

(z∗, t∗) ∈ RPi, b∗i is a best response to b∗i,−i, therefore every pure strategy si in the support of

b∗i is also a best response to b∗i,−i. By inspection of the proof of Proposition 3, for each h ≺ z∗,
βi(ti)((h, α(h, z∗))|h) = 1, which implies that i’s beliefs are confirmed by path z∗. Therefore

the behavior strategy profile (b∗i )i∈I is a self-confirming equilibrium with independent, unitary

beliefs, as defined in Fudenberg and Levine (1993),16 and z∗ is the path resulting from (b∗i )i∈I

with probability one. By the Corollary in Kamada (2010), in a perfect information game every

self-confirming equilibrium with independent, unitary beliefs is realization-equivalent to a

(mixed) Nash equilibrium. Hence z∗ is a Nash equilibrium path.

A.5 Proof of Proposition 5

Fix a complete structure (Ti, βi)i∈I . The idea of the proof is that CSBMR in such a structure

yields first-order beliefs consistent with extensive form rationalizability, henceforth abbrevi-

ated as EFR (see Pearce, 1984; Battigalli, 1997). By this we mean that for every (z, t) ∈ CSBMR
and i ∈ I there is a corresponding conditional probability system ν−i(ti) ∈ ∆H(S−i), where

the set of conditions is the family of sets of the form S−i(h) with h ∈ H, and S−i(h) is the

set of strategy profiles of players −i that allow h, satisfying the following: for every h ∈ H−i,

a ∈ A(h) and n ≥ 0, βi(ti)(a|h) = ν−i(ti)(S−i(h, a)|S−i(h)) and if S−i(h) ∩ Sn
−i 6= ∅, then

ν−i(ti)(Sn
−i|S−i(h)) = 1, where Sn

i is the nonempty set of strategies that survive n steps of the

16See Definitions 1, 4, 5 and note that every perfect information game has observed deviators.
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EFR procedure, and Sn
−i = ×j 6=iSn

j (see (10), (11) and Theorem 1 below). Given such beliefs,

the unique local best reply at each node on the BI path is the BI action, this follows from

Battigalli (1997).

As a preliminary observation, note that for each ν−i ∈ ∆H(S−i) we obtain a corresponding

decision tree Γi(ν−i) for player i by assigning to each action a ∈ A(h) of the other players (h ∈
H−i) the conditional probability ν−i(S−i(h, a)|S−i(h)). Then we can determine by backward

induction on Γi(ν−i) the set of optimal actions A∗(h, ν−i) for each h ∈ Hi. We will map types

to conditional probability systems on S−i and vice versa, so that both determine the same

decision tree. The following lemma shows how to associate each ti with a corresponding

ν−i(ti) ∈ ∆H(S−i). Recall that for every i ∈ I and ti ∈ Ti, the probabilities βi(ti)((h, a)|h)
describe a behavior strategy profile as j varies in I and h in Hj.

Lemma 2. Fix i ∈ I and ti ∈ Ti. For all h ∈ H and s−i ∈ S−i, define

ν−i(ti)(s−i|S−i(h)) =

0 if s−i /∈ S−i(h),∏
h′∈H−i :h′⊀h βi(ti)((h′, s′−i(h

′))|h′) if s−i ∈ S−i(h).
(6)

Then ν−i(ti) ∈ ∆H(S−i), and for all h ∈ H−i and a ∈ A(h),

ν−i(ti)(S−i(h, a)|S−i(h)) = βi(ti)((h, a)|h). (7)

Proof. Regard −i as a coalition. By perfect information, −i has perfect recall.17 Consider the

following behavior strategy bh
−i of −i: for all h′ ∈ H−i and a ∈ A(h′),

bh
−i(a|h′) =


1, if h′ ≺ h and a = α(h′, h),
0, if h′ ≺ h and a 6= α(h′, h),
βi(ti)((h′, a)|h′) if h′ ⊀ h.

By Kuhn’s theorem, bh
−i induces a realization-equivalent mixed strategy νh

−i ∈ ∆(S−i) of −i,
with

νh
−i(s−i) =

∏
h′∈H−i

bh
−i(s−i(h′)|h)

=


∏

h′∈H−i :h′⊀h βi(ti)((h′, s−i(h′))|h′) if s−i(h′) = α(h′, h)

for all h′ ∈ H−i with h′ ≺ h,

0 otherwise,

17In games with imperfect information −i does not have perfect recall and ν−i(ti)(·|S−i(h)) is a correlated
strategy of −i. The proof still works.
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where the second equality follows from the definition of bh
−i. Thus, νh

−i(s−i) = 0 for every s−i /∈
S−i(h), and therefore ν−i(ti)(·|S−i(h)) = νh

−i(·) ∈ ∆(S−i) and, moreover, ν−i(ti)(S−i(h)|S−i(h)) =
1. Then (7) follows from the realization-equivalence of bh

−i and ν−i(ti)(·|S−i(h)). To show that

ν−i(ti) ∈ ∆H(S−i) we only have to verify the chain rule. Fix non terminal histories g ≺ h, so

that S−i(h) ⊆ S−i(g) and pick any s−i ∈ S−i(h), so that s−i selects every action of −i in h and

hence also in g, then

ν−i(ti)(s−i|S−i(g)) =
∏

h′∈H−i :h′⊀g

βi(ti)((h′, s−i(h′))|h′)

=
∏

h′∈H−i :h′⊀h

βi(ti)((h′, s−i(h′))|h′)
∏

h′∈H−i :g�h′≺h

βi(ti)((h′, s−i(h′))|h′)

= ν−i(ti)(s−i|S−i(h))ν−i(ti)(S−i(h)|S−i(g)),

where the second equality follows from the fact that g ≺ h implies that the two sets {h̄ ∈
H−i : h̄ ⊀ h} and {h̄ ∈ H−i : g � h̄ ≺ h} partition {h̄ ∈ H−i : h̄ ⊀ g}, and the third

equality follows from the construction of ν−i(ti)(·|S−i(g)) and its realization-equivalence with

bg
−i. ν−i(ti)(S−i(h)|S−i(g)) is just the probability of reaching h from g given that each action

of i on this path has conditional probability one; since s−i allows h, this transition probability

is precisely ∏
h′∈H−i :g�h′≺h

βi(ti)((h′, s−i(h′))|h′) =
∏

h′∈H−i :g�h′≺h

βi(ti)((h′, α(h′, h))|h′).

�

The next lemma shows that, given some map τ−i : S−i → T−i, we can associate to each

pair (si, ν−i) ∈ Si × ∆H(S−i) a conditional probability system in ∆H(Z × T−i) corresponding

to (si, ν−i) in the following sense. The marginal probabilities on Z (which are equivalent to

a behavior strategy profile) agree with si, when the latter is viewed as i’s conditional belief

about her own actions, whereas the conditional belief about the actions of others are derived

from ν−i in the spirit of Kuhn’s transformation from mixed to behavioral strategies. Finally,

the marginal on T−i is obtained from τ−i. An important feature of this conditional probability

system is that it always assigns probability one to the material consistency of the other players.

Let π(s|h) denote the path induced by strategy profile s starting from history h, writing just

π(s) for h = ∅.

Lemma 3. Fix (si, ν−i) ∈ Si × ∆H(S−i) and a mapping τ−i : S−i → T−i. There exists ψi ∈
∆H(Z× T−i) such that for all h ∈ H and s−i ∈ S−i(h),

ψi({(π(si, s−i|h), τ−i(s−i)}|h) = ν−i(s−i|S−i(h)).
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Proof. For every h ∈ H, let ψi(·|h) be the finite-support probability measure defined as

follows: for every h ∈ H and E ⊆ Z(h)× T−i,

ψi(E|h) = ν−i ({s−i ∈ S−i(h) : (π(si, s−i|h), τ−i(s−i)) ∈ E}|S−i(h)) .

We must show that ψi satisfies the chain rule: for all g ≺ h and E ⊆ Z(h)× T−i,

ψi(E|g) = ψi(E|h)ψi(h|g).

There are two cases: either si makes h unreachable from g, so that both ψi(E|g) and ψi(h|g)
are zero, or si always selects the action in h at each h′ ∈ Hi with g � h′ ≺ h. In the first case

the equality is trivially satisfied. In the second case, recalling E ⊆ Z(h)× T−i one can see that

{s−i ∈ S−i(g) : (π(si, s−i|g), τ−i(s−i)) ∈ E} = {s−i ∈ S−i(h) : (π(si, s−i|h), τ−i(s−i)) ∈ E},

and therefore

ψi(E|g) =
∑

s−i∈S−i(g):(π(si ,s−i |g),τ−i(s−i))∈E

ν−i(s−i|S−i(g))

=
∑

s−i∈S−i(h):(π(si ,s−i |h),τ−i(s−i))∈E

ν−i(s−i|S−i(g))

= ν−i(S−i(h)|S−i(g))
∑

s−i∈S−i(h):(π(si ,s−i |h),τ−i(s−i))∈E

ν−i(s−i|S−i(h))

= ψi(E|h)ψi(h|g),

where the first and last equalities follow from the definition of ψi and the third is implied by

the chain rule for ν−i. �

Note that by construction ψi is such that ψi((h, si(h))|h) = 1 for every h ∈ Hi. In words, si

is the plan of i entailed by ψi. In what follows, write ψi(si, ν−i; τ−i) instead of ψi to emphasize

the dependence on si, ν−i and τ−i.

To make the proof of the main result a bit shorter we adapt the recursive definition of EFR

from the characterization given by Battigalli (1997). Let S0
i = Si; given Sn

i and Sn
−i =

∏
j 6=i Sn

j ,

the set of (n + 1)-rationalizable strategies for i is defined as18

Sn+1
i =

{
si : ∃ν−i ∈ ∆H(S−i), ∀m ∈ {1, ..., n}, ∀h ∈ H,

Sm
−i ∩ S−i(h) 6= ∅⇒ ν−i(Sm

−i|S−i(h)) = 1, ∀h ∈ Hi, si(h) ∈ A∗(h, ν−i)

}
. (8)

18In this definition we are assuming that si prescribes a local best response to the justifying belief ν−i at each
h ∈ Hi. This is realization-equivalent to assuming that si yields a “global” best response in each subtree Γi(h, ν−i)

with root h ∈ Hi allowed by si, which is the best response property required in papers about extensive form
rationalizability.
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(By convention, the condition ∀m ∈ {1, ..., n}, ∀h ∈ H, Sm
−i ∩ S−i(h) 6= ∅⇒ ν−i(Sm

−i|S−i(h)) =
1 is trivially satisfied for n = 0). It can be shown that each set Sn

i is nonempty and that si ∈ Sn
i

if and only if every strategy s′i realization-equivalent to si survives n steps of the definition of

EFR found in the literature.

We now use completeness to recursively define a profile of functions τn = (τn
i : Si → Ti)i∈I

for each n ≥ 0 so that, for every strategy profile s ∈ Sn+1, the profile of types τn+1(s) satisfies

(π(s), τn+1(s)) ∈ CSBn((MCi ∩ RPi)i∈I
)
. For each player i, fix τ0

i arbitrarily. Suppose (τn
j )j∈I

has been defined and let τn
−i(s−i) = (τn

j (sj))j 6=i. Now, for each si ∈ Si \ Sn+1
i , let τn+1

i (si) =

τn
i (si). For each si ∈ Sn+1

i there is some ν−i(si)(·|·) ∈ ∆H(S−i) such that:

∀h ∈ H, ∀m ∈ {0, ..., n}, Sm
−i ∩ S−i(h) 6= ∅⇒ ν−i(si)(Sm

−i|S−i(h)) = 1; (9)

∀h ∈ Hi, si(h) ∈ A∗(h, ν−i(si));

then pick

τn+1
i (si) ∈ β−1

i (ψi(si, ν−i(si), τn
−i))

arbitrarily, where ψi(·) is given by Lemma 3 and β−1
i (ψi(si, ν−i(si), τn

−i)) is non-empty because

βi is onto (completeness). Given s = (si)i∈I , let τn+1(s) = (τn+1
i (si))i∈I .

The following lemma decomposes event CSBMR into separate events about each player’s

material consistency, rational planning, and strong belief in different "degrees of strategic

sophistication" of the other players.

Lemma 4. Let RP0
i = RPi and RPm+1

i = RPm
i ∩ SBi(∩j 6=i(MCj ∩ RPm

j )) for m ≥ 0. Then

RPm+1
i = RPi ∩

(
∩m

k=0 SBi(∩j 6=i MCj ∩ RPk
j )
)

∀m ≥ 0,

and
CSBm+1((MCi ∩ RPi)i∈I

)
= (MCi ∩ RPm+1

i )i∈I ∀m ≥ 0.

Therefore,
CSBMR = ∩∞

m=0 ∩i∈I
(

MCi ∩ RPi ∩ (∩m
k=0SBi(∩j 6=i MCj ∩ RPk

j ))
)
.

Proof. The proof is by induction in m. The results are obvious for m = 0. Now let m ≥ 0 and

suppose that

RPm
i = RPi ∩

(
∩m−1

k=0 SBi(∩j 6=i MCj ∩ RPk
j )
)
.

Then

RPm+1
i = RPm

i ∩ SBi
(
∩j 6=i MCj ∩ RPm

j
)

= RPi ∩
(
∩m−1

k=0 SBi(∩j 6=i MCj ∩ RPk
j )
)
∩ SBi

(
∩j 6=i MCj ∩ RPm

j
)

= RPi ∩
(
∩m

k=0 SBi(∩j 6=i MCj ∩ RPk
j )
)
,
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where the first equality holds by definition of RPm+1
i and the second follows from the induc-

tive hypothesis. Now suppose that

CSBm((MCi ∩ RPi)i∈I
)
= (MCi ∩ RPm

i )i∈I .

Then

CSBm+1((MCi ∩ RPi)i∈I
)
= CSB

(
CSBm((MCi ∩ RPi)i∈I)

)
= CSB

(
(MCi ∩ RPm

i )i∈I
)

=
(

MCi ∩ RPm
i ∩ SBi(∩j 6=i MCj ∩ RPm

j ))
)

i∈N

=
(
(MCi ∩ RPm+1

i )i∈I
)
,

where the first equality holds by definition of CSBm+1, the second by the inductive hypothesis,

the third by definition of CSB, and the fourth by definition of RPm+1
i . �

In what follows, for every i ∈ I and n ≥ 0 write RPn
i for the set of all ti ∈ Ti such that

(z, ti, t−i) ∈ RPn
i for some (and hence for all) (z, t−i) ∈ Z× T−i. Similarly, write MC−i for the

set of all (z, t−i) ∈ Z× T−i such that (z, ti, t−i) ∈ MC−i for some (and hence for all) ti ∈ Ti.

Claim. For every n ≥ 0, i ∈ I and si ∈ Si,

si ∈ Sn+1
i ⇒ τn+1

i (si) ∈ RPn
i , (10)

(ti ∈ RPn
i , ∀h ∈ Hi, βi(ti)((h, si(h))|h) > 0)⇒ si ∈ Sn+1

i (11)

Proof. The proof is by induction in n. For the case n = 0, suppose that si ∈ S1
i . Then

τ1
i (si) = ψi(si, ν−i(si), τ0

−i) ∈ RP0
i . Conversely, pick ti ∈ RP0

i with βi(ti)((h, si(h))|h) > 0 for

all h ∈ Hi. Derive ν−i(ti)(·|·) from βi(ti) as in (6). By Lemma 2, ν−i(ti) satisfies (7), therefore

βi(ti) and ν−i(ti) determine the same decision tree. Since ti ∈ RP0
i and βi(ti)((h, si(h))|h) > 0

for every h ∈ Hi, si must be optimal in this decision tree. Hence si ∈ S1
i .

Now suppose by way of induction that (10) and (11) hold for every natural number smaller

than n > 0. First we show that this induction hypothesis implies that, for each m = 0, ...n− 1,

MC−i ∩ [h] ∩ RPm
−i 6= ∅ ⇐⇒ S−i(h) ∩ Sm+1

−i 6= ∅. (12)

Indeed, fix any state (z, ti, t−i) in the intersection on the left-hand side above, so that h ≺ z.

Then there is some s′−i such that for every j 6= i and h′ ∈ Hj, β j(tj)((h′, sj(h′)|h′) > 0, and

s′j(h
′) = α(h′, z) whenever h′ ≺ z. Since h ≺ z, s′−i ∈ S−i(h). By the induction hypothesis,

s′−i ∈ Sm+1
−i . Thus, S−i(h) ∩ Sm+1

−i 6= ∅. Conversely, pick s′−i ∈ S−i(h) ∩ Sm+1
−i . By the induction

hypothesis, s′−i ∈ Sm+1
−i implies τm+1

j (s′j) ∈ RPm
j for each j 6= i. Since s′−i ∈ S−i(h), there is some

z′ ∈ Z(h) such that s′−i = α(h′, z′) for each h′ ∈ H−i with h′ ≺ z′. The construction of τm+1
−i
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implies that {(z′, τm+1
−i (s′−i))}×Ti ⊆ MC−i. Hence, {(z′, τm+1

−i (s′−i))}×Ti ⊆ MC−i ∩ [h]∩RPm
−i,

and (12) follows.

To prove (10), let si ∈ Sn+1
i . We claim that τn+1

i (si) ∈ RPn
i . By definition of RPn

i and Lemma

4, we have to show that τn+1
i (si) ∈ RP0

i and that type τn+1
i (si) = ψi(si, ν−i(si), τn

−i) strongly

believes each event MC−i ∩ RPm
−i with m = 0, ..., n − 1. The former is true by construction.

Now, fix m = 0, ..., n− 1 and h with [h] ∩MC−i ∩ RPm
−i 6= ∅. By (12), S−i(h) ∩ Sm+1

−i 6= ∅, and

by (9), ν−i(s−i)(Sm+1
−i |S−i(h)) = 1. This implies that

βi(τ
n+1
i (si))({(π(si, s′−i|h), τn

−i(s
′
−i)) : s′−i ∈ Sm

−i ∩ S−i(h)}|h) = 1.

By construction of τn
−i and the induction hypothesis, this implies

βi(τ
n+1
i (si))(MC−i ∩ (Z(h)× RPm

−i)|h) = 1.

Thus, τn+1
i (si) ∈ RPn

i .

Finally, to prove (11), suppose that ti ∈ RPn
i and βi(ti)((h, si(h))|h) > 0 for all h ∈ Hi.

Define ν−i(ti) ∈ ∆H(S−i) as in (6) of Lemma 2. Since βi(ti) and ν−i(ti) determine the same

decision tree and ti ∈ RPi, si is optimal in this decision tree. We only have to check that ν−i(ti)

satisfies the conditions in (8). Fix h ∈ H and m < n. Suppose Sm+1
−i ∩ S−i(h) 6= ∅. Then

MC−i ∩ [h] ∩ RPm
−i 6= ∅ by (12), and by definition of RPn

i ,

βi(ti)(MC−i ∩ (Z(h)× RPm
−i)|h) = 1.

The definition of ν−i(ti) implies ν−i(t−i)(Sm+1
−i |S−i(h)) = 1. This proves that si ∈ Sn+1

i . �

Theorem 1. Fix a complete type structure and a terminal history z ∈ Z. The following are equivalent:

(i) There exists a profile of types t = (ti)i∈N such that CSBMR holds at state (z, t).

(ii) There exists a rationalizable strategy profile s such that z = π(s).

Proof. (i)⇒ (ii). Suppose that there is CSBMR at state (z, t), so that (z, t) ∈ ∩i∈I(MCi ∩ RPn
i )

for every n. For each player i, pick any strategy si such that βi(ti)((h, si(h))|h) > 0 for all

h ∈ Hi. By (11), si is rationalizable, whereas material consistency implies that π(s) = z.

(ii) ⇒ (i). Suppose that s is rationalizable and π(s) = z. Let K be the first integer n such

that Sn+1 = Sn. By construction τK = τn for every n ≥ K. By (10), Z×{τn+1
i (si)}× T−i ⊆ RPn

i

for every i and n. By construction, there is material consistency at state (z, t) =
(
π(s), (τK(s)

)
.

Therefore there is CSBMR at (z, t). �

Corollary 2. Fix a complete type structure; then CSBMR holds at some state (z, t) and z = zBI for
every such state.
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Proof. The definition of rationalizability in (8) is realization-equivalent to the one analyzed

by Battigalli (1997), who shows that in a perfect information game with no relevant ties, every

rationalizable strategy profile induces the backward induction path. As the set of rationaliz-

able profiles is nonempty, z = zBI if and only if z = π(s) for some rationalizable s. Then, by

Theorem 1, z = zBI if and only if there is CSBMR at (z, t) for some profile of types t. �
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