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Abstract

We propose a simple adaptive procedure for playing strategic games:

average testing. In this procedure each player sticks to her current

strategy if it yields a payoff that exceeds her average payoff by at

least some fixed ε > 0; otherwise she chooses a strategy at random.

We consider generic two-person games where both players play ac-

cording to the average testing procedure on blocks of k-periods. We

demonstrate that for all k large enough, the pair of time-average pay-

offs converges (almost surely) to the 3ε-Pareto efficient boundary.
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1 Introduction

In a two-player strategic game, a pair of payoffs is Pareto efficient

if there is no other feasible pair of payoffs that are better for both

players. Naturally, efficiency is a prominent and desirable property in

equilibrium selection, mechanism design, networks, bargaining, and

many other areas. A non-efficient outcome for a game might be in-

terpreted as paradoxical simply because there exists an outcome that

is better for both players. Unfortunately, in a one-shot interaction it

is not always possible to obtain an efficient equilibrium, as the well

known prisoner’s dilemma demonstrates.

In a repeated game framework, however, all the individually ra-

tional outcomes (particularly, but not exclusively, efficient outcomes)

might be obtained in an equilibrium by the folk theorem. Achieving

effiecency in this setup using a tools of equalibria selection has been

investigated by Aumann and Sorin [1]. As their work reveals, find-

ing a mechanism where the efficient outcome will be the only selected

equilibrium is not easy, even in the case where there exists an action

profile that maximizes the payoffs for all the players (i.e., a unique

efficient outcome, which is also a pure Nash equilibrium).

Here we tackle efficiency from a dynamical perspective. Specifi-

cally, we pose the following question: Is there a simple adaptive proce-

dure leading to Pareto efficiency in every two-player strategic game?

We answer this question in the affirmative for a generic class of two

player games. We present the average-testing dynamic that leads to an

average payoff that approaches an environment of the Pareto efficient

boundary.

Average-testing is a completely uncoupled1 aspiration-level based

1This notion is sometimes called a payoff-based dynamic.
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dynamic. That is, the strategy of each player depends only on her

own past payoffs. Complete uncoupledness is a desirable dynamical

property since it allows that each player have only a limited amount

of information about the game (see Foster and Young [4]).

Aspiration-level formation is a guiding principle of decision the-

ory; each player forms an aspiration level that can evolve over time.

If the payoff is above the aspiration level, then the player sticks to the

same action; otherwise she chooses a new action uniformly. Learn-

ing through aspiration levels is a basic intuitive behavioral procedure;

indeed this learning process has recently garnered a great deal of at-

tention in economics, biology, psychology, and computer science (see,

for example, [10], [9] and [5]).

Specifically, in our case, the aspiration level evolves in accordance

with the average payoff each player has received so far. That is, the

player is satisfied if her current payoff is ε above her average payoff.

This form of satisfycing behavior may be understood as an overes-

timation or overconfidence player exhibits with respect to her past

performances. Namely, player evaluates her average payoff as if it

were ε higher than it actually is, and determines his satisfaction level

accordingly. Overestimating past performances is frequently observed

empirically (see Svenson [11] for an example concerning driving skills

assessment). Alternatively we can consider aspiration level that is

symmetric with respect to the average, by taking ε to be a random

variable which represents a mistake in the average calculation made

by a player, see Remark 5 in Section 4.

The dynamic proposed above does not, however, necessarily leads

the average payoff close to the Pareto efficient boundary in all games

(see Section 3.1 for examples). To achieve convergence to Pareto ef-

ficiency we operate the dynamic over the k-stage game, that is, the
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game where every strategy of a player is just a k-tuple of strategies

from the original game. Alternatively, one may think of it as a process

in which, after every k periods of time, each player decides how she

should play in the next k periods in accordance with her satisfaction

level.2 Essentially, our main Theorem asserts that for large enough k

the average payoff will eventually be in an environment of the Pareto

efficient boundary.

The connection between learning through aspiration levels and ef-

ficiency is already being established in the literature. This work con-

solidates this connection and present, an unequivocal relationship be-

tween the two. To the best of our knowledge, this is the first work

to address a learning process that converges to the Pareto efficient

boundery.

This connection was established by Karandikar Mookherjee and

Ray [8], who focus on 2 × 2 games and characterize the asymptotic

behavior of the aspiration level. In their work the aspiration level

in each period is the weighted average of the previous period’s level

and the current payoff. They characterize the asymptotic behavior

in the class of 2 × 2 games and, in particular, they show that in the

prisoner’s dilemma cooperation is formed for sufficiently slow updating

of aspirations and some small tremble of probability.

In a subsequent paper Borgers and Sarin [2] use aspiration levels

to examine a singled-agent learning process. They showed that aspi-

ration level adjustments may improve the decision maker’s long-run

performance; however, they also demonstrate that such a process may

lead to persistent deviations from expected payoff maximization by

creating “probability matching” effects.

2Blocks division was introduced previously in the literature, see Foster and Young [4]

for example.
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Cho and Matsui [3] characterize the asymptotic behavior of the av-

erage payoff in a satisficing learning process applied to 2×2 symmetric

games. In their work the aspiration level is also formed in accordance

with the average payoff each player receives. The satisfaction of a

player is determined by how “far” the average payoff is from the cur-

rent payoff. That is, a player is more likely to randomize if she gets

a payoff that is much smaller than the average payoff she had been

getting up until then. Specifically, the probability of randomization is

determined by some sort of smooth sigmoid function. Cho and Matsui

use a deterministic differential approximation result to establish their

main results. We conjecture that adopting their learning process to

our setup will eventually lead to results similar to those establish in

this paper.

A recent paper by Pardelski and Young [6] presents a completely

uncoupled learning rule that selects an efficient pure Nash equilibrium

in an all generic n-person game.3 This work, also establishes a con-

nection between a satisfycing behavior procedure and efficiency, by

incorporating a technique of log linear learning.

Our paper proceeds as follows. In Section 2 we present our dynamic

and main Theorem (Theorem 2). In Section 3 we give a sketch of the

proof of main Theorem. A discussion follows in Section 4. In Section

5 we provide a formal proof of the Main Theorem.

2 Formal Treatment

Fix a two-player strategic gameG = (A1, A2, u1, u2). Ai = {ai1, . . . , aimi}

is the finite action set of player i. U i : A = A1×A2 → R is the payoff

function for player i.

3More precisely, their procedure selects the equalibria that maximizes the welfare.
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The k-stage game that is derived from the game G is defined as

follows:

Definition 1. Given a two-player strategic game G, define the k-stage

game Gk = (S1, S2, u1, u2) to be the game where,

• Si := (Ai)k, the action set of i, is a k-tuple of actions from the

original game G.

• ui : S = S1 × S2 → [0, 1] is the payoff function. Given s1 =

(a1, . . . , ak) and s2 = (b1, . . . , bk), define

ui(s1, s2) =
1

k

k∑
m=1

U i(am, bm).

For notational convenience we omit the subscript k from the strat-

egy set Si; we let k be fixed throughout. Set u(s1, s2) = (u1(s1, s2), u2(s1, s2)).

Let sin and uin = ui(s1n, s
2
n) be player i’s action and payoff at time

n, and let xin = 1
n

∑n
m=1 u

i
m be i’s average payoff at time n. For a

fixed small ε > 0, define the aspiration level for player i at stage n as

αin = xin + ε. The satisfaction or the mood of player i is determined

in accordance with her current payoff and aspiration level. That is,

player i is satisfied at time n if her current payoff uin exceeds her

aspiration level αin; otherwise player i is unsatisfied. In case player i

is satisfied she sticks with the action sin also at time n+1. If, however,

she is unsatisfied, then she chooses the action sin+1 uniformly among

the elements of Si.4

Say that a player plays in accordance with the average testing

with parameters k, ε (write AT (k, ε)), if she plays the k-stage game in

accordance with the above procedure.

4In fact, the only thing that matters in this case is that player assigns a positive

probability to every pure action.
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Figure 1:

Assume for example that both players are satisfied at time n (see

Figure 1). Then they will keep on playing their current action, and

as a result, the average payoff of both of them (lying on the line that

connects un = (u1n, u
2
n) with the point u(sn)) will gradually increase.

In some time n+m it has to be the case that one of them (Figure 1

describes a case where player 1 would be the first to be unsatisfied)

will no longer be satisfied with her payoff. At this point she will start

to randomize by looking for a better action.

For the game G, we let F (G) be the set of all feasible payoffs in

the convex hull of the payoff matrix and let PO(G) be the set of all

feasible payoffs that are (weakly) Pareto efficient. That is, there is no

other feasible payoff that is strictly better for both players. We let

IR(G) be the set of payoffs that are also purely individually rational

for both players. That is, let vi = maxai∈Aiminaj∈Aju
i(ai, aj) be the
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purely individually rational level of player i and

IR(G) = {y = (y1, y2) : y ∈ F and yi ≥ vi for i = 1, 2}.

Finally, let PIR(G) = IR(G) ∩ PO(G) be the set of Pareto efficient

payoffs that are purely individually rational for both players.

We note that F (G), PO(G), IR(G), and PIR(G) are equal to

F (Gk), PO(Gk), IR(Gk), and PIR(Gk) respectively. Since G is fixed

we omit the reference for G and simply write F, PO, IR, and PIR

respectively.

Let V ⊆ R2; for ε > 0 we let V ε be the set of points that lie at a

distance of at most ε in the ‖ ‖∞ norm from the set V . Similarly, Vε

is the set of points that lie at a distance of at most ε in the ‖ ‖2 norm.

We say that a sequence of points {yn}n=1,2.... ⊆ R2 converges to V

if d(yn, V )→n→∞ 0 where d(y, V ) is the distance of the point y from

the set V .

For the fixed set of strategy profiles A = A1×A2 we let G be the set

of games such that every two different strategy profiles yield a different

payoff and there are no three different profiles whose corresponding

payoffs lie on the same line in the plane. Every game with an action

profile set A, can be identified with a vector in R2|A|. Thus, the set G

is a generic set in the sense that R2|A|\G has a zero Lebesgue measure.

Our main Theorem asserts the following:

Theorem 2. For every game G ∈ G and ε > 0 there exists a k0(ε)

such that for every k > k0, if each player i plays in accordance with

average testing AT (k, ε/3), then the average payoff vectors converge

almost surely to the set of ε-Pareto efficient and purely individually

rational payoffs (PIRε(G)).

Note that the convergence of the average payoff to PIRε yields

that
√
ε-efficient profiles are played with a limit proportion of at least
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1 −
√
ε, since otherwise, by considering the distance of the average

payoff from the efficient boundary, we get a contradiction. As a result

we have the following corollary:

Corollary 3. For every game G ∈ G and ε > 0 there exists a k0

such that for every k > k0, if both players play in accordance with

AT (k, ε2/3), then ε- Pareto efficient profiles in the original game G

are played with a limit proportion of at least 1− ε.

We can choose ε small enough such that the only ε-Pareto efficient

profiles in the original game will be Pareto efficient. In that case

Corollary 3 guarantees that Pareto-efficient profiles are played with

frequency 1− ε. So we have the following corollary.

Corollary 4. For every game G ∈ G there exists ε0 and k0 such that

for every ε < ε0 and every k > k0, if both players play in accor-

dance with AT (k, ε2/3), then Pareto-efficient profiles in the game G

are played with a limit proportion of at least 1− ε.

3 Informal Sketch of the Proof

In this section we lay out informally the main ideas in the proof of

our main Theorem, the proof is divided into two main parts. The first

part is devoted to the choice of the right value of k0 and the role that

the k -stage game plays in our dynamic. In the second part we prove

the convergence result, based on the first part.

For simplicity, we assume throughout the proof that all payoffs lie

in the segment [0, 1]. For the ease of the exposition the payoffs on the

presented examples will be integers, clearly the conclusion will not

change if we multiply all payoffs by a constant.
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3.1 The Choice of k0

Let us first point out two types of cases where for k = 1 the average-

testing dynamic does not lead anywhere close to the Patero-efficient

boundary.

(a) Consider the following game:

Γ1 :

L R

T 2, 0 0, 2

B 1, 3 3, 1

Assume that the average is close to the point (1.5, 1.5). One can see

that for this average and small enough ε, the process, dictated by the

dynamic, will behave as follows:

(T, L)→ (T,R)→ (B,R)→ (B,L)→ (T, L)→ ...,

where → represents the route of the dynamic. For example, if the

current state is (T,R), then player 2 is satisfied and player 1 is unsat-

isfied. Therefore player 1 will randomize until the action B is chosen,

and as a result (B,R) will be the new state. We can see that in this

stochastic cycle the average for the players is (1.5, 1.5), and in this

case the average will converge to (1.5, 1.5), which is bounded away

from the Pareto-efficient boundary.

The reason for that has to do with the fact that no profile in the

game dominates (1.5, 1.5). The following lemma demonstrates that

choosing large enough k ensures that every feasible payoff, with a

large enough distance from the efficient boundary, will be dominated

by a Pareto-efficient payoff of the k-stage game.

Notation 5. For convenience, denote (a, b) >≤ (c, d) wherever a > c

and b ≤ c. Similarly, let >>,≤> represent the appropriate relations

over R2.
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Figure 2:

Lemma 6. For k ≥ 1
ε and x ∈ F , if x /∈ POε/√2, then there exists a

profile s ∈ S such that u(s) >> x.

Proof. From our assumption, the distance between every pair of pay-

offs in G is at most
√

2. Therefore, for k ≥ 1
ε the distance between

every two adjacent payoffs on PO, in the k-stage game Gk, is at most
√

2ε. Set PO(S) = {u(s) : s = (s1, s2) ∈ S1×S2}∩PO; after deleting

all the feasible payoffs that are dominated by a payoff from PO(S) we

remain with the set E (see the shaded area in Figure 2 above), where

by a simple geometric consideration we have x ∈ POε/
√
2 for every

x ∈ E.

(b) The second problem that may arise is demonstrated using the

following example:

Γ2 :

L M R

T 3
4 ,

3
4 0, 1 0, 1

M 1, 0 1, 0 0, 1

B 1, 0 0, 1 1, 0

This game is a variant of a game introduced by Hart and Mas-Colell

[7]. Assume that the average is close to the point (34 ,
3
4), and the
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players play some action s 6= (T, L). For every action s 6= (T, L)

exactly one of the players randomizes, and it may be seen that for

every average 0 << x << (1−ε, 1−ε) the players will never reach the

point (34 ,
3
4), and in this stochastic process the average will converge

to (12 ,
1
2), which is not close to the Pareto boundary.

We next try to characterize this type of phenomenon.

For every z ∈ R2, let Pz be the Markov chain on S obtained where

each player i uses a fixed aspiration level zi. That is, player i is

satisfied at time n, if and only if ui(sn) > zi.

Definition 7. A nonempty subset L ⊆ S is called invariant with

respect to z if for every state s ∈ L, Pz(L|s) = 1. A subset L ⊆ S is

called a z-loop if it is minimal z-invariant and 1 < |L| < |S|.

In words, a z-loop L is a minimal invariant set that is not a single-

ton and not the whole state space S. Note that in the above example

the set S \ {(T, L)} is a z-loop for 0 << z << 1 for i = 1, 2. Poten-

tially, if the average payoff plus ε lies in this range, the Pareto-efficient

boundary will not be reached.

We show in Proposition 8 that by choosing k0 to be large enough

one can avoid z-loops for every z ∈ IR.

For every game G ∈ G we can define α = α(G) > 0 to be the

minimal angle between three different payoff profiles in u(A) = {u(a) :

a ∈ A}, and δ = δ(G) > 0 to be the minimal difference between two

different payoffs in ui(A).

Proposition 8. For every game G ∈ G set k0 = 8
αδ ; if k ≥ k0, then

there are no z-loops in Gk for every z ∈ IR.

The proof of Proposition 8, that relies on the unique structure that

a loop poses, is relegated to Section 5.

12



By combining Lemma 6 and Proposition 8, we have the following

corollary.

Corollary 9. For every game G ∈ G and ε > 0, take k0 = max(1ε ,
8
αδ );

then for every k > k0, the game Gk has the following two properties:

1. For every average z /∈ POε there exists a profile of the game Gk,

s = (s1, s2) such that u(s) ∈ PO and u(s) >> z.

2. For every z ∈ IR there is no z-loop.

To sum up: by choosing k0 to be large enough we avoid the two

types of problems demonstrated above. This guarantees us that when-

ever the average payoff xn ∈ IRε\POε, there will be an action s ∈ S

such that u(s)− (ε, ε) dominates z (first property in Corollary 9), and

there will be a positive probability of reaching such an action in at

most |S| steps (second property in Corollary 9).

3.2 The Convergence

Let k > k0 determined by Corollary 9. We prove that AT (k, ε) leads

to PIR3ε, which is clearly equivalent to the argument that AT (k, ε/3)

leads to PIRε.

The proof is done in a few lemmas that investigate the behavior

of the average payoff vector, xn. We present the lemmas below and

provide the main ideas of their proofs. The formal proofs are relegated

to Section 5.

Let P be the probability distribution over all histories governed by

the average-testing dynamic. First we prove that the average of every

player is infinitely often above vi − ε.

Lemma 10. P(xin > vi − ε i.o.) = 1.
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The lemma follows from the fact that every player makes infinitely

many randomizations, i.e., there are infinitely many periods in which

she is not satisfied, and when a player randomizes there is a positive

probability that she will randomize the action that guarantees her vi.

If it happens, then she will continue to play this action at least until

her average will rise above vi − ε.

Given Lemma 10, we prove that for every δ > 0 the average payoff

xn ∈ IRε+δ from some time on, with probability 1.

Lemma 11. ∀δ > 0, P(∃n0 s.t. ∀n ≥ n0, xin ≥ vi − ε− δ) = 1.

The idea of the proof is the following. When the average of a

player is below vi − ε, in every randomization the player can “catch”

the maxmin action that guarantees him vi, and the average will then

rise above vi−ε. So for time n large enough, the probability of moveing

δ below vi − ε is exponentially small.

Now we prove that xn ∈ IRε infinitely often. From Lemma 10 we

know that for each player xin > vi − ε infinitely often. We prove that

it occurs simultaneously for both players infinitely often.

Lemma 12. P(xn ∈ IRε i.o) = 1.

The idea is the following: If players “catch” an action s such that

u(s) ∈ IR and the average is close to the line x2 − v2 = x1 − v1, then

there exists a probability, bounded away from 0, that the average

will lie inside the area IRε. More precisely, define an area Dn (see

Figure 3) that is wide enough, so that on the one hand the average

xn cannot cross it without lying inside it, and on the other hand the

points in Dn are close enough to the line x2 − v2 = x1 − v1. If, in

contrary, from some time on the average never lies inside IRε, then

by Lemma 10 the average infinity often crosses Dn. Therefore the

average infinitely often lies inside Dn (because Dn separates two areas
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Figure 3:

where the average visits infinitely often). If at time n the average lies

in Dn then we show that there exists a positive probability bounded

away from 0 that by time a · n the average enters IRε for some fixed

integer a. This completes the proof of Lemma 12.

Let PO(S) ⊂ S be the set of actions that are not dominated by

any other. Formally we define

PO(S) = {s ∈ S| there is no s′ ∈ S such that u(s′) >> u(s)}.

We define E ⊂ F as follows.

E := {x ∈ F : There is no s ∈ S s.t. u(s)− (ε, ε) >> x}

which is equal to

E := {x ∈ F : there is no s ∈ PO(S) s.t. u(s)− (ε, ε) >> x}

(see Figure 4).

By arguments similar to those of Lemma 6 we obtain E ⊂ P 3√
2
ε.

We show that there exists a fixed positive probability of reaching E

every time the average is xn ∈ IRε. Taking this together with Lemma

11 we have
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Figure 4:

Lemma 13. P(xn ∈ E i.o.) = 1.

The idea behind the proof is the following. By the selection of k

we know that there are no loops whenever the average xn ∈ IRε and

so every time xn ∈ IRε \ E the average is ε-dominated by an action

that can be reached with positive probability (in at most |S| steps).

Therefore, every time xn ∈ IRε\E, we have a sequence of improvement

that happen with positive probability which cause xm ∈ E for some

m > n.

Finally, we prove that for every δ > 0, from some time on the

average lies at a distance of at most δ from the set E (in || ||∞norm).

Lemma 14. ∀ δ > 0 P(∃n0 s.t., ∀n > n0 xn ∈ Eδ) = 1.

By arguments similar to those presented in the proof of Lemma 14

the probability that the average crosses a distance of δ, is exponentially

small.

By the same arguments used in the proof of Lemma 6 we know

that for δ = ε, E ⊆ PO3ε; therefore Lemmas 14 and 11 together prove

that from some time on xn ∈ PIR3ε.
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4 Remarks

1. Using the same ε for both players in the average-testing dynamic

is unnecessary. The following corollary asserts that the players

could use different ε and the theorem would still hold.

Corollary 15. For every game G ∈ G and ε > 0 there exists

a k0 such that for every k > k0, if the players play in accor-

dance with AT (k, ε13 ) and AT (k, ε23 ) respectively, then the av-

erage payoff converges to the set PIRε(G) almost surely, where

ε = max{ε1, ε2}.

By similar considerations to those in the proof of the theorem

we can prove that if each player plays according to AT i(εi)

where ε1, ε2 < ε, then the average payoff will converge to the

set PIR3ε(G).

2. Multi-player games. For games with more than two players,

the average-testing dynamic fails. The following three-player

game demonstrates the shortcomings of the average-testing dy-

namic in multi-player games:

4,4,0 3,3,3 0,0,0

0,0,0 0,0,0 0,0,0

0,0,0 0,0,0 0,0,0

4,4,0 0,0,0 0,0,0

4,0,4 4,0,4 4,0,4

0,0,0 0,0,0 0,0,0

4,4,0 0,0,0 0,4,4

0,0,0 0,0,0 0,4,4

0,0,0 0,0,0 0,4,4

Note that if the players reach the payoff (4, 4, 0), then they will

leave it only when the average payoff to one of the players 1 or 2

rises above 4−ε, because up to x1, x2 ≤ 4−ε, players 1 and 2 get

a payoff of 4 and so they won’t change their action and player

3 cannot influence the payoffs for 1 and 2. When xi ≥ 4 − ε,

where i equals 1 or 2 (assume w.l.o.g. i = 1), then after a few

randomizations the players will reach a payoff of (0,4,4) (because
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any other payoff is unstable). After it, the average payoff of

players 2 will rise above 4−ε. Again, after a few randomizations

they will reach the payoff (4, 0, 4) and play it until the average

of player 3 is above 4− ε. And so on. It is easy to verify that in

the play described above the average is infinitely often far from

Pareto efficiency (because of the existence of payoff (3, 3, 3)).

Moreover, one can see, using a similar argument to the above,

that increasing the k or slightly perturbing the payoffs in the

above example won’t be effective.

3. Universal k. In Theorem 2 we choose k0, given the game. We

want universal k such that AT (k, ε/3) will lead the average payoff

to PIRε, for every game G.

LetH(ε) be the set of games for which every two different profiles

are at a distance of at least ε and an angle between any three

payoffs is at least ε (in radians). The setH(ε) is “almost” generic

in the sense that if ε → 0, then the measure of the games that

are not in H(ε) converges to 0.

Corollary 16. For every ε > 0, let k0 = 8
ε2

; then for every k >

k0 and every game G ∈ H(ε), if both players play in accordance

with AT (k, ε), the average payoff converges to the set PIR3ε

almost surely.

The idea is that in the proof of convergence we have only used

two properties of the k-stage game—the two properties of Corol-

lary 9. To guarantee these two conditions, we can take k ≥

max(1ε ,
8
αδ ) where α is the minimal angle and δ is the minimal

distance of two different payoffs. In the class H(ε) α ≥ ε and

δ ≥ ε, and so k0 = 8
ε2

will be sufficient.

4. A non-identical choice of k. In fact, the conclusion of our
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main Theorem remains valid under the mild assumption that

each player i plays in accordance with AT (ki, ε) respectively,

where d = gcd(k1, k2) > k0(ε).
5 By considering blocks of size

k1k2 that are divided to sub-blocks of size d we can see that

there is a positive probability to ”catch” a dominate outcome

by repetition of the same sub-blocks of size d. By employing

considerations similar to the ones that being used in the proof

of our main Theorem, one can show that the dynamic leads to

ε− PIR.

5. Random ε. Another possible interpretation to the aspiration

level formation previously introduced, is that players make a

computational mistakes when calculating their average payoff.

Under this approach to have ε as a random small noise, rather

then deterministic, is more appropriate. We note that if the

random mistakes players made during the play, governed by the

noise, are i.i.d. throughout time with support [−ε0, ε0] that over-

lap the positive orthant, our main theorem still holds: There

exists a k0 = k0(ε0) such that for every k > k0, if the dynamic is

operated on the k stage game then the average payoff converges

to 3ε0 − PIR (a.s).

5 The Formal Proof

5.1 Proof of Proposition 8

We start by a characterizing the structure of a loop.

For E1 ⊂ S1 and E2 ⊂ S2 we denote

E1 ∨ E2 = {(s1, s2)|s1 ∈ E1 or s2 ∈ E2} ⊂ S.
5gcd(k1, k2) is the greatest common divisor of k1 and k2.
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Lemma 17. For every z ∈ R2 and a z-loop L there exists E1(L) ⊂ S1

and E2(L) ⊂ S2 such that L = E1(L) ∨ E2(L).

Proof. Let L be a z-loop. Set

E1(L) = {s1 : ∃s2 s.t., u1(s1, s2) ≤ x1 and (s1, s2) ∈ L},

and symmetrically for player 2

E2(L) = {s2 : ∃s1 s.t., u2(s1, s2) ≤ x2 and (s1, s2) ∈ L}.

Obviously E1(L) ∨ E2(L) ⊆ L. To see the other inclusion, note that

by the definition of a z-loop for every (s1, s2) ∈ L one of the following

mast hold: u1(s1, s2) ≤ z1 or u2(s1, s2) ≤ z2 but not both.

We can conclude that a z-loop L has the following structure:

• For every s1 ∈ E1, s2 ∈ S2 r E2 u(s1, s2) >≤ z.

• For every s1 ∈ S1 r E1, s2 ∈ E2 u(s1, s2) ≤> z.

• For every s1 ∈ E1, s2 ∈ E2 u(s1, s2) ≤> z or u(s1, s2) >≤ z.

Where the first and second inequality symbols represent an appropri-

ate inequality in the first and second coordinates respectively.

This structure can be deduced by the fact that in each state s ∈ L

exactly one of the players is satisfied and the other is unsatisfied. We

can summarize the above structure using the following table:
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E2

︷ ︸︸ ︷
? u(s) ≤> z

E1


u(s) >≤ z

u(s) ≤> z

or

u(s) >≤ z

A loop in the game Gk is a complex object. It will be easier for

us to focus on constant actions in the loop, i.e., actions where players

play that same action k number of times. To do so we first need to

prove that constant actions exist in a loop.

Lemma 18. For every z ∈ IR, and for every z-loop L = E1∨E2 ⊂ S,

there exist for both players two actions in the original game a1i1 , a
1
i2
∈

A1, i1 6= i2 and a2j1 , a
2
j2
∈ A2, j1 6= j2 such that (a1i1)k, (a1i2)k ∈ E1 and

(a2j1)k, (a2j2)k ∈ E2.

Proof. Note that E1 6= ∅, because otherwise take s2 ∈ E2; then for

every s1 ∈ S1 u(s1, s2) ≤> z, which contradicts the assumption that

z2 is at least the minmax of player 2. Symmetrically we have that

E2 6= ∅.

First we prove that there exists an action for one of the players

a1i ∈ S1 or a2j ∈ S2 such that (a1i )
k ∈ E1 or (a2j )

k ∈ E2. Assume

to the contrary that (a1i )
k ∈ S1 r E1, (a2j )

k ∈ S2 r E2 for every

1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. Take s1 ∈ E1 and s2 ∈ E2.

For 1 ≤ i ≤ m1 let xi be the number of times that the action a1i is

played in the sequence s1. From the above table, u(s1, (a2j )
k) >≤ z;
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therefore, we deduce that for every a2j ∈ A2

m1∑
i=1

xi
k
u1(a1i , a

2
j ) > z.

For 1 ≤ j ≤ m2 denote by yj number of times that the action a2j is

played in the sequence s2. From the above table, u((a1i )
k, s2) ≤> z,

and so for every a1i ∈ S1

m1∑
j=1

yj
k
u1(a1i , a

2
j ) ≤ z

Therefore,

z1 <
m2∑
j=1

yj
k

m1∑
i=1

xi
k
u1(a1i , a

2
j ) =

m1∑
i=1

xi
k

m2∑
j=1

yj
k
u1(a1i , a

2
j ) ≤ z1

which is a contradiction.

Now, assume without loss of generality, that the player with a

constant action in the loop is player 1; i.e., there exists a1i1 ∈ A
1 such

that, (a1i1)k ∈ E1. There exists a2j1 ∈ A
2 such that u1(a

1
i1
, a2j1) ≤ z1,

because z1 ≥ v1. So u1((a
1
i1

)k, (a2j1)k) ≤ z1, and so it follows that

(a2j1)k ∈ E2 and u2(a
1
i1
, a2j1) > z2. By the same considerations there

exists a1i2 ∈ A
1 such that u2(a

1
i2
, a2j1) ≤ z2 (clearly a1i2 6= a1i1) and so

a1i2 ∈ E1 and u1(a
1
i2
, a2j1) > z2. Apply for the third time the same

consideration to the action a1i2 , to get that there exists a2j2 (a2j1 6= a2j2)

for which (a2j2)k ∈ E2.

A special case that should be considered differently in the proof of

Proposition 8 is the one where each player has exactly two actions in

the original game. The following lemma shows that this simple case

does not cause a problem; i.e., there is no z-loop for z ∈ IR.

Lemma 19. For every game G such that |A1| = |A2| = 2, for every

k ∈ N, and for every z ∈ IR, there are no z-loops.
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Proof. Assume by way of contradiction that there exists a z-loop L =

E1 ∨ E2. Let s1 ∈ S1 \ E1 and s2 ∈ S2 \ E2. For i = 1, 2 denote

by xi number of times that the action a1i is played in the sequence

s1 and by yj number of times that the action a2j is played in the

sequence s2. By Lemma 18, (a11)
k, (a12)

k ∈ E1 and (a21)
k, (a22)

k ∈ E2.

Therefore for j = 1, 2,
∑

i=1,2
xi
k u1(a

1
i , a

2
j ) ≤ z1. And for i = 1, 2∑

j=1,2
yj
k u1(a

1
i , a

2
j ) > z1. From this it follows that

z1 ≥
∑
j=1,2

yj
k

∑
i=1,2

xi
k
u1(a

1
i , a

2
j ) =

∑
i=1,2

xi
k

∑
j=1,2

yj
k
u1(a

1
i , a

2
j ) > z1,

which is a contradiction.

We can now prove the proposition.

Proof of Proposition 8. Recall that α is the minimal angle that is

formed by 3 payoffs in the game G, and δ is the minimal distance

between two payoff profiles in G. We take k0 = 8
αδ ). Let us show that

Gk has no z-loop for z ∈ IR.

If |A1| = |A2| = 2, then by Lemma 19, Gk has no z-loop.

In the other case where at least one player has at least 3 actions,

assume without loss of generality that it is player 2 (|A2| ≥ 3). By way

of contradiction assume that L = E1 ∨ E2 is a z-loop. By Lemma 18

there exist two different actions a1, c1 ∈ A1 such that (a1)k, (c1)k ∈ E1.

Denote by B := {u((a1)k, s2)|s2 ∈ S2} ⊂ u(S) the set of all payoffs

the strategy (a1)k yields in the game Gk.

The average z should be in the rectangle

{(x′, y′)| min
(x,y)∈B

(x) ≤ x′ ≤ max
(x,y)∈B

(x), min
(x,y)∈B

(y) ≤ y′ ≤ max
(x,y)∈B

(y)}.

To see this, note that since (a1)k ∈ E1 the set of payoffs that (a1)k

yields should include payoffs for Player 1 that are both higher and

lower than z1, and similarly for Player 2.
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LetK = PO(B) be the set of Pareto-efficient points with respect to

conv(B). Denote by H = −PO(−B) ⊂ conv(B) the set of inefficient

points in B. Every point b ∈ B is a payoff in some state in the loop L;

therefore it cannot be the case that either b ≥≥ z or b ≤≤ z. Hence,

by considerations similar to those of Lemma 6, the distance of z from

both the Pareto-efficient boundary and the the inefficient boundary of

conv(B) is at most
√
2

2k .

Let d be a point in the intersection of the efficient boundary and the

inefficient boundary. Since d is a vertex of conv(B), one has d ∈ u(A).

Let β be the angle between the efficient boundary and the inefficient

boundary in the point d. Note that β is an angle between some three

payoffs in the game G, so β ≥ α. By geometric considerations it may

be seen (Figure 5) that the distance between z and d is at most
√
2

k sinβ .

Figure 5:

Now we can apply the same considerations to the other constant

action c1 6= A1 and get the existence of some other point e ∈ u(A)

such that the distance between z and e is also at most
√
2

k sin γ , where γ

is an angle between some other three payoffs, and so γ ≥ α.

Therefore

δ ≤ ‖d−e‖2 ≤ ‖d−z‖2+‖e−z‖2 ≤
√

2

k sinβ
+

√
2

k sin γ
≤ 2

√
2

k sinα
<

4

kα2
≤ 4

8
αδ

α
2

= δ

which is a contradiction.
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5.2 The Proof of Convergence

Proof of Lemma 10. Let i0 be i’s maxmin pure strategy. We note first

that

P(∃n ≥ n0 s.t. xin ≥ vi − ε|sin0
= i0) = 1.

If xin ≥ vi− ε, there is nothing to show; if, however, xin < vi− ε, then

since the strategy i0 yields only payoffs that are greater than or equal

to vi, player i will play i0 at least until xin rises above vi − ε.

It is immediate that P(ui(sn) − xin ≤ ε i.o.) = 1. And since we

have that P(sn+1 = i0|ui(sn) − xin ≤ ε) = 1
|Si| , we can deduce that

P(xin ≥ vi − ε i.o.) = 1.

Proof of Lemma 11. Define a sequence of events An by

An = {vi − ε− δ

2
≤ xin < vi − ε},

and a sequence of stopping times {kn}∞n=1 by

kn = min{m ≥ n : xim < vi − ε− δ ∨ xim ≥ vi − ε}.

Define Bn by

Bn = {xikn < vi − δ − ε}.

Using the Borel-Canteli Lemma we show, that

P(An ∩Bn i.o.) = 0.

We first try to bound P(Bn|An) from above. Since |xin+1 − xin| < 1
n

we can deduce that if |xim − xin| ≥ δ
2 , then m − n > nδ

2 for m > n.

Therefore, given An, Bn occurrence caused by at least bnδ2 c periods

n ≤ m < kn in which ui(sm) < xim < vi − ε. So we have bnδ2 c periods

in which player i randomly chooses a strategy. Note that if in one

of these periods player i chooses the minmax strategy i0, then Bn

occurs with probability 0. Because, if she chooses i0, then all of her
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subsequent payoffs are above vi, that will cause his average increase

above vi − ε. Therefore,

P((∃n ≤ m < kn s.t. sim = i0) ∩Bn|An) = 0.

Therefore, given An, Bn can occur only if in at least bnδ2 c periods

player i chooses a random strategy that is different from i0. Let c =

|Si|−1
|Si| < 1, which represents the probability of randomly choosing a

strategy that is different from i0. Therefore,

P(Bn|An) ≤ cb
nδ
2
c.

Therefore,
∞∑
n=1

P(An ∩Bn) ≤
∞∑
n=1

P(An) · P(Bn|An) ≤
∞∑
n=1

cb
nδ
2
c <∞.

Using Borel-Canteli Lemma, one has P(An ∩ Bn i.o.) = 0. Every av-

erage’s down crossing of the interval [vi − ε − δ, vi − ε] results in an

occurrence of An∩Bn for some n. And since by Lemma 10 the average,

xin, is infinitely often above vi − ε we have,

P({xin < vi − ε− δ i.o.}) ≤ P(An ∩Bn i.o.) = 0,

which proves the lemma.

Proof of Lemma 12. The event {xn ∈ IRε i.o} is a tail event, so we

can assume throughout the proof that n > 16
ε .

Let l1,n be the line that connects points (v1, v2) and (v1 − ε, v2 −

ε+ 2
n), and l2,n be the line that connects points (v1, v2) and (v1− ε+

2
n , v

2 − ε). These two lines define three disjoint areas (see Figure 3):

B1,n : = {(y1, y2) ∈ C(Γ)|ε(v2 − y2) ≥ (ε− 2

n
)(v1 − y1) and (ε− 2

n
)(v2 − y2) ≤ ε(v1 − y1)}

B2,n : = {(y1, y2) ∈ C(Γ)|ε(v2 − y2) < (ε− 2

n
)(v1 − y1) and y1 ≤ v1 − ε}

B3,n : = {(y1, y2) ∈ C(Γ)|(ε− 2

n
)(v2 − y2) > ε(v1 − y1) and y2 ≤ v2 − ε}
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By Lemma 10

P(∃{ni}∞i=1, {mi}∞i=1 s.t. ni < mi < ni+1,

x1ni > v1 − ε and x2mi > v2 − ε) = 1.

Consider the segment of time [ni,mi], and assume by contradiction

that xn /∈ IRε ∪ B1,n for every n ∈ [ni,mi]. Then xn ∈ B2,n ∪ B3,n,

xni ∈ B2,ni and, xmi ∈ B3,mi . Hence, there exists time n such that

xn−1 ∈ B2,n−1 and xn ∈ B3,n. But the distance between the sets

B2,n−1 and B3,n is at least
√
8
n , whereas the maximal distance between

xn−1 and xn is at most
√
2
n , which is a contradiction.

Now let δ = min( ε2 ,
1
2 min
i=1,2

( min
s1,s2∈S

|ui(s1)− ui(s2)|)). We define an-

other area Dn ⊂ F (see Figure 3 on page 14):

Dn := (B1,n ∩ IRε+δ)\IRε.

On the one hand, P(xn ∈ IRε ∪ B1,n i.o) = 1, and on the other

hand, by Lemma 11 P(∃n0 s.t. ∀n > n0 xn ∈ IRε+δ) = 1; therefore

P(xn ∈ IRε∪Dn i.o) = 1. We will prove that for every xn ∈ IRε∪Dn

there exists a constant positive probability that xn+f(n) ∈ IRε, where

f(n) ≥ 0, and this will complete the proof.

Let us define the new area En (see Figure 6):

En := {(y1, y2) ∈ C(Γ)|ε(v2 − y2) ≥ (ε − 8
n)(v1 − y1) and (ε −

8
n)(v2 − y2) ≤ ε(v1 − y1)} ∩ IRε+2δ.

For every average xn ∈ IRε+2δ, if player i is satisfied with her

payoff ui(sn), then ui(sn) > vi, because δ ≤ 1
2 min
i=1,2

( min
s1,s2∈S

|ui(s1) −

ui(s2)|). If xn ∈ Dn ⊂ IRε+δ, then xn+1, xn+2 ∈ IRε+2δ, and so

with probability of at least 1
|S|2 in steps n+ 1 and n+ 2, both players

will randomize their maxmin action every time when they are not

satisfied, and in this scenario at step n+ 2 the players will play some

action sn+2 ∈ S such that u(sn+2) ∈ IR. ||xn+2 − xn||2 < 2
√
2

n , so

d(xn+2, Dn) < 2
√
2

n , and it follows that xn+2 ∈ En.
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Figure 6:

For convenience set m = n+ 2. Let b = max{min
i=1,2

(vi−xim− ε), 0};

we know that b ≤ ε, because δ < ε
2 . Note that

⌈
mb
ε

⌉
steps after m,

sm will be played with probability 1, because for 0 ≤ l <
⌈
mb
ε

⌉
the

difference between ui(sm) and the average at step m+ l is

ui(sm)− m

m+ l
xim −

l

m+ l
ui(sm) =

m

m+ l
(ui(sm)− xim) ≥

≥ m

m+ l
(vi − xim) ≥ m

m+ l
(b+ ε) >

m

m+ mb
ε

(b+ ε) =
b+ ε

1 + b
ε

= ε.

Therefore with probability of at least
(

1
|S|

) 32
ε

the action sm will

be played
⌈
mb
ε

⌉
+ 32

ε steps after step m.

By the definition of En every payoff y = (y1, y2) ∈ Dn satisfies for

i 6= j i, j = 1, 2:
vi − yi

vj − yj
≤ ε

ε− 8
n

<
1

1− 8
mε

,

which yields

vi − yi ≤ 1

1− 8
mε

min
j=1,2

(vj − yj) ≤ 1

1− 8
mε

(b+ ε).

Now let us compute the difference between vi and the average at

step m+
⌈
mb
ε

⌉
+ 32

ε :

vi−xi
m+dmbε e+ 32

ε

= vi− m

m+
⌈
mb
ε

⌉
+ 32

ε

xim−
⌈
mb
ε

⌉
+ 32

ε

m+
⌈
mb
ε

⌉
+ 32

ε

ui(sm) ≤
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≤ vi− m

m+
⌈
mb
ε

⌉
+ 32

ε

xim−
⌈
mb
ε

⌉
+ 32

ε

m+
⌈
mb
ε

⌉
+ 32

ε

vi =
m

m+
⌈
mb
ε

⌉
+ 32

ε

(vi−xim) ≤

≤ m

m+ mb
ε + 32

ε

(vi−xim) = ε
(vi − xim)

ε+ b+ 32
m

≤ ε
1

1− 8
mε

(b+ ε)

ε+ b+ 32
m

= ε

1
1− 8

mε

1 + 32
m(b+ε)

≤

≤ ε 1

(1− 8
mε)(1 + 32

m·2ε)
= ε

1

1 + 8
mε(1−

16
mε)
≤ ε.

So if sm is played
⌈
mb
ε

⌉
+ 32

ε steps after step m, then xi
m+dmbε e+ 32

ε

∈

IRε, and it occurs with positive constant probability
(

1
|S|

) 32
ε

.

Proof of Lemma 13. Recall that at time n the process behaves like the

Markov chain Pαn , where αn = xn+ε. For every average xn ∈ IRε\E

there is no αn-loop; therefore every invariant set of the Markov chain

Pαn includes an action s ∈ S such that u(s)− (ε, ε) >> xn; i.e., there

is a positive probability of at least 1
|S||S| of achieving such an action

in at most |S| steps.

Assume xn ∈ IRε\E, and consider the event where at each time

m > n where xm /∈ E and not u(sm)− (ε, ε) >> xm, the players reach

in at most |S| steps an action s ∈ S such that u(s)− (ε, ε) >> xm; 6

note that clearly s 6= sm. This event occurs with a probability of at

least 1
(|S||S|)|S| , and subsequently xm ∈ E.

By Lemma 12 P (xn ∈ IRε i.o) = 1, and as we proved above, if

xn ∈ IRε then with a probability of at least 1

|S|(|S|2)
there exists m > n

such that xm ∈ E ; therefore P (xn ∈ E i.o.) = 1.

Proof of Lemma 14. We will prove it for δ < 1
2 min
s1,s2∈S

|ui(s1)− ui(s2)|,

and then clearly it holds also for every δ′ > δ because Eδ ⊂ Eδ′ .
6During the |S| steps, the average xm is changed. So there could be a situation where

the Markov chain Pαm
changed in steps m+1,m+2, ...,m+ |S|, and a path to the desired

action s no longer exists in the new chain. To avoid this problem we cam assume that the

action sm continues to be played |S|ε steps more from the moment that it is no longer the

case that u(sm)− (ε, ε) >> xm. This happens with a probability of at least
(

1
|S|

) |S|
ε

.
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By the choice of δ, we know that for every xn ∈ Eδ\E and action

s ∈ S such that u(s) − (ε, ε) >> x satisfies u(s) − (ε, ε) ∈ E, which

means that if the current average is xn = x, and the players play an

action s such that they are both satisfied, then they will play it with

probability 1, until the average enters the set E.

From here on, the proof will be very similar to the proof of Lemma

11.

We define a sequence of events An by

An = {0 < ||E − xn||∞ ≤
δ

2
}.

Define a sequence of stopping times {kn}∞n=1 by

k = min{m ≥ n : xm ∈ Am}.

Define Bn by

Bn = {||E − xkn || > δ}.

Let us bound from above P(Bn|An). Given An, Bn occurrence

caused by at least
⌊
nδ
2

⌋
periods n ≤ m < kn in which no action s

such that u(s) − (ε, ε) >> xm, has been played (because otherwise

||E − xkn || = 0). But for any average xm /∈ E, there is a positive

probability of c := 1
|S||S| to reach such an action s in |S| steps. So, for

n > 4|S|
δ , the probability that such an action s will not be played in

steps n+ |S|, n+ |S|+ 1, ..., n+ |S|+
⌊
nδ
4

⌋
is at most (1− c)b

nδ
4 c; i.e.,

P(Bn|An) ≤ (1− c)b
nδ
4 c. Therefore:

∞∑
n=

4|S|
δ

P(An ∩Bn) =

∞∑
n=

4|S|
δ

P(An)P(An|Bn) ≤
∞∑

n=
4|S|
δ

(1− c)b
nδ
4 c <∞

and by the Borel-Cantely lemma P (An ∩ Bn i.o.) = 0. Whenever

xn ∈ E and xm /∈ Eδ m > n , An ∩Bn occurs for some n. By Lemma

13 we have

P(xn /∈ Eδ i.o.) = P(xn /∈ Eδ i.o.|xn ∈ E i.o.) ≤ P(An ∩Bn i.o.) = 0.
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