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Abstract

We study graduate college admission problem with budget constraint. Each college

has a fixed amount of money to distribute as stipends among a set of students matched

to it. Also, each college has additively separable preferences over the set of students

and has a nonnegative value for each student. On the other hand, each student is

matched with at most one college and receives a stipend from it. Each student has

quasi-linear preferences over college-stipend bundles.

In this paper, we consider fixed budget (feasibility) constraint for college admission

problem which was not studied in earlier literature. We define pairwise stability and

show that a pairwise stable allocation always exists. We introduce a rule through an

algorithm we construct, which always selects a pairwise stable allocation.
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1 Introduction

We study graduate college admission problem. There are college graduates applying for

graduate studies. Also, there are colleges that have graduate programs. Each such college

wants to admit certain number of students. In most colleges, at the beginning of the year,

department allocates a fixed budget for graduate student admissions. With this budget,

admission committee can offer stipends to students that it wants to admit. At the beginning

of each year, admission committee agrees on certain amount as the maximum stipend it can

offer to a student. No student will receive a stipend higher than this amount. Money left

after admissions goes back to department for other uses. Therefore admission committee has

no preference over the money it will be left with at the end. Each college values each student

differently. Decision of a college on which student to admit, depends on the value of the

student to the college. Each student, on the other hand, makes decisions that depends on

which college offers him admission and with what stipend. Pursuing graduate study is not

mandatory. Therefore, each student always has an outside option which maybe staying at

home. Each student has the lowest stipend that he would like to receive from each college in

order to consider the admission from this college as an option. This amount can be different

for each college. If a college offers a stipend which is less than this lowest amount, then the

student would prefer to stay at home rather than going to this college with offered stipend.

We match students to colleges and allocate the budgets of the college among students as

stipends. We seek for an allocation with the following property: consider a pair of a student

and a college that are not matched to each other. They cannot come together and find a

stipend such that the student will be willing to go to this college with this stipend and the

college will be better off by admitting this student.

The college admission problem was first studied by Gale and Shapley (1962) in their

seminal paper where they propose the well-known deferred-acceptance algorithm. When

the preferences of the colleges are responsive to the preferences over individual students, the

deferred-acceptance algorithm gives a core allocation. It shows that the core is not empty for

this model (Roth (1984, 1985), Roth and Sotomayor (1990) and etc.). When we introduce

money to this problem, under certain assumptions on the preferences, competitive allocation,

which coincides with the core for this model, exists (Shapley and Shubik (1971), Crawford

and Knoer (1981), Crawford and Kelso (1982), Quinzii (1984), Gerard van der Laan, Talman
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and Tang (1997), Sun and Yang (2006)). Some of the works in the literature consider the

problem where budget of a college is flexible and determined by total productivity (Crawford

and Knoer (1981), Crawford and Kelso (1982), Sotomayor (1992, 1999, 2002, 2007, 2009),

Sun and Yang (2006)). Different from earlier papers, in our model we assume that colleges

have fixed budgets. This means that, the budget does not depend on how many students each

college admits and the identity of students. Fixed budget is generally the case in graduate

college admissions: in many graduate programs, department allocates fixed amount of money

for graduate student admissions and this amount doesn’t change until the next year.

Recently matching problem with general contracts was studied. Sufficient conditions on

preferences for existence of stable allocation were provided (Hatfield and Milgrom (2005),

Hatfield and Kojima (2008, 2010)). These works generalize many papers in the matching

literature stated above. We will show with an example that, conditions provided in these pa-

pers that are sufficient for existence of stable allocation, do not encompass budget constraint.

This makes our results independent of the results in those papers.

One different assumption of our paper is that, colleges have cardinal preferences over

students, which is the value of student for it. Colleges have no preference over money. In

many graduate programs, department allocates certain amount of money for admissions.

Admission committee can only use this money to admit students. Money left at the end of

admissions will go back to department. Therefore, assuming that admission committee has

no preference over money is realistic.

In most of the graduate programs, admission committee agrees on the maximum stipend

that they can offer to a student. No student will receive a stipend higher than this amount.

This is the case in real life: it is very unlikely for a college to offer a student unlimited

stipend. Each college generally sets the maximum amount that it can offer and does not

offer stipends higher than that amount.

As in many papers in the literature, we also assume that colleges have additively separable

preferences. In other words, the value of a college for a student is independent of the identity

of other students admitted to this college.

As we mentioned earlier, each student has a preference over a college that he is admitted

to and a stipend he receives from it. We assume that preferences of students are quasi-linear.

This assumption may seem restrictive, but weakening this assumption would result in many

complications. We let each student have an outside option which may be staying at home.
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With this option, each student has the lowest stipend that he would like to receive from each

college in order to consider it as an option. This amount can be different for each college.

When a college offers a stipend below this amount, student prefers staying at home rather

than going to that college. Assumption of outside option makes our model more general. A

special case would be assuming that students do not have any other option and would like

to go to all colleges, even if they do not receive any stipends from them.

We define a notion of stability called pairwise stability. This property says the following:

Let an allocation be selected. Suppose there is college A and student B, such that student B

is not assigned to college A. Also suppose that there is student C assigned to college A whom

college values less than student B. Therefore, college A would be willing to release student C

if it can admit student B using the stipend it is paying to student C (Note that, college A

can release more than one student, in order to admit student B, as long as the value of

student B is higher than the total value of this group of students for college A). Suppose

that college A and student B can agree on a stipend such that student B will prefer college A

with this stipend to his initial allocation. As we mentioned above, college A will be better off

by admitting this student even if it has to release student C. For an allocation to be pairwise

stable there should be no such deviations by a pair of college and student. Our main result

is that the pairwise stable allocation always exits. We construct an algorithm and prove that

the rule associated with this algorithm always selects a pairwise stable allocation.

Pairwise stability may seem as a weaker requirement compared to coalitional stability

which is immune to deviations by a group of students and a college. Nevertheless, pairwise

deviations are the ones that are more likely to happen in real life: A student may contact a

college he is not assigned to with a proposal: in case this college could offer him admission

with certain stipend, he would be willing to go to this college. Then the college considers

whether it can benefit from this proposal and makes a decision accordingly. Reverse proposal

can also be the case. Our requirement is that no such deviation by a college and a student

should be beneficial for both of them. In real life, it is very unlikely that two or more students

who are assigned to different colleges can communicate and agree with some other college

and move to that college. Therefore, by considering real life applications we can see that

our requirement is pretty strong. The rest of the paper is organized as follows. In Section 2

we define the model and pairwise stability and in Section 3 we provide our algorithm. In

section 4 we state our main result and provide the proof.
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2 Model

There are a finite set of colleges C = {c1, c2, . . . , cn} and a finite set of students S =

{s1, s2, . . . , sm}. Each student has the option of staying at home. We denote this option

∅c. Each college c has capacity qc ∈ Z+ and the null college has q∅c = ∞. Let q ≡
(qc1 , qc2 , . . . , qcn) ∈ Zn

+ be the capacity profile. Each college c has a fixed budget Bc ∈ R+

that it can distribute as stipend to the students it admits. Let B ≡ {Bc1 , Bc2 , . . . , Bcn} ∈ Rn
+

be the budget profile. Each college c sets an amountmc to be themaximal stipend they can

award to any student. Let m = {mc1 ,mc2 , . . . ,mcm} be the maximal stipend profile. Welfare

of college c over sets of students can be represented by a utility function uc : 2
S → R which

is additively separable over students. In other words, for each college c, and for each set of

students S ⊆ S, uc(S) =
∑
s∈S

uc(s). Let u ≡ (uc)c∈C be a utility profile. Each college c assigns

a value to each student s, which we denote by vcs ∈ R+. Let vc ≡ {vcs1 , v
c
s2
, . . . , vcsm} ∈ Rm

+

be the value profile of college c. For each college, no two students have the same value, i.e.

for each college c, and for each pair s, s′ ∈ S, vcs ̸= vcs′ . Welfare of a college c from admitting

a student s is the value c assigns to s, i.e. uc(s) = vcs.

Each student has quasi-linear preferences over college-stipend bundles. In other words,

each student s has preference relation Rs defined over {C ∪ {∅c}} × R. Let R be the set of

all preference relations. By (c, x) Ps (c
′, x′) we mean that student s prefers (c, x) to (c′, x′).

Also, by (c, x) Is (c′, x′) we mean that student s is indifferent between these two bundles.

Let R≡ (Rs)s∈S be the preference profile of students. Let RS be the set of all preference

profiles. Each student always has the option of staying at home. This option is the bundle

(∅c, 0). For each college c, each student s has a smallest stipend ℓsc(Rs) ∈ R+, which we

call his lower bound, that he would like to receive in order to attend college c. This lower

bound is derived from the preference of the student in the following way: for each student s

and each college c,

ℓsc(Rs) =

0 if (c, 0) Ps (∅c, 0)

x if (c, x) Is (∅c, 0).

Let ℓs(Rs) ≡ {ℓsc1(Rs), ℓ
s
c2
(Rs), . . . , ℓ

s
cm(Rs)} ∈ Rm

+ be lower bound profile of student s. A

typical preference relation of a student is shown in the figure below
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Figure 1: Preference of student s is shown. He is indifferent between attending college c

with stipend x and staying at home, (c, x) Is (∅c, 0). Therefore, ℓsc(Rs) = x. Also student s is

indifferent between attending college c′ with no stipend and staying at home with x′ amount

of money. This implies that, (c, 0) Ps (∅c, 0) and therefore ℓsc(Rs) = 0.

A problem is a list π ≡ (q, B,m, (vc)c∈C, u, R). Let Π be the set of all problems. Let

xc
s ∈ R+ be a stipend offered by college c to student s. Let x ≡ (xs1 , xs2 , . . . , xsm) ∈ RS

+ be

a stipend list. An allocation for π is a matching µ : S → C ∪ ∅c of students to colleges,

together with a stipend list x = (x
µ(s1)
s1 , x

µ(s2)
s2 , . . . , x

µ(sm)
sm ) ∈ RS

+. We can also denote an

allocation (µ, x) as a set of triples {(s, µ(s), xµ(s)
s )s∈S}. An allocation (µ, x) is feasible if it

satisfies the following requirements:

∀c ∈ C, |µ−1(c)| ≤ qc.

∀s ∈ S, |µ(s)| ≤ 1.

∀c ∈ C,
∑

s∈µ−1(c)

xc
s ≤ Bc.

∀s ∈ S, xµ(s)
s ≤ mµ(s).

Let A(π) denote the set of all feasible allocations for π. A rule φ : Π →
∪
π∈Π

A(π) associates

with each problem an allocation for it.
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3 Axioms

Next, we introduce several axioms. Let φ be a rule.

• In order to define our first requirement we need to introduce the notion of blocking. Let

an allocation be selected for a problem. Suppose there is a college and a student such that

the student is not matched to this college. Also suppose that the college and the student

can come together and find a stipend such that the student prefers this college with this

stipend to his initial allocation. Also the college will be better off by admitting this student

even if it has to release some of the students initially matched to it. Then we say that this

college-student pair blocks the initial allocation. Formally,

A college-student pair (c, s) blocks allocation (µ, (x
µ(s1)
s1 , x

µ(s2)
s2 , . . . , x

µ(sm)
sm )) ∈ A(π),

if µ(s) ̸= c, and there are S̄ ⊆ µ−1(c) and x′ ∈ R+ such that

(1)
∑
s′∈S̄

vcs′ < vcs,

(2) 1 + |µ−1(c)\{S̄}| ≤ qc,

(3) x′ ≤ min{mc,
∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈µ−1(c)

xc
s′′},

(4) (c, x′) Ps (µ(s), x
µ(s)
s )

are satisfied.

Now we can introduce our requirement: An allocation is pairwise stable, if there is no

college-student pair that blocks it. Let PS(π) be the set of all pairwise stable allocations

for π.

Pairwise stability: For each π ∈ Π, φ(π) ∈ PS(π).

• Next we define two efficiency requirements. The first one says that an allocation is cho-

sen only if there is no other allocation that makes at least one college or student better off

without making anyone else worse off. Formally,
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An allocation (µ, (x
µ(s1)
s1 , x

µ(s2)
s2 , . . . , x

µ(sm)
sm )) is Patreto-efficient if there is no

(µ′, (x̄
µ′(s1)
s1 , x̄

µ′(s2)
s2 , . . . , x̄

µ′(sm)
sm )) ∈ A(π) such that

for each s ∈ S, we have (µ′(s), x̄
µ′(s)
s ) Rs (µ(s), x

µ(s)
s ),

for each c ∈ C, we have
∑

s∈µ−1(c)

vcs ≤
∑

s∈µ′−1(c)

vcs,

and either

- there is s ∈ S, such that (µ′(s), x̄
µ′(s)
s ) Ps (µ(s), x

µ(s)
s ),

or

- there is c ∈ C, such that
∑

s∈µ−1(c)

vcs <
∑

s∈µ′−1(c)

vcs.

Let PE(π) be the set of all Pareto-efficient allocations for π.

Pareto-efficiency: For each π ∈ Π, φ(π) ∈ PE(π).

• The second and weaker efficiency requirement says that an allocation is chosen only if

there is no other allocation that makes every student and college better off. Formally,

An allocation (µ, (x
µ(s1)
s1 , x

µ(s2)
s2 , . . . , x

µ(sm)
sm )) is weakly Patreto-efficient if there is no

(µ′, (x̄
µ′(s1)
s1 , x̄

µ′(s2)
s2 , . . . , x̄

µ′(sm)
sm )) ∈ A(π) such that

- for each s ∈ S, we have (µ′(s), x̄
µ′(s)
s ) Ps (µ(s), x

µ(s)
s ),

and

- for each c ∈ C, we have
∑

s∈µ−1(c)

vcs <
∑

s∈µ′−1(c)

vcs.

Let WPE(π) be the set of all weak Pareto-efficient allocations for π.

Weak Pareto-efficiency: For each π ∈ Π, φ(π) ∈ WPE(π).
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4 Rules

Let π be a problem. Let ≻ be an order on the set of colleges C. Let Γ(π) be the set of all

possible orders for π.

Our rule is associated with an algorithm that we define. There are two levels in the al-

gorithm. In level 1, at each step each college defines the set of students to whom it may offer

admission. At each step, each college offers admission to at most one student. Each college

starts by offering admission to the student with the highest value among the students to

whom college may offer admission. The stipend offered is the minimum of the money avail-

able to the college, and the maximal stipend the college can offer. Each student compares the

offers he receives, if any, together with the option of staying at home, and tentatively accepts

the one he prefers. If the student is indifferent between offers, we use a predetermined order

on colleges to break ties. Next, each college defines the set of students to whom it may offer

admission. Each college with at least one empty seat, offers admission to the student with

the highest value among the students to whom college may offer admission. The stipend it

offers is the minimum of the money that the college is left with after previous offers, and the

maximal stipend the college can offer. Level 1 continues in this way until either there are no

students left to whom a college can offer admission, or until all colleges are full.

In level 2, we consider the students who are not matched to any college in level 1. We

design a procedure that matches these students to colleges if it is possible.

Level 1 of our algorithm is similar to Gale-Shapley’s DA algorithm. What differs is that

we make some adjustments in level 1. We adjust the set of students a college tentatively

admits and the set of students who reject the offer of the college. Adjustments are made

when a student who was tentatively accepting the offer of a college, rejects it at some later

step. Once the student rejects the offer, all students who have lower value than this rejecting

student for that college become available to receive an offer from this college. In other words,

independent of whether those students were previously rejecting the offer of this college or

not, this college will be able to offer admission to these students one more time. The algo-

rithm is defined formally below.
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Best Comes First rule, BCF

Let π ∈ Π be a problem. Let ≻∈ Γ(π) be an order.

Level 1:

At each step, each college can offer admission to at most one new student. Each offer that

was tentatively accepted in previous steps is still in effect. At each step, each student has

the option of staying at home, that is, choosing bundle (∅c, 0).

Step 0: Let M c
0 be set of students who are tentatively admitted to c. Since there is no

prior step, M c
0 ≡ ∅.

Step 1: Let Oc
1 ≡ S. Each c ∈ C can offer admission only to a student in Oc

1.

Each c ∈ C with |M c
0 | < qc, offers admission to s ≡ arg max

s′∈Oc
1

vcs′ , with stipend xc
s,1 =

min{mc, Bc}. Each c ∈ C with |M c
0 | = qc, does not offer admission to anyone.

Each s ∈ S compares the offers he receives at this step, if any, together with (∅c, 0). He

tentatively accepts the one he prefers and rejects the others. Students maybe indifferent

between offers. To solve this issue, we use ≻ as a tie-breaker. We break ties in the following

way:

if (c, xc
s) Is (c

′, xc′
s ), then (c, xc

s) Ps (c
′, xc′

s ) if and only if c ≻ c′,

and

if (c, xc
s) Is (∅c, 0), then (c, xc

s) Ps (∅c, 0).

Let M c
1 be the set of students who are tentatively admitted to college c and Rc

1 be the

set of students who reject the offer of college c.

For each c ∈ C, we define Oc
2 ≡ Oc

1 \{Rc
1 ∪M c

1} and proceed to Step 2.

Step t = 2, 3, . . .: Let Oc
t ≡ Oc

t−1 \{Rc
t−1 ∪M c

t−1}. Each c ∈ C can offer admission only to a
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student in Oc
t .

Each c ∈ C with |M c
t−1| < qc, offers admission to s ≡ arg max

s′∈Oc
t

vcs′ , with stipend xc
s,t =

min{mc, Bc−
∑

s′∈Mc
t−1

xc
s′,t−1}. Each c ∈ C with |M c

0 | = qc, does not offer admission to anyone.

Each s ∈ S compares the offers he receives at this step, if any, the offer that he tenta-

tively accepted at previous steps, if any, together with (∅c, 0). He tentatively accepts the

one he prefers and rejects the others. When student is indifferent, we use ≻ to break ties as

before. Each student who tentatively accepts the offer of c joins the set M c
t and each student

who rejects the offer of c joins the set Rc
t .

For each c ∈ C, we define Oc
t+1 = Oc

t \{Rc
t ∪M c

t } and proceed to Step t+1.

Adjustments made at each step in Level 1:

At each step t, each s ∈ S joins Rc
t

(1) if s receives an offer from c at step t but rejects it.

(2) if s tentatively accepted the offer of c at previous steps but receives a better offer at

step t, and rejects the offer of c.

In case (2), we revise the sets M c
t and Rc

t as follows:

- Let Dc
t ≡ {s′ ∈ S|s′ ∈ M c

t−1 and s′ ∈ Rc
t}. Let s ≡ arg max

s′∈Dc
t

vcs′ . Then M c
t ≡

{s′ ∈ M c
t−1, s.t. v

c
s′ > vcs}. [In other words, c gives up all the tentatively admitted students

who have lower value than s for c. (s is the one with the highest value for c among the

students who were tentatively admitted to c and reject it at step t.) These students will be

available to receive an offer from c at next step, that is, they join Oc
t+1.]

- Let Dc
t ≡ {s′ ∈ S|s′ ∈ M c

t−1 and s′ /∈ M c
t }. Let s ≡ arg max

s′∈Dc
t

vcs′ , then Rc
t ≡

{s′ ∈ Rc
t−1, s.t. vcs′ ≥ vcs} ∪ {s}. [In other words, students who reject the offer of c at

previous steps and have lower value than s for c ( s is the one with the highest value for c

among the students who were tentatively admitted to c and reject it at step t.) will be

available to receive an offer from c at next step, that is, they join Oc
t+1.]

We call these adjustments as restart.
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For each c ∈ C, let Oc
t ≡ Oc

t−1 \ {Rc
t ∪ M c

t }. At step t, c can offer admission only to

a student in Oc
t . This set includes:

(a) All the students with lower value than s for c, where s is as in case (2) above. [i.e.

he tentatively accepted an offer before, but rejected it in this period.]

(b) All the students to whom college have not offered admission yet.

The first level of the algorithm ends at step t at which, each c ∈ C either

- is full, i.e. |M c
t
| = qc,

or

- has empty seats, i.e. |M c
t
| < qc but there is no student it can offer admission to, i.e.

Oc
t+1

= ∅.
For each c ∈ C, matching at the end of level 1 is µ−1

1 (c) = M c
t
.

Level 2:

Step 0:

For each c ∈ C, let M c
0 be the set of the students who are matched to c at the beginning

of level 2. Since prior to level 2 there are matches resulted from level 1, then for each c ∈ C,
we have M c

0 ≡ µ−1
1 (c). Also, for each c ∈ C, let M c

0(s) be the set of sets of students in M c
0

who have lower value than s for c. Formally,

M c
0(s) ≡ {S̄ ⊆ M c

0 s.t.
∑
s′∈S̄

vcs′ < vcs}.

Step 1:

Let U1 be the set of the students who are unmatched at the beginning of step 1. All

students who are not matched at level 1 are unmatched at step 1,

U1 ≡ S\{
∪
c∈C

M c
0} ≡ S\{

∪
c∈C

µ−1
1 (c)}.
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College c can offer admission to student s if

(i) Either |M c
0 | < qc or M

c
0(s) ̸= ∅

and

(ii) x̄c
s ≥ ℓsc(Rs)

where

x̄c
s ≡ min{mc, max

S̄∈Mc
0 (s)

{
∑
s′∈S̄

xc
s′}+Bc −

∑
s′′∈Mc

0

xs′′}.

Let C1(s) be the set of colleges that can offer admission to s at step 1. For each s ∈ U1,

determine C1(s). If for each c ∈ {c′ ∈ C1(s)|for each c′′ ∈ C1(s)\c′, (c′, x̄c′
s ) Rs (c′′, x̄c′′

s )},
we have c̄ ≻ c, then college c̄ ∈ C1(s) wins the right to offer admission to s.

Offers are made in the following way: For each c ∈ C, let Oc
1 to be the set of students in U1

to whom c wins the right to offer admission. Rank the students in Oc
1 in increasing order of

values. Start from the student with lowest value, call him s1. There are two possibilities

Case 1: The set C1(s1) is singleton. Then,

− find S̄ ∈ M c
0(s) with

∑
s′∈S̄

xs′ + Bc −
∑

s′′∈Mc
0

xc
s′′ ≥ ℓs1c (Rs1) that minimizes

∑
s′∈S̄

vcs.

[Note that S̄ can be a singleton]

Then, c offers admission to s1 with stipend

xc
s1
≡ min{mc,

∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈Mc

0

xc
s′′} and releases all the students in S̄.

Case 2: The set C1(s1) is not singleton. Then, there is ĉ ∈ C1(s1)\{c}, such that for

each c̄ ∈ C1(s1)\{c, ĉ}, we have (ĉ, x̄ĉ
s1
) Rs1 (c̄, x̄

c
s1
). Next,

− find minimal x, with x ≥ ℓs1c (Rs1) satisfying (c, x) Rs1 (ĉ, x̄
ĉ
i)

− find S̄ ∈ M c
0(s) with

∑
s′∈S̄

xs′ + Bc −
∑

s′′∈Mc
0

xc
s′′ ≥ x that minimizes

∑
s′∈S̄

vcs. [Note

that S̄ can be a singleton]

Then, c offers admission to s1 with stipend

xc
s1
≡ min{mc,

∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈Mc

0

xc
s′′} and releases all the students in S̄.
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After admitting s1, we find the next student with lowest value in Oc
1, call him s2. We

repeat the procedure for s2. We proceed in the similar way and repeat the procedure for all

the students in Oc
1. Step 1 finishes when each c ∈ C makes offers to all students in Oc

1.

Set of unmatched students at the beginning of step 2, U2, includes

− students in U1 to whom no college made an offer.

− students that were released from the colleges at step 1.

We define U2 and move to step 2.

Level 2 continues until step t∗, at which either for each s ∈ Ut∗+1, there is no college that can

offer admission to him or Ut∗+1 = ∅. For each c ∈ C the resulting matching is µ−1(c) = M c
t∗ .

When level 2 ends, we adjust the stipends. For each c ∈ C, let µ−1
2 (c) be the set of students

who were admitted in level 2. If there is some money left at the end of the algorithm, that

is, if Bc −
∑

s∈µ−1(c)

xc
s > 0, then this amount is allocated to the students in µ−1

2 (c) in the

following way: First, we find the student with the highest value in µ−1
2 (c) for c and adjust

his stipend either up to mc, or by the money left in hand. Then, if there is still some

money left, we find the student with the second highest value in µ−1
2 (c) for c, and adjust his

stipend in the same way. We adjust the stipends of all the students in µ−1
2 (c) in the same way.

The Best Comes First Algorithm is well-defined and terminates in finite steps. Level 1

terminates because there are finite number of students and therefore each college can make

finite number of offers. Although colleges can re-offer to some of the students at the later

steps, the number of the students that they can offer decreases every time they restart.

Level 2 terminates in finite number of steps because at every step there is at least one col-

lege that becomes better off and no college becomes worse off. Since the total welfare that

a college can get is bounded by the sum of the values of the students for that college, then

level 2 terminates at some step.
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Next, we give several examples to show how the algorithm works.

Example 1: Let π ∈ Π. Let C = {c1, c2} and S = {s1, s2, s3}. Let c1 ≻ c2. Let vc1 = (6, 5, 4),

vc2 = (3, 5, 4), B = (10, 6), m = (7, 6) and q = (2, 1).

Preferences of students are as follows

-

∅c

c2

c1

2

4

Rs1 -

∅c

c2

c1
2

3

Rs3

-

∅c

c2

c1

1

3

Rs2

Therefore, ℓs1(Rs1) = (0, 0), ℓs2(Rs2) = (0, 0), and ℓs3(Rs3) = (0, 0).

Level 1:

Step 1:

We have Oc1
1 = {s1, s2, s3} and Oc2

1 = {s1, s2, s3}. College c1 offers admission to s1 with

stipend xc1
s1
= min{7, 10} = 7, and c2 offers admission to s2 with stipend xc2

s2
= min{7, 6} = 6.

Both s1 and s2 tentatively accept the offers. At the end of step 1, we have M c1
1 = {s1},

Rc1
1 = ∅, M c2

1 = {s2}, and Rc2
1 = ∅.

Step 2:

We have Oc1
2 = {s2, s3} and Oc1

2 = {s1, s3}. College c1 offers admission to s2 with stipend

xc1
s2
= min{7, 3} = 3, and since |M1(c2)| = qc2 , college c2 does not offer admission to anyone.

Student s2 compares offers and since (c2, 6) Ps2 (c1, 3), he tentatively accepts the offer of c2.

At the end of step 2 we have M c1
2 = {s1}, Rc1

2 = {s2}, M c2
2 = {s2}, and Rc2

2 = ∅.

Step 3:

We have Oc1
3 = {s3} and Oc1

3 = {s1, s3}. College c1 offers admission to s3 with stipend

xc1
s3
= min{7, 3} = 3, and since |M1(c2)| = qc2 , college c2 does not offer admission to anyone.

Student s3 tentatively accepts the offer of c1. At the end of step 3 we have M c1
3 = {s1, s3},

Rc1
2 = {s2}, M c2

2 = {s2}, and Rc2
2 = ∅.

Since all colleges are full, algorithm stops. The final allocation is

BCF (π) = {(s1, c1, 7), (s2, c2, 6), (s3, c1, 3)}.
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In our next example, there is a case when staying at home is preferred to attending some

college with certain stipend.

Example 2: Let π ∈ Π. Let C = {c1, c2} and S = {s1, s2, s3}. Let c1 ≻ c2. Let vc1 = (6, 5, 4),

vc2 = (3, 5, 4), B = (9, 2), m = (5, 2) and q = (2, 1).

Preferences of students are as follows

-

∅c

c2

c1

2

4

Rs1 -

∅c

c2

c1
2

3

Rs3

-

∅c

c2

c1
1

3

Rs2

Therefore, ℓs1(Rs1) = (0, 0), ℓs2(Rs2) = (1, 3), and ℓs3(Rs3) = (0, 0).

Level 1:

Step 1:

We have Oc1
1 = {s1, s2, s3} and Oc2

1 = {s1, s2, s3}. College c1 offers admission to s1 with

stipend xc1
s1
= min{5, 10} = 5, and c2 offers admission to s2 with stipend xc2

s2
= min{2, 2} = 2.

Student s1 tentatively accept the offer of c1. Since (∅c, 0) Ps2 (c2, 2), student s2 rejects the

offer of c2 and chooses (∅c, 0). At the end of step 1 we have M c1
1 = {s1}, Rc1

1 = ∅, M c2
1 = ∅,

and Rc2
1 = {s2}.

Step 2:

We have Oc1
2 = {s2, s3} and Oc1

2 = {s1, s3}. College c1 offers admission to s2 with stipend

xc1
s2
= min{5, 4} = 4, and c2 offers admission to s3 with stipend xc2

s3
= min{2, 2} = 2. Both s2

and s3 tentatively accept the offers. At the end of step 2 we have M c1
2 = {s1, s2}, Rc1

2 = ∅,
M c2

2 = {s3}, and Rc2
2 = {s2}.

Since all colleges are full, algorithm stops. The final allocation is

BCF (π) = {(s1, c1, 5), (s2, c1, 4), (s3, c2, 2)}.
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Next, we consider example in which we have adjustments during the algorithm.

Example 3: Let π ∈ Π. Let C = {c1, c2} and S = {s1, s2, s3, s4}. Let c2 ≻ c1. Let

vc1 = (6, 5, 3, 4), vc2 = (4, 5, 6, 3), B = (6, 8), m = (6, 6) and q = (2, 3).

Preferences of students are as follows

-

∅c

c2

c1
6

4

Rs1

-

∅c

c2

c1

1

3

Rs2

-

∅c

c2

c1
2

3

Rs3 -

∅c

c2

c1

2

1

Rs4

Therefore, ℓs1(Rs1) = (2, 0), ℓs2(Rs2) = (0, 0), ℓs3(Rs3) = (0, 0), and ℓs4(Rs4) = (0, 1).

Level 1:

Step 1:

We have Oc1
1 = {s1, s2, s3, s4} and Oc2

1 = {s1, s2, s3, s4}. College c1 offers admission

to s1 with stipend xc1
s1

= min{6, 6} = 6, and c2 offers admission to s3 with stipend xc2
s3

=

min{6, 8} = 6. Both s1 and s3 tentatively accept the offers. At the end of step 1 we have

M c1
1 = {s1}, Rc1

1 = ∅, M c2
1 = {s3}, and Rc2

1 = ∅.

Step 2:

We have Oc1
2 = {s2, s3, s4} and Oc2

2 = {s1, s2, s4}. College c1 offers admission to s2 with

stipend xc1
s2
= min{6, 0} = 0, and c2 offers admission to s2 with stipend xc2

s2
= min{6, 2} = 2.

Student s2 compares the offers and since (c2, 2) Ps2 (c1, 0), he tentatively accepts the offer

of c2. At the end of step 2 we have M c1
2 = {s1}, Rc1

2 = {s2}, M c2
2 = {s2, s3}, Rc2

2 = ∅.
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Step 3:

We have Oc1
3 = {s3, s4} and Oc2

3 = {s1, s4}. College c1 offers admission to s4 with stipend

xc1
s4

= min{6, 0} = 0, and c2 offers admission to s1 with stipend xc2
s1
= min{6, 0} = 0. Stu-

dent s1 compares offers and is indifferent between them, that is (c2, 0) Is1 (c1, 6). Therefore

we use ≻ to break the tie. Since c2 ≻ c1, student s1 tentatively accepts the offer of c2. Stu-

dent s4 tentatively accepts the offer of c1. At the end of step 3 we have M c1
3 = ∅, Rc1

3 = {s1},
M c2

3 = {s1, s2, s3}, Rc2
3 = ∅. At the end of this step we adjusted our sets M c1

3 and Rc1
3

because a previously accepting student, rejected the offer at this step.

Step 4:

We have Oc1
4 = {s2, s3, s4} and Oc2

4 = {s4}. College c1 offers admission to s2 with stipend

xc1
s2
= min{6, 6} = 6, and since |M3(c2)| = qc2 , college c2 does not offer admission to anyone.

Student s2 compares the offers and since (c1, 6) Ps2 (c2, 2), he tentatively accepts the offer of

college c1. At the end of step 4 we have M c1
4 = {s2}, Rc1

4 = {s1}, M c2
4 = {s3}, Rc2

4 = {s2}.
At the end of this step we adjusted our sets M c2

4 and Rc2
4 because a previously accepting

student, rejected the offer at this step.

Step 5:

We have Oc1
5 = {s3, s4} and Oc2

5 = {s1, s4}. College c1 offers admission to s4 with stipend

xc1
s4
= min{6, 0} = 1, and c2 offers admission to s1 with stipend xc2

s1
= min{6, 2} = 2. Both s1

and s4 tentatively accept the offers. At the end of step 5 we have M c1
5 = {s2, s4}, Rc1

5 = {s1},
M c2

5 = {s1, s3}, Rc2
5 = {s2}.

Step 6:

We have Oc1
6 = {s3} and Oc2

6 = {s4}. College c2 offers admission to s4 with stipend

xc2
s4
= min{6, 0} = 0, and since |M5(c1)| = qc1 , college c1 does not offer admission to anyone.

Student s4 compares the offers and since (c1, 0) Ps4 (c2, 0), he tentatively accepts the offer

of c1. At the end of step 6 we haveM c1
6 = {s2, s4}, Rc1

6 = {s1},M c2
6 = {s1, s3}, Rc2

6 = {s2, s4}.

Since colleges are either full or have no student to offer admission to algorithm stops. The

final allocation is BCF (π) = {(s1, c2, 2), (s2, c1, 6), (s3, c2, 6), (s4, c1, 0)}.
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Our last example considers the case when we have second level of the algorithm.

Example 4: Let π ∈ Π. Let C = {c1, c2} and S = {s1, s2, s3, s4}. Let c2 ≻ c1. Let

vc1 = (6, 5, 4, 3) and vc2 = (3, 5, 4, 2). Let B = (7, 7), m = (5, 6) and q = (1, 3).

Preferences of students are as follows

-

∅c

c2

c1
5

6

Rs1

-

∅c

c2

c1

2
Rs2

-

∅c

c2

c1

2

1

Rs3 -

∅c

c2

c1
2

1
Rs4

Therefore, ℓs1(Rs1) = (0, 0), ℓs2(Rs2) = (1, 0), ℓs3(Rs3) = (0, 1) and ℓs4(Rs4) = (2, 1).

Level 1:

Step 1:

We have Oc1
1 = {s1, s2, s3, s4} and Oc2

1 = {s1, s2, s3, s4}. College c1 offers admission

to s1 with stipend xc1
s1

= min{5, 7} = 5, and c2 offers admission to s2 with stipend xc2
s2

=

min{6, 7} = 6. Both s1 and s2 tentatively accept the offers. At the end of step 1, we have

M c1
1 = {s1}, Rc1

1 = ∅, M c2
1 = {s2}, and Rc2

1 = ∅.

Step 2:

We have Oc1
2 = {s2, s3, s4} and Oc2

2 = {s1, s3, s4}. College c2 offers admission to s3 with

stipend xc2
s3
= min{6, 1} = 1 and since |M c1

1 | = 1, college c1 does not offer admission to any-

one. Student s3 tentatively accepts the offer of c2. At the end of step 2, we have M c1
2 = {s1},

Rc1
2 = ∅, M c2

2 = {s2, s3}, and Rc2
2 = ∅.
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Step 3:

We have Oc1
3 = {s2, s3, s4} and Oc2

3 = {s1, s4}. College c2 offers admission to s1 with

stipend xc2
s1

= min{6, 0} = 0 and since |M c1
1 | = 1, college c1 does not offer admission to

anyone. Student s1 compares offers and is indifferent between them, that is (c2, 0) Is1 (c1, 5).

Therefore we use ≻ to break the tie. Since c2 ≻ c1, student s1 tentatively accepts the of-

fer of c2. At the end of step 3, we have M c1
3 = ∅, Rc1

3 = {s1}, M c2
3 = {s1, s2, s3}, and Rc2

3 = ∅.

Step 4:

We have Oc1
4 = {s2, s3, s4} and Oc2

4 = {s4}. College c1 offers admission to s2 with stipend

xc1
s2
= min{5, 7} = 5 and since |M c1

3 | = 3, college c2 does not offer admission to anyone. Stu-

dent s2 compares offers and since (c1, 5) Ps2 (c2, 6), he tentatively accepts the offer of c1. At

the end of step 4, we have M c1
4 = {s2}, Rc1

4 = {s1}, M c2
4 = ∅, and Rc2

4 = {s2}. At the end of

this step we adjusted our sets M4(c2) because a previously accepting student, rejected the

offer at this step.

Step 5:

We have Oc1
5 = {s3, s4} and Oc2

5 = {s1, s3, s4}. College c2 offers admission to s3 with

stipend xc2
s3
= min{6, 7} = 4, and since |M c1

4 | = 1, college c1 does not offer admission to any-

one. Students s3 tentatively accepts the offer of c2. At the end of step 5, we haveM c1
5 = {s2},

Rc1
5 = {s1}, M c2

5 = {s3}, and Rc2
5 = {s2}.

Step 6:

We have Oc1
6 = {s3, s4} and Oc2

6 = {s1, s4}. College c2 offers admission to s1 with stipend

xc2
s1

= min{6, 1} = 1, and since |M c1
5 | = 1, college c1 does not offer admission to anyone.

Students s1 tentatively accepts the offer of c2. At the end of step 6, we have M c1
6 = {s2},

Rc1
6 = {s1}, M c2

6 = {s1, s3}, and Rc2
6 = {s2}.

Step 7:

We have Oc1
7 = {s3, s4} and Oc2

7 = {s4}. College c2 offers admission to s4 with stipend

xc2
s4

= min{6, 0} = 0, and since |M c1
6 | = 1, college c1 does not offer admission to anyone.

Since (∅, 0) Ps4 (c2, 0), students s4 rejects the offer of college c2. At the end of step 7, we
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have M c1
7 = {s2}, Rc1

7 = {s1}, M c2
7 = {s1, s3}, and Rc2

7 = {s2, s4}.

Level 1 of algorithm is finishes since |M c1
7 | = 1 and Oc2

8 = ∅.

Level 2: We have U1 = {s4}.
Step 1: Since vc1s2 > vc1s4 and qc1 = 1, college c1 can not offer admission to student s4. For c2,

we have vc2s3 > vc2s4 and vc2s1 > vc2s4 . But c2 has empty seat, |M c2
1 | < qc2 = 3. The stipend c2

can offer to student s4 is xc2
s4

= min{Bc2 − xc2
s3
− xc2

s1
, 2} = 0. But since xc2

s4
= 0 < 2 = ℓs4c2 ,

college c2 can not offer admission to student s4.

Thus level 2 terminates and allocation is BCF (π) = {(s1, c2, 1), (s2, c1, 6), (s3, c2, 6), s4}.

5 Results

Theorem 1 : The pairwise stable set is non-empty. Best Comes First Algorithm produces

an outcome that is pairwise stable.

Proof. Let (µ, (x
µ(s1)
s1 , x

µ(s2)
s2 , . . . , x

µ(sm)
sm )) be an allocation selected by BCF algorithm. Sup-

pose by contradiction that there is a college-student pair (c, s) such that µ(s) ̸= c, and there

are S̄ ⊆ µ−1(c) and x′ ∈ R+ such that

(1)
∑
s′∈S̄

vcs′ < vcs,

(2) 1 + |µ−1(c)\{S̄}| ≤ qc,

(3) x′ ≤ min{mc,
∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈µ−1(c)

xc
s′′},

(4) (c, x′) Ps (µ(s), x
µ(s)
s )

are satisfied.

We consider several cases:

Case 1: Let s /∈ µ−1
1 (c) and s /∈ µ−1(c)

Subcase 1-1: There is no s′ ∈ µ−1(c) such that vcs′ > vcs.
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Sub-subcase 1-1-1: There is c̄ ∈ C\{c} such that s ∈ µ−1
1 (c̄).

(1) Suppose c̄ does not release s in level 2. Then s receives an offer from c with stipend

xc
s = min{mc, Bc} before any student s′′ ∈ µ−1

1 (c) with vcs′′ < vcs. But since s rejects this

offer, it is not possible that

(c, x) Ps (µ(s), x
µ(s)
s ) where

x ≤ min{mc,
∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈µ−1(c)

xc
s′′} ≤ min{mc, Bc}

But this contradicts our assumption that s prefers c with stipend x to his allocation at µ.

(2) Suppose c̄ releases s at some step t in level 2, i.e. s ∈ Ut for some t. Every college

in Ct(s) can offer admission to s when he is in Ut and only college with the best offer

(according to Rs) wins the right to offer to s. But then s /∈ µ−1(c) implies either of two

possibilities;

(i) There is ĉ ∈ C\{c} such that either (ĉ, xĉ
s) Ps (c,min{mc, max

Ŝ∈Mc
t (s)

(
∑
s̄∈Ŝ

xc
s̄ + Bc −∑

k∈µ−1(c)

xc
k)}), or (ĉ, xĉ

s) Is (c,min{mc, max
Ŝ∈Mc

t (s)
(
∑
s̄∈Ŝ

xc
s̄+Bc−

∑
k∈µ−1(c)

xc
k)}) and ĉ ≻ c. [In other

words, c couldn’t win the right to offer admission to s, and some other college ĉ offered

admission to him], or

(ii) Maximum stipend that c can offer to s is

x̄c
s = min{mc, max

Ŝ∈Mc
t (s)

(
∑
s̄∈Ŝ

xc
s̄ +Bc −

∑
k∈µ−1(c)

xc
k)} < ℓsc(Rs). But then by our claim we get

(c, x) Rs (µ(s), x
µ(s)
s ) Rs (∅c, 0) Ps (c, x̄

c
s), where

x ≤ min{mc,
∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈µ−1(c)

xc
s′′} ≤ min{mc, max

Ŝ∈Mc
t (s)

(
∑
s̄∈Ŝ

xc
s̄ +Bc −

∑
k∈µ−1(c)

xc
k)} = x̄c

s.

But this contradicts our assumption that s prefers c with stipend x to his allocation at µ.

Therefore it is not possible that s prefers c with stipend x to his allocation at µ. Even if

the college which wins the right to offer admission to s releases him at some later step same

intuition applies. Since s /∈ µ−1
c , then c couldn’t win the right to offer admission to s again.

Sub-subcase 1-1-2: There is no c̄ ∈ C such that s ∈ µ−1
1 (c̄), that is, s ∈ U1. By

similar reasoning as in part (2) in Sub-subcase 1-1-1 above it is not possible that
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(c, x) Ps (µ(s), x
µ(s)
s ), where

x ≤ min{mc,
∑
s′∈S̄

xc
s +Bc −

∑
s′′∈µ−1(c)

xc
s′′} ≤ min{mc, max

Ŝ∈Mc
t (s)

(
∑
s̄∈Ŝ

xc
s̄ +Bc −

∑
s′′∈µ−1(c)

xc
s′′)}.

This contradicts our assumption that s prefers c with stipend x to his match at µ.

Subcase 1-2: There is s′ ∈ µ−1(c) such that vcs′ > vcs.

Sub-subcase 1-2-1: There is s′ ∈ µ−1
1 (c) such that vcs′ > vcs.

Let µ−1
1 (c)(s) ≡ {s′ ∈ µ−1

1 (c) such that vcs′ > vcs}. In level 1, student s received offer after

all the students in µ−1
1 (c)(s). Therefore, the stipend offered to student s was

xc
s = min{mc, Bc −

∑
s′∈µ−1

1 (c)(s)

xc
s′}.

(1) There is c̄ ∈ C\c such that s ∈ µ−1
1 (c̄).

(i) Suppose c̄ does not release s in level 2. Then, since c offered admission to s in

level 1 with stipend min{mc, Bc −
∑

k∈µ−1
1 (c)(s)

xc
k} and s rejected this offer and accepted the

(c̄, xc̄
s). Then, it is not possible that

(c, x) Ps (c̄, x
c̄
s), where

x ≤ min{mc,
∑
s′∈S̄

xc
s′ +Bc −

∑
s′′∈µ−1(c)

xc
s′′} ≤ min{mc, Bc −

∑
s′∈µ−1

1 (c)(s)

xc
s′}.

This contradicts our assumption that the s prefers the c with the stipend x to his match

at µ.

(ii) Suppose c̄ releases s at some step in level 2. But by the same reasoning as in

part (2) in Sub-subcase 1-1-1, we obtain a contradiction.

(2) There is no c̄ ∈ C\c such that s ∈ µ−1
1 (c̄), that is, s ∈ U1. By the same reasoning as

in Sub-subcase 1-1-2, we obtain a contradiction.
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Sub-subcase 1-2-2: There is no s′ ∈ µ−1
1 (c) such that vcs′ > vcs and there is s′′ ∈ µ−1(c)

such that vcs′′ > vcs.

Since vcs′′ > vcs and there is no s′ ∈ µ−1
1 (c) such that vcs′ > vcs, we have s′′ admitted in

level 2. Since vcs′′ > vcs, student s receives offer before s
′′. Then, one of two cases may happen

(1) In level 2, c couldn’t win the right to offer admission to s. Then by similar reasoning

as in part (2) in Sub-subcase 1-1-1, we obtain a contradiction.

(2) College c wins the right to offer admission to s and admits him, but releases him at

some later step. Then s finally wasn’t admitted to college c either because

(i) College c couldn’t win the right to offer admission to s. Then, by similar reasoning

as in part (2) in Sub-subcase 1-1-1 we obtain a contradiction. Or

(ii) College c can not offer admission to s because there is no S̄ ⊆ µ−1(c) such that∑
s′∈S̄

vcs′ < vcs. But this contradicts our claim in beginning of the proof that there is S̄ ⊆ µ−1(c)

such that
∑
s′∈S̄

vcs′ < vcs.

Case 2: s ∈ µ−1
1 (c), but s /∈ µ−1(c).

Since s /∈ µ−1(c), then it means c releases s at some step in level 2. Then s finally wasn’t

admitted to c either because

(i) College c couldn’t get the right to offer him. Then, by similar reasoning as in

part (2) in Sub-subcase 1-1-1 we obtain a contradiction. Or

(ii) College c can not offer admission to s because there is no S̄ ⊆ µ−1(c) such that∑
s′∈S̄

vcs′ < vcs. But this contradicts our claim in beginning of the proof that there is S̄ ⊆ µ−1(c)

such that
∑
s′∈S̄

vcs′ < vcs.

This completes the proof.

During the proof we do not consider the stipend adjustments made at the end of the al-

gorithm. This is for the following reasons:
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(1) For each c ∈ C, if we have {Bc −
∑

k∈µ−1(c)

xc
k} > 0, then we should have

{Bc −
∑

k∈µ−1
1 (c)

xc
k} > 0. This is because we are not creating extra available money

in the second level. Since {Bc −
∑

k∈µ−1
1 (c)

xc
k} > 0, all students in µ−1

1 (c) are receiving the

maximum stipend they can. Therefore, by adjusting stipends for the students in µ2(c), we

do not affect anyone in µ−1
1 (c).

(2) For each c ∈ C, if we have {Bc −
∑

k∈µ−1(c)

xc
k} = 0, then there are no adjustments.

(3) For each c ∈ C, if we have {Bc −
∑

k∈µ−1
1 (c)

xc
k} = 0, then we cannot have {Bc −∑

s∈µ−1(c)

xc
s} > 0, because we are not creating extra available money in the second level.

Remark: As you can note, the way we distribute the money left at the end of level 2

of the algorithm is arbitrary. There are many different ways of doing so. Our main result

holds for all the possible distribution methods. Result of theorem is valid even if colleges

decide to keep the leftover money and not distribute it.

The rule we define in the paper is used to show non-emptiness of the pairwise stable set.

But another question that comes to mind is what other properties does this rule satisfy?

Efficiency is the one of the properties that immediately comes to mind. Unfortunately we

find the negative result even for the weaker notion of efficiency.

Example 6 (The BCF rule is not weakly Pareto efficient): Let π ∈ Π. Let

C = {c1, c2} and S = {s1, s2, s3, s4}. Let c2 ≻ c1. Let vc1 = (7, 6, 5, 3), vc2 = (6, 7, 3, 5),

B = (7, 7), m = (7, 7) and q = (3, 3).

Preferences of students are as follows

-

∅c

c2

c1
4

1
Rs1 -

∅c

c2

c1

4

1

Rs2

25



-

∅c

c2

c1
1

2

Rs3

-

∅c

c2

c1

1

2
Rs4

Therefore, ℓs1(Rs1) = (4, 1), ℓs2(Rs2) = (1, 4), ℓs3(Rs3) = (0, 0), and ℓs4(Rs4) = (0, 0).

Let’s apply Best Comes First algorithm.

Step 1:

We have Oc1
1 = {s1, s2, s3, s4} and Oc2

1 = {s1, s2, s3, s4}. College c1 offers admission

to s1 with stipend xc1
s1

= min{7, 7} = 7, and c2 offers admission to s2 with stipend xc2
s2

=

min{7, 7} = 7. Both s1 and s2 tentatively accept the offers. At the end of step 1 we have

M c1
1 = {s1}, Rc1

1 = ∅, M c2
1 = {s2}, and Rc2

1 = ∅.

Step 2:

We have Oc1
2 = {s2, s3, s4} and Oc2

2 = {s1, s3, s4}. College c1 offers admission to s2 with

stipend xc1
s2
= min{7, 0} = 0, and c2 offers admission to s1 with stipend xc2

s1
= min{7, 0} = 0.

Student s1 compares the offers and since (c1, 7) Ps1 (c2, 0), he tentatively accepts the offer

of c1. Similarly, s2 compares the offers and since (c2, 7) Ps2 (c1, 0), he tentatively accepts

the offer of c2. At the end of step 2 we haveM c1
2 = {s1}, Rc1

2 = {s2}, M c2
2 = {s2}, Rc2

2 = {s1}.

Step 3:

We have Oc1
3 = {s3, s4} and Oc2

3 = {s3, s4}. College c1 offers admission to s3 with stipend

xc1
s3
= min{7, 0} = 0, and c2 offers admission to s4 with stipend xc2

s4
= min{7, 0} = 0. Both s3

and s4 tentatively accept the offers. At the end of step 3 we have M c1
3 = {s1, s3}, Rc1

3 = {s2},
M c2

3 = {s2, s4}, Rc2
3 = {s1}.

Step 4:

We have Oc1
4 = {s4} and Oc2

4 = {s3}. College c1 offers admission to s4 with stipend
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xc1
s4

= min{7, 0} = 0, and c2 offers admission to s3 with stipend xc2
s3

= min{7, 0} = 0. Stu-

dent s3 compares the offers and since (c2, 0) Ps3 (c1, 0), he tentatively accepts the offer of c2.

Similarly, s4 compares the offers and since because (c1, 0) Ps4 (c2, 0), he tentatively accepts

the offer of c1. At the end of step 4 we have M c1
4 = {s1}, Rc1

4 = {s2, s3}, M c2
4 = {s2},

Rc2
4 = {s1, s4}.

Step 5:

We have Oc1
5 = {s4} and Oc2

5 = {s3}. College c1 offers admission to s4 with stipend

xc1
s4

= min{7, 0} = 0, and c2 offers admission to s3 with stipend xc2
s3

= min{7, 0} = 0.

Both s3 and s4 tentatively accept the offers. At the end of step 5 we have M c1
5 = {s1, s4},

Rc1
5 = {s2, s3}, M c2

5 = {s2, s3}, Rc2
5 = {s1, s4}.

Since both colleges have no student to offer admission to, algorithm stops. The final al-

location is BCF (π) = {(s1, c1, 7), (s2, c2, 7), (s3, c2, 0), (s4, c1, 0)}.

Now consider allocation (µ′, x′) ≡ {(s1, c2, 5), (s2, c1, 5), (s3, c1, 2), (s4, c2, 2)}}

One can easily check that for each s ∈ S, we have (µ(s), x
µ(s)
s ) Ps (µ′(s), x

µ′(s)
s ). Also

for each c ∈ C, we have
∑

s∈µ−1(c)

vcs <
∑

s∈µ′−1(c)

vcs. Therefore, for each s ∈ S and each

c ∈ C allocation (µ′, x′) = {(c1, s2, 5), (c1, s3, 2), (c2, s1, 5), (c2, s4, 2)} Pareto dominates the

BCF (π) = {(c1, s1, 7), (c1, s4, 0), (c2, s2, 7), (c2, s3, 0)}. This shows that the rule associated

with Best Comes First Algorithm is not weakly Pareto-efficient.

Although our rule is immune to deviations by a pair of a college and a student, the group of

more than one college and one student can benefit from joint deviations. This is the main

reason why we get inefficiencies. Therefore, the question that whether we can always find an

allocation that is immune to deviations by any group of students and colleges remains still

open for this model.
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Comments on relation with ”matching with contracts” model.

Recently, some papers study matching with general contracts. Necessary and sufficient

condition for existence of stable allocation, called substitutability, was introduced (Hatfield

and Milgrom (2005)). But later it was shown that this condition is only necessary condition.

A weaker condition, called bilateral substitutability, was introduced and it was shown that it

is necessary and sufficient condition for existence of stable allocation (Hatfield and Kojima

(2008, 2010)).

In words, contracts are substitutes for a college if addition of a contract to the choice set

never induces a college to take a contract it previously rejected. In bilateral substitutes the

condition is subjected to the case where the student in previously rejected and newly added

contracts should not be in any contract in the choice set. We will give an example which

shows that colleges’ preferences in our model does not satisfy any of these conditions.

Formally, let a ≡ (s, xs) ∈ S × R+ be a contract. Let A be the set of all contracts and

let A ∈ 2|A|. For each contract a ∈ A, let s(a) be the student in contract a. For a set

of contracts A, let S(A) be the set of students in contracts in A. Let Chc : A → A be a

choice function of college c. Let Chc(A) be the choice of college c from the set of contracts A

such that Chc(A) ∈ {A′ ⊆ A such that A′ ≡ arg max
A′′⊆A

∑
s∈S(A′)

vcs}. Contracts are bilateral

substitutes for a college c if there do not exist contracts a, a′ and a set of contracts A such

that s(a), s(a′) /∈ S(A), a /∈ Chc(A ∪ a) and a ∈ Ch(A ∪ a, a′).

Next, we provide an example in which we show that budget constraint is not encompassed

in feasibility constraints of contracts.

Example 7: Let S = {s, s′, s′′} and C = {c, c′}. Values of college c are vc = {vcs = 7, vcs′ = 5,

vcs′′ = 4} and its budget is Bc = 8. Consider set of contracts {(s, 6), (s′, 4)}. College c

cannot choose both contracts due to its budget constraint. Since it values s more than s′,

then it chooses contract (s, 6) and rejects (s′, 4). Now let us add another contract (s′′, 4) to

the set of contracts. Again, due to its budget constraint, c cannot choose all three contracts.

College c also cannot choose any pair of contracts that includes contract (s, 6). Since the

values of the students s′ and s′′ are greater than the value of student s, then it chooses

contracts (s′, 4) and (s′′, 4), and reject (s, 6). But then we get violation of bilateral substi-

tutability condition. Addition of a contract with a student who is not in any previously
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available contracts, results in college choosing the contract that it was previously rejecting

(the student in this contract is not in any other contract as well). And by our result we

know that pairwise stable allocation exists for such a problem.
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