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Abstract

In the standard Bayesian formulation of games of incomplete information, some types may

represent the same hierarchy of beliefs over the given set of basic uncertainty. Such types are

called redundant types. Redundant types present an obstacle to the Bayesian analysis because

Mertens-Zamir approach of embedding type spaces into the universal type space can only be

applied without redundancies. Also, because redundant structures provide different Bayesian

equilibrium predictions (Liu [24]), their existence has been an obstacle to the universal argument

of Bayesian games. In this paper, we show that every type space, even if it has redundant types,

can be embedded into a space of hierarchy of beliefs by adding an appropriate payoff irrelevant

parameter space. And, for any type space, the parameter space can be chosen to be the space

{0, 1}. Moreover, Bayesian equilibrium is characterized by this “augmented” hierarchy of beliefs.

In this process, we show that the syntactic characterization of types by Sadzik [31] is essentially the

same as whether or not they can be mapped to the same “augmented” hierarchy of beliefs. Finally,

we show that the intrinsic correlation in Brandenburger-Friedenberg [10] can be interpreted as a

matter of redundant types and we can obtain their results in our framework.

1 Introduction

One difficulty in dealing with games of incomplete information is the infinite regress of uncertainty.

Typically, an agent is uncertain about the payoff functions of the other agents. 1 In order to analyze
1The agents’ uncertainty about action spaces can be represented as the uncertainty about payoff functions. See

Hu-Stuart [23] for the details
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an agent’s decision under incomplete information, it is not enough to incorporate his belief over the

basic uncertainty, that is, the uncertainty about the agents’ payoffs. We have to incorporate what the

agent believes about what his opponents believe about the basic uncertainty too. And next we have

to consider the agent’s belief about what his opponents believe about what he believes about the basic

uncertainty, and so on ad infinitum. Therefore, to deal with games of incomplete information, we have

to model this infinite regress of beliefs about beliefs. We call this hierarchy of beliefs a sequential belief.

Since Harsanyi [20], we have been dealing with this difficulty by using the notion of type and the

associated Bayesian game. We postulate that all the informational attributes of agents, including

sequential beliefs, can be reduced to one variable called the agent’s “type”. This postulation allows us

to apply equilibrium concepts of games of complete information to games of incomplete information.

In this paper, we say that the types defined by Harsanyi are Harsanyi types in order to distinguish

them from epistemic types which we will define later.

Concerning individual informational attributes, we can conceive the information brought by private

signals, predetermined personal conjectures (ex. personal characters, or habits in thinking), and so on.

We can easily model these attributes with parameters. However, it is not clear that Harsanyi types

correctly reflect the agents’ sequential beliefs. This suspicion is cleared by Mertens-Zamir [26] and

Brandenburger-Dekel [9]. They showed that, under reasonable conditions, the space of the sequential

beliefs over the basic uncertainty forms a Harsanyi type space, and we can embed arbitrary Harsanyi

type spaces into the space of sequential beliefs. We say that this space of sequential beliefs is the

universal type space and sequential beliefs are epistemic types.

Still we have another difficulty about the sequential beliefs and Harsanyi types. Indeed Mertens-

Zamir and Brandenburger-Dekel verified that we can represent sequential beliefs as Harsanyi types,

but only when there are no redundant types, which are types that are associated with different sequen-

tial beliefs. But redundant types ought to be considered, as the following example shows.

Example 1 (Ely-Peski (2006)): Consider the following two Harsanyi type spaces.
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Type space A: The payoff parameter space is S = {−1, 1}, the set of agents is N = {1, 2}, the set

of types is Ti = {−1, 1} for i = 1, 2, and the belief structure is characterized by a common prior

µ ∈ ∆(S × T ) such that

µ(s, ti, t−i) =


1
4 if s = ti · t−i

0 otherwise

Let hki (ti) be the kth order belief of the agent i associated with his type ti. We can derive the sequential

beliefs over S in the above structure as follows;

h1
i (−1)[s] =


1
2 if s = −1
1
2 if s = −1

h2
i (−1)[s] =


1
2h

1
j (−1)[−1] + 1

2h
1
j (1)[−1] = 1

2 if s = −1
1
2h

1
j (−1)[1] + 1

2h
1
j (1)[1] = 1

2 if s = 1

h3
i (−1)[s] =


1
2h

2
j (−1)[−1] + 1

2h
2
j (1)[−1] = 1

2 if s = −1
1
2h

2
j (−1)[1] + 1

2h
2
j (1)[1] = 1

2 if s = 1

...

The resulting sequential belief of ti = −1 is 1
2 at each order to the infinite for i = 1, 2. In the same

way, hi(1) is 1
2 at each order for i = 1, 2.

Type space B: The payoff parameter is S = {−1, 1}, the set of agents is N = {1, 2}, the set of types is

Ti = {0} for i = 1, 2, and the belief structure is characterized by a common prior µ ∈ ∆(S × T ) such

that

µ(s, 0, 0) =


1
2 if s = −1
1
2 if s = 1
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In this case, both agents put probability 1
2 on each element of S, and this is common knowledge be-

tween the agents. Therefore the resulting sequential belief of the type is 1
2 ,

1
2 , . . . for i = 1, 2. Type

space A and type space B have different type structures, but they result in the same sequential beliefs.

It means that the representation of a sequential belief using a Harsanyi type is not unique.

Clearly, the type space A and the type space B in the example have different informational struc-

tures.2 In the example, the types ti = −1 and t′i = 1 in the type space A are redundant types. The

existence of redundant types shows the difficulty in modeling games of incomplete information. We

can also interpret these examples in a different way, that is, when Harsanyi type spaces are given, se-

quential beliefs over the payoff parameter are not enough to characterize the belief structure of agents.

The universal type space does not allow redundancy of types. However, without redundant types, we

cannot deal with an interesting class of games such as the type space A. In the type space A, redun-

dancy happens due to the strong correlation of the agents’ belief over the payoff parameter and their

belief over the other agent’s types. Such correlation is common in applications. In Morris-Shin (1996),

for instance, the investors share the market information, such as the GDP report and personnel affairs

in firms, with some private noises. In their model, the private signals are independent. But, if those

private noises are correlated and every agent knows it, in order to model it as a Bayesian game, some

types must be strongly correlated with each other and the basic uncertainty so that they result in the

same sequential beliefs as in the following example.

Example 2: Correlated public information with noise Let N = {1, · · · , n}. There are

two states S = {G,B}. The agents receive private signals Xi about the states from the government.

The government tries to hide the state when the state is bad, but it cannot be completely hidden,

because there is one agent that receives the true signal. Likewise, when the state is good, the gov-

ernment tries to make it public, but it cannot do so because one agents receives a wrong signal. The

2Ely-Peski [17] showed that they have different sets of Bayesian equilibrium and rationalizable strategies.
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distribution of the signals and the states are given by a common prior µ such that

∀i ∈ N, µ(X1 = G, · · · , Xi = B, · · · , Xn = G|s = G) = 1
n
,

Otherwise, µ( . |s = G) = 0.

∀i ∈ N, µ(X1 = G, · · · , Xi = B, · · · , Xn = G|s = B) = 1
n
,

Otherwise, µ( . |s = B) = 0.

Then, each type Xi assigns probability 1
2 to both states. Therefore, the resulting sequential belief is

1
2 , · · · at each type.

The universal type space has received considerable attention lately 3 . But type spaces with re-

dundant types cannot be represented in the universal type space.

In order to make redundant types tractable in the epistemic space, Ely-Peski (2006) constructed a

different kind of sequential beliefs called ∆-hierarchies. That is, sequential beliefs over the space of

probability distributions over the space of parameters. By using beliefs over beliefs as the first order

belief, we can deal with the correlation between beliefs over the payoff parameter and beliefs over the

other agents’ types. And, in particular, some types that would be called redundant under standard

sequential beliefs are mapped to different ∆-hierarchies. ∆-hierarchies can represent richer information

about the belief structure of the agents than ordinary epistemic types, and give us a better foundation

to work on the epistemic analysis of games. In ∆-hierarchies, however, we can only distinguish re-

dundant types up to rationalizable actions. Harsanyi types which have different sets of rationalizable

actions result in different ∆-hierarchies, but Harsanyi types which share the same set of rationalizable

actions result in the same ∆-hierarchy. In the above example, the types ti = 1 in the type space A

and ti = 0 in the type space B can be distinguished from each other in ∆-hierarchies, but ti = 1 and

t′i = −1 in the type space A cannot be distinguished there. Therefore we cannot always map Harsanyi

type spaces into the space of the ∆-hierarchies isomorphically.

3Ex. Weinstein-Yildiz [32], Dekel, et al [14, 15], and Bergemann-Morris [6].
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Liu [24] took a different approach from Ely-Peski. He augmented the universal type space by adding

an additional parameter space, which he called the payoff irrelevant parameter space. He showed that

any Harsanyi type space, even if it has redundant types, has its isomorphic image in the space of

the sequential beliefs over the payoff parameter S and a payoff irrelevant parameter C. However, the

payoff irrelevant parameter space that Liu used was the agents’ type space T . Therefore the resulting

epistemic types space vary depending on Harsanyi type spaces to be studied. Since we cannot compare

Harsanyi type spaces on one epistemic space, topological arguments such as Fudenberg-Dekel-Morris

[14] and Ely-Peski [18] are not possible here. In this sense, the space that Liu constructed is different

from the universal type space that Mertens-Zamir and Brandenburger-Dekel did. Besides, from the

epistemic perspective, we cannot obtain any insight into what kind of information beyond the universal

type space is needed to deal with the redundancy of types.

In this paper, we offer a solution by finding an exogenous payoff irrelevant parameter space. More-

over, for any Harsanyi type spaces to be mapped, the exogenous parameter space can be a two valued

set {0, 1}. To get an intuition of our argument, consider a two person game. Let us make on the

agents’ Harsanyi type spaces a partition of equivalence classes whose elements have the same sequen-

tial belief over the payoff parameter. Equivalently, we sort Harsanyi types into classes of redundant

types. In type spaces with redundant types, the beliefs of redundant types have the same probability

distribution over the equivalence classes of the other agent’s type space although they are different

within each equivalence class. This means that even if redundant types have different conjectures

over the payoff parameter and the other agents’s type, they are different just within each equivalence

class of the other agent, not across equivalence classes. Since the members of each equivalence class

of the other agent’s types cannot be distinguished by their sequential beliefs, the agent’s redundant

types also result in the same sequential belief. Our method to deal with redundancy is to distinguish

the members of each equivalence class by attaching to each type of an agent a different conjecture

over a newly added payoff irrelevant parameter. As a result, those redundant types have different

first order beliefs over the payoff parameter and the payoff irrelevant parameter. It enables us to

distinguish the redundant types of the other agent by their second order beliefs because we can dis-
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tinguish their different conjectures within each equivalence class. We have a further result when we

assume that S and Ti, for all i ∈ N , are uncountable Polish spaces, that is, complete, metrizable

and separable spaces.4 Then it is sufficient to distinguish the redundant types if the payoff irrelevant

parameter space has two elements. Here is an explanation. All spaces are infinite and Polish, and

so the type space of the agent 1 is Borel equivalent to the closed interval [0, 1]. On the other hand,

the space of probability measures over {0, 1} is homeomorphic to [0, 1]. Thus we can assign Borel

equivalent different first order beliefs over the set {0, 1} to all the types of the player 1. By doing

this, we can distinguish the members of each equivalence class of the player 1’s redundant types by

their first order belief, and so the player 2’s redundant types are distinguishable by their second order

belief whenever they have different conjectures over the payoff parameter and the player 1’s type space.

Now we can completely represent any Harsanyi type space as a subspace of the “universal type space”

over S×{0, 1}. It is beneficial for two reasons. First, it gives an epistemic foundation of Harsanyi type

spaces. Any correlation of beliefs of agents which is not captured by the sequential belief over S can

be recovered just by introducing a coin flip as a moderator across agents. Alternatively, any hidden

uncertainty in Harsanyi type spaces can be identified as the uncertainty about an agent’s personality.

For example, whether or not he believes in God. The sequential conjecture over an agent’s personality

generates the correlation of beliefs over the payoff parameter and agents’ types. Second, it allows us to

deal with Bayesian games in a “universal” space. The payoff irrelevant parameter {0, 1} is exogenous

and we do not have to change the payoff irrelevant parameter as in Liu’s construction. In fact, as we

explain later, the points on U(S × C) characterizes Bayesian equilibrium.

We have other contributions in this paper. One is to fill the gap between two methods in the epistemic

game theory: syntactic one and semantic one, i.e. universal type space approach. Concerning the syn-

tactic method, Sadzik [31] adopted a first order epistemic language a la Aumann [5]. He distinguished

Harsanyi types with the sets of the sentences which can be true at the types, and showed that this

identification of types is essentially equivalent to identifying types with the set of possible Bayesian

equilibrium strategies there. Compared to ∆-hierarchies by Ely-Peski, which identifies with IIR, it is a

4Even if S and T are countable sets equipped with discrete topology, we can still apply the following argument since
we can embed T to [0, 1] Borel isomorphically.
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finer epistemic characterization of Harsanyi types. And, this result also gives an epistemic characteri-

zation of Bayesian equilibrium, which is the most successful one so far. However his method is totally

different from the existing literature, and we could not compare Sadzik’s syntactic characterization

with the other universal type space approach such as Liu’s. In this paper, we show that Sadzik’s

syntactic characterization of types is essentially equivalent to whether or not they are mapped to the

same sequential beliefs on U(S × C).

Another contribution is in the Bayesian formulation of complete information games. Since Aumann

[2, 3], mixed strategies and correlated strategies in complete information games have been given a foun-

dation by assuming a basic uncertainty not described in the game 5 and reinterpreting them as incom-

plete information games. However, the resulting games often have redundant types. Brandenburger-

Friedenberg [10] considered the set of correlated equilibria which can be achieved only thorough the

correlation of sequential beliefs over the basic uncertainty(intrinsic correlation). This is equivalent to

consider the set of correlated equilibria achieved in Bayesian formulations without redundant types.

Therefore, we can apply our result and show that every correlated equilibrium can be achieved through

intrinsic correlation when we add a coin flip to the basic uncertainty. It is the same as the result in

Brandenburger-Friedenberg derived in a different way.

This paper is organized as follows. In Section 2 and 3, we present the formal model and the proof

of our main result: the elimination of redundancy by adding the payoff irrelevant parameter space

C = {0, 1}. In Section 4, we characterize our result with Bayesian equilibrium, and interpret syntactic

approach on the universal type space. In Section 5, we discuss the intrinsic correlation in terms of

redundant types. In the Appendix, we give detailed proofs about some measurability issues involved

in our construction.

2 Preliminaries

Let X be an arbitrary set. We use ∆(X) to denote the space of the probability measures over X.

When X is equipped with a topology, we use Σ(X) to denote the Borel σ-algebra on X.
5Without loss of generality, we can consider it to be the space of actions.
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Let N be a finite set, and (Yi)i∈N be a family of sets. Then, for any i ∈ N , we use Y−i to denote the

product space Πj∈N\{i}Yj .

2.1 Harsanyi type space

We consider a finite set of agents N = {1, ... n}. All the agents face the same basic uncertainty about

their payoffs. It can be represented by a parameter space S.6 We call this S the payoff parameter

space. A Harsanyi type space is a tuple 〈S, (Ti)i∈N , (λi)i∈N 〉, where, for each i ∈ N , λi is a function

from Ti to ∆(S × T−i). We call each element ti ∈ Ti a Harsanyi type. By the function λi, each type

stands for a belief over the payoff parameter and the other players’ types. Hereafter we make some

assumptions on Harsanyi type spaces.

Assumption 1: The parameter space S and the each agent’s type space Ti are uncountable Pol-

ish spaces.

Let T ≡ Πi∈NTi. Then, as it is known, the product type space T is also a Polish space.

In many works such as Mertens-Zamir [26] etc., the belief mapping λi is assumed to be homeomor-

phism. Here we relax this usual assumption slightly.

Definition 2.1. A function f : X → Y is bimeasurable if f is measurable and, for each measurable

set E ⊂ X, f(E) is also measurable.

Assumption 2: For each i ∈ N , the function λi is a bimeasurable injection.

This assumption precludes purely redundant types, which are Harsanyi types ti, t′i ∈ Ti such that

ti 6= t′i and λi(ti) = λi(t′i).
6See Mertens-Zamir [26], and Hu-Stuart [23].
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2.2 Universal type spaces

The universal type space was introduced by Mertens-Zamir[26]. It is the space of the sequential beliefs

over S which satisfy some coherency conditions. They showed that the space is also a Harsanyi type

space and any Harsanyi type space without redundant types is embedded there. To define the universal

type space, we have to define the space of the sequential beliefs first. Let a family of spaces (Zk)k≥1

be such that

Z1 ≡ S

For k > 1, Zk ≡ Zk−1 ×∆(Zk−1).

The space Zk is the set of the kth order beliefs over S. We say that Π∞k=1Z
k is the sequential belief

space and each element of it is the sequential belief. Let a sequential belief be z ≡ (z1, · · · ) where, for

all k ∈ N, zk ∈ Zk. We say that z satisfies coherency if, for all k ∈ N, the marginal distribution of zk+1

over Zk is the same as zk. Under coherency of beliefs, we can consider each element in Π∞k=1Z
k as a

projection limit. Let the set of the projection limits be Z∞. We say that each ei ∈ Z∞ is an epistemic

type. The universal type space is the set of all the sequential beliefs that satisfy coherency. We denote

it as U(S). Mertens-Zamir showed the following strong theorem about the universal type space.

Theorem 2.2. (Mertens-Zamir [26]) The universal type space U(S) and its associated natural home-

omorphism constitutes a Harsanyi type space.

Then we can define the function which maps Harsanyi types onto the sequential belief space. Let

the first order mapping h1
i : Ti → ∆(S) be such that

h1
i (ti) = Marg(S)λi(ti).
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For k > 1, let the kth order mapping hki : Ti → ∆(Zk) be such that

hki (ti) = λi(ti) ◦ [IdS , (hk−1
j )j∈N\{i}]−1,

where IdS is an identical function from S to S.

We say that the function (hki )∞k=1 : Ti → Π∞k=1Z
k is the hierarchy mapping. Let h ≡ (hi)i∈N . Then,

this h enables us to map any Harsanyi type space to the sequential belief space. Also you can see that

sequential beliefs derived in this way satisfy the coherency condition.

3 An extended sequential belief space

In this section, we extend the universal type space by adding a payoff-irrelvant parameter space C.

And we show that we can isomorphically embed Harsanyi type spaces there even if they have redun-

dant types.

3.1 Redundant types

Let Λ = 〈S, T, (λ)i∈N 〉 be a Harsanyi type space. Mertens-Zamir showed that Harsanyi type spaces

can be embedded as a subspace of U(S) homeomorphically only if they have no redundant types. To

discuss the matter, we have to define redundant types first.

Definition 3.1. In a Harsanyi type space Λ, two Harsanyi types ti and t′i ∈ Ti are redundant if

hi(ti) = hi(t′i).

We say that the Harsanyi types which are not redundant are non-redundant types. Then we can for-

mally state what Mertens-Zamir showed.
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Proposition 3.2. (Mertens-Zamir [26]) Any Harsanyi type space without redundant types can be

embedded onto U(S) homeomorphically. And the hierarchy mapping h is the unique embedding.

3.2 Extension with a payoff irrelevant parameter space

Now we construct an extended space of sequential beliefs so that we can embed Harsanyi type spaces

there even if they have redundant types. We introduce a parameter space C = {0, 1} and consider

the sequential belief space over S×C instead of S. In the rest of this section, we assume thatN = {1, 2}.

Let C ≡ {0, 1}. We assume that any element does not affect the payoffs of the agents. Therefore

we call C the payoff irrelevant parameter space. We define sequential beliefs over S ×C and construct

the coherent sequential belief space over U(S × C) in the same way as we did over S.

Let

Z1 ≡ S × C,

∀k ≥ 2, Zk ≡ ∆(Πn=k−1
n=1 Zn).

And let

Hk(S × C) ≡ ∆(Πn=k
n=1Zk)

= Zk+1.

and

H(S × C) ≡ Πk=∞
k=1 H

k(S × C)

= Πk=∞
k=1 ∆(Zk).
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For each k, Hk(S × C) is the set of the kth order belief over S × C. Let U(S × C) ⊂ Πi∈NH(S × C)

be the product space of the coherent sequential beliefs.

We also define Harsanyi type spaces based on S × C by the sequence Φ = 〈S × C, V, (φi)i∈N 〉 where

φi is a bimeasurable injection from Vi to ∆(S × C × V−i).

Before we embed a Harsanyi type space onto U(S × C), we extend it to a Harsanyi type space on

S × C. To do that, we should clarify what is “isomorphism" between Harsanyi type spaces.

Definition 3.3. (Liu [24]) Let X = 〈S, T, λ〉 and Y = 〈S×C, V, φ〉 be Harsanyi type spaces on S and

S × C respectively. Then, X and Y are S-isomorphic to each other if there exists a g = (gi)i∈{0}∪N

such that (1) g0 : S → S is an identity function, (2) gi : Ti → Vi is Borel equivalence for all i ∈ N ,

and (3) MargS×V φi(vi) = λi(ti) ◦ g−1 ◦ ProjS×V .

Hereafter, when Harsanyi type spaces X and Y are S-isomorphic, we use X ∼S Y . And when both

spaces are defined on S, we use X ∼ Y .

Next, we want to construct a Harsanyi type space on S × C which is S-isomorphic to the original

type space on S. For the construction, we need the next well-known theorem.7

Theorem 3.4. Let X be an uncountable Polish space. Then X is Borel equivalent to the closed interval

[0, 1].

Let Λ ≡ 〈S, (Ti)i∈{1,2}, (λi)i∈{1,2}〉 be a Harsanyi type space. Since Ti is an uncountable Polish space,

there exists a Borel equivalence from Ti to [0, 1]. Let this equivalence be pi : Ti → [0, 1]. Using pi, we

define a Harsanyi type space Φ = 〈S × C, (Vi)i∈{1,2}, (φi)i∈N 〉 so that

7See Royden [30] for the detailed argument.
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1. For all i ∈ {1, 2}, Vi = [0, 1].

2. For all i ∈ {1, 2}, φi : Vi → ∆(S × C × V−i) satisfies the next property;

For the agent 1,

∀v1 ∈ V1, Marg(S×V2)φ1(v1) = λ1(p−1
1 (v1)) ◦ [idS , p2]−1,

∀E ∈ Σ(S × V2), φ1(v1)[E × {0}] = v1λ1(p−1
1 (v1)) ◦ [idS , p2]−1[E].

For the agent 2,

∀v2 ∈ V2, Marg(S×V1)φ2[v2] = λ2[p−1
2 (v2)] ◦ [idS , p1]−1,

Marg(C)φ2({0}) = 1.

The bimeasurability of (φi)i∈{1,2} is proven in the appendix. Then, you can see that Φ is a well defined

Harsanyi type space. Concerning this Harsanyi type space Φ, we have the next fundamental lemma.

Lemma 3.5. The above type space Φ is S-isomorphic to Λ.

Proof. Let IdS : S → S be identity function. Then, (IdS , p1, p2) is S-isomorphism from Λ to Φ by

construction. �

3.3 S-isomorphic embedding onto U(S × C)

We go to the main part of this paper. We show that, in the Harsanyi type space Φ defined above, all

elements of Vi correspond to different sequential beliefs over S × C.
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Theorem 3.6. Let Λ and Φ be Harsanyi type spaces defined above. Then, for each i ∈ {1, 2}, the

agent i’s hierarchy mapping induced by Φ, hi : Vi → H(S × C), is an injection.

Proof. Let hki : Vi → Hk
i (S × C) be the agent i’s kth order belief mapping on S × C induced by Φ,

and let gki : Ti → Hk
i (S) be the agent i’s kth order belief mapping onto S induced by Λ.

(Step 1: For the agent 1)

Let v1, v′1 ∈ Vi be such that v1 6= v′1. His first order belief of v1 is

∀E ∈ Σ(S), h1
1(v1)[E × {0}] = φ1(v1)[E × {0} × V2]

= v1λ1(p−1
1 (v1)) ◦ [idS , p2]−1[E × V2]

= v1g
1
1(p−1

1 (v1))[E].

By the symmetric argument,

∀E ∈ Σ(S), h1
1(v′1)[E × {0}] = v′1g

1
1(p−1

1 (v′1))[E].

(Case 1:) Suppose that v1g1
1 [p−1

1 (v1)](E) = v′1g
1
1 [p−1

1 (v′1)](E). Then, since v1 6= v′1, g1
1 [p−1

1 (v1)](E) 6=

g1
1 [p−1

1 (v′1)](E).

On the other hand,

h1
1(v1)[E × C] = φ1(v1)[E × C × V2]

= Marg(S×V2)φ1(v1)[E × V2]

= λ1(p−1
1 (v1)) ◦ [idS , p2]−1[E × V2]

= g1
1(p−1

1 (v1))[E].
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From these results, we have

h1
1(v1)[E × {1}] = h1

1(v1)[E × C]− h1
1(v1)[E × {0}]

= g1
1(p−1

1 (v1))[E]− v1g1
1(p−1

1 (v1))[E]

= g1
1(p−1

1 (v1))[E]− v′1g1
1(p−1

1 (v′1))[E]

6= g1
1(p−1

1 (v′1))[E]− v′1g1
1(p−1

1 (v′1))[E]

= h1
1(v′1)[E × {1}].

Thus h1 is injective.

(Case 2:) Suppose that v1g1
1 [p−1

1 (v1)](E) 6= v′1g
1
1 [p−1

1 (v′1)](E). It means that h1
1(v1)[E × {0}] 6=

h1
1(v′1)[E × {0}]. Thus h1 is injection.

(Step 2: For the agent 2)

Let v2, v′2 ∈ V2 be such that v2 6= v′2. Concerning his first order belief, by construction,

∀E ∈ Σ(S),

h1
2(v2)[E × {0}] = g1

2(p−1
2 (v2))[E].

h1
2(v2)[E × {1}] = 0.

Let, for each µ1 ∈ ∆(S × C), h−1
1 (µ1) ≡ {v1 ∈ V1 : h1

1(v1) = µ1}. As we have shown, the function

h1
1 : V1 → ∆(S × C) is injective. Therefore h−1

1 : h1
1(V1)→ V1 is the well defined inverse bĳection.

Then we can derive the agent 2’s second order belief over S × C.8

8Concerning the bimeasurablity of h1
1, see appendix.
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Note that

∀E ∈ Σ(S), ∀Q ∈ Σ(∆(S × C))

h2
2[v2](E × {0} ×Q) = φ2(v2)[E × {0} × h−1

1 (Q)]

= λ2(p−1
2 (v2)) ◦ [idS , p1]−1[E × h−1

1 (Q)].

Since λ2 : T2 → ∆(S × T1) is a bimeasurable injection, λ2(p−1
2 (v2)) 6= λ2(p−1

2 (v′2)). By Dynkin’s

lemma9, there exists a rectangle F ≡ Ŝ × T̂1 such that Ŝ ∈ Σ(S), T̂1 ∈ Σ(T1), and λ2(p−1
2 (v2))[F ] 6=

λ2(p−1
2 (v′2))[F ]. Let V̂1 ≡ p1(T̂1). Then, V̂1 ∈ Σ(V1) and h1

1(V̂1) ∈ Σ(∆(S × C)). Therefore

h2
2(v2)(Ŝ × {0} × h1

1(V̂1)) = φ2(v2)[Ŝ × {0} × h−1
1 (h1

1(V̂1))]

= φ2(v2)[Ŝ × {0} × V̂1]

= λ2[p−1
2 (v2)] ◦ [idS , p−1

1 ](Ŝ × V̂1)

= λ2(p−1
2 (v2))(Ŝ × T̂1) = λ2(p−1

2 (v2))[F ]

6= λ2(p−1
2 (v′2))[F ]

= h2
2(v′2)[Ŝ × {0} × h1

1(V̂1)].

It means that h2(v2) 6= h2(v′2). Therefore, h2 is injection. �

So far we did not consider topological structures of Harsanyi type spaces except that they are Polish.

As it plays a crucial role in Weistein-Yildiz [32] and others, it is important to show that each agent’s

type space Vi is homeomorphic to the belief space ∆(S × C × V−i).

Definition 3.7. A Harsanyi type space X = 〈X,T, (xi)i∈N 〉 is a continuous type space if, for all

i ∈ N , xi : Ti → ∆(X × T−i) is homeomorphic embedding.

Next we show that the embedded image on U(S×C) of each Harsanyi type by the hierarchy mapping
9See Theorem 10-10 in [1]
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is a continuous Harsanyi type space.

Lemma 3.8. Let Φ be a type space and H(S × C) be the space of sequential belief over S × C

as we defined before. The function hi : Vi → H(S × C) is the full hierarchy mapping. Now let

f : hi(Vi) → ∆(S × C × hi(V−i)) be such that f(hi(vi)) ≡ φ(vi) ◦ [id(S×C), h−i]−1. Then, f is

homeomorphism.

Proof. Since S × C is a Polish space, there exists a unique homeomorphism ψ : H(S × C) →

∆(S×C×H(S×C)) such that, for each m ∈ H(S×C), ψ(m) is the Kolmogorov extension of m.10. So

it is enough to show that, for all i ∈ {1, 2} and vi ∈ Vi, fi(hi(vi)) is the Kolmogorov extension of hi(vi)

Let mi ∈ hi(Vi). First, for all E ∈ Σ(S ×C ×H(S ×C)), by letting fi(mi)(E) ≡ fi(mi)[E
⋂

(S ×C ×

h−i(V−i))], we can extend fi(mi) so that fi(mi) ∈ ∆(S × C ×H(S × C)). And as we defined before,

Z1 ≡ S × C,

∀k ≥ 2, Zk ≡ ∆(Πn=k−1
n=1 Zn),

Hk(S × C) = ∆(Πn=k
n=1Zk)

= Zk+1,

and

H(S × C) = Πk=∞
k=1 H

k(S × C)

= Πk=∞
k=1 ∆(Zk).

10See Prop 1 and Prop 2 in Brandenburger-Dekel [9]
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The equations above also imply that

H(S × C) = Πn=∞
n=2 Zn.

Therefore,

S × C ×H(S × C) = Πn=∞
n=1 Zn.

From these equalities, we have fi(mi) ∈ ∆(Πn=∞
n=1 Zn), and mi ∈ H(S × C) = Πk=∞

k=1 ∆(Zk).

To show that fi(mi) is the Kolmogorov extension of mi, it is enough to show that the next prop-

erty holds:

∀k, Marg(Πn=k
n=1Zn)fi(mi) = Projkmi.

Let E ∈ Σ(Πn=k
n=1Zn) and Ê = E ×Πn=∞

n=k+1Zn. Then,

f(mi)(Ê) = φ[vi] ◦ [id(S×C), h−i]−1(Ê
⋂
h−i(V−i))

= φ(vi)(E1 × V̂ k−i),

where V̂ k−i = {v−i ∈ V−i : hk−i(v−i) ∈ Πn=k
n=2En}.

On the other hand, from the kth order belief of the agent i,

∃vi ∈ Vi, P rojkmi[E] = hki [vi](E)

= φi[vi](E1 × V̂−i).

This equation means that fi(mi)[Ê] = Projk(mi)(E). Consequently, fi(mi) is the Kolmogorov exten-

sion of mi. �

As a consequence, we have the next theorem.
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Theorem 3.9. For any Harsanyi type space Λ = 〈S, T, (λi)i∈{1,2}〉, there exists a continuous BL-

subspace in U(S × C) which is S-isomorphic to Λ.

Proof. Let a Harsanyi type space Φ = 〈S × C, V, φ〉 be an S-isomorphic extension of Λ, and let

Ei = hi(Vi) for all i ∈ N . Let E = 〈S × C,E, (fi)i∈N 〉, where fi is defined as in the lemma. Since hi

is bimeasurable injection, E is S-isomorphic to Φ by construction. As a direct result of the lemma, E

is a continuous Harsanyi type space. �

3.4 Extension to N > 2

We can extend the above theorems to N -person game. Let N be the finite set of the agents and

|N | = n. Consider an N-person Harsanyi type space Λ ≡ 〈S, T, (λi)i∈N 〉 as before. We maintain the

same assumptions on S, T , C and λi.

We can define an extension of Λ on S × C, Φ = 〈S × C, V, (φi)i∈N 〉, as follows. For all i ∈ N ,

let pi : Ti → [0, 1] be a Borel equivalence. Let Φ be such that

∀i ∈ N, Vi = [0, 1].

∀i ∈ N\{1}, ∀vi ∈ Vi, ∀E ∈ Σ(S × V−i),

φi(vi)[E × {0}] = vi{λi(p−1
i (vi)) ◦ [ids, p−1

−i ](E)}.

Marg(S × V−i)φi(vi) = λi(p−1
i (vi)) ◦ [ids, p−1

−i ].

And,

∀v1 ∈ V1, ∀E ∈ Σ(S × V−1),

φ1(v1)[E × {0}] = λ1(p−1
1 (v1)) ◦ [ids, p−1

−1](E).

Marg(S × V−1)φ1(v1) = λ1(p−1
1 (v1)) ◦ [ids, p−1

−1].
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In the same way as we did above, we can show that Φ is S-isomorphic to Λ and the resulting hierarchy

mapping is injection.

4 The characterization of the sequential belief in U(S × C)

In this section, we show that the sequential belief in U(S × C) and Bayesian equilibrium characterize

each other. In this process, a new notion, symmetric types, gives us a new insight and help us to

establish the characterization.

4.1 Symmetric types

Throughout this section, we assume that S and T are finite for technical convenience. Unless otherwise

stated, the results below are valid in the general case of infinite S and T .

Definition 4.1. Let ti, t′i ∈ Ti in Λ. The Harsanyi types ti and t′i are one sided symmetric if there

exists a permutation π−i : T−i → T−i such that, for all E ∈ Σ(S),

∀t−i ∈ T−i, λi(ti)(s, t−i) = λi(t′i)(s, {π−i(t−i)}).

Definition 4.2. The Harsanyi types ti and t′i in Λ are symmetric if (1) ti and t′i are one side sym-

metric, (2) for each t−i ∈ T−i, t−i and π−i(t−i) are one sided symmetric with regard to a permutation

πi : Ti → Ti, and (3) t′i = πi(ti).

The permutation π ≡ (πi, π−i) is just a renaming of types in Λ. The above definition states that

we can exchange the roles of symmetric types without changing the entire structure of Λ. As a result

we can say that symmetric types have the same set of Bayesian equilibria in any game.

Definition 4.3. A game Γ on S is a tuple of ((ui)i∈N , A), where ui : A× S → R.

Let βi : Ti → A be the agent i’s (pure) strategy. Bayesian equilibrium is defined as follows;
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Definition 4.4. A tuple of strategies β ≡ (βi)i∈N is Bayesian equilibrium if, for all i ∈ N , ti ∈ Ti,

and ai ∈ Ai,
∫
S×T−i ui(βi(ti), β−i, s)dλi(ti) ≥

∫
S×T−i ui(ai, β−i, s)dλi(ti).

Definition 4.5. For each t ∈ T in Λ and Γ,

BE(t,Γ) ≡ {a ∈ A : ∃β∗ s.t. β∗ is Bayesian equilibrium in Γ, and β∗(t) = a}.

Proposition 4.6. Let ti, t′i ∈ Ti be symmetric types. Then, for any game Γ, BE(ti,Γ) = BE(t′i,Γ).

Proof. Let t̃i, t̂i ∈ Ti be symmetric types. Suppose that a∗i ∈ BE(t̃i,Γ). Then, there exists a B.E. β̃

such that β̃i(t̃i) = a∗i .

Now t̃i and t̂i are symmetric. Therefore , there exists (πi)[i ∈ N such that

∀i ∈ N, ∀ti ∈ Ti, λi(ti) = λi(πi(ti)) ◦ [IdS , π−i]. (1)

Let β̂ be a pair of strategies such that, for each i ∈ N and ti ∈ Ti, β̃i(ti) = β̂i(πi(ti)). Under the

strategy β̂, for each i ∈ N and ti ∈ Ti, the expected payoff to the agent i by taking an action ai at his

type πi(ti) is:

Ui(ai, β̂−i, πi(ti)) =
∫
ui(s, ai, β̂−i(t−i))dλi(πi(ti)) (2)

=
∫
ui(s, ai, β̃−i(π−i(t−i)))dλi(πi(ti)) (3)

=
∫
ui(s, ai, β̃−i(t−i))dλi(ti) (4)

= Ui(ai, β̃−i, ti). (5)

Since β̃i(ti) ∈ ArgmaxUi(ai, β̃−i, ti), we have, for each i ∈ N and ti ∈ Ti, β̂i(πi(ti)) ∈ ArgmaxUi(ai, β̂−i, πi(ti)).
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Therefore, β̂ is also BNE of the game Γ. Since t̂i = πi(t̃i), β̂i(t̂i) = β̃i(t̃i). Therefore, BE(t̃i,Γ) ⊂

BE(t̂i,Γ). By the symmetric argument, we also have BE(t̃i,Γ) ⊃ BE(t̂i,Γ). Thus BE(t̃i,Γ) =

BE(t̂i,Γ). �

We show that symmetric types characterize the sequential belief in U(S × C).

Proposition 4.7. Symmetric types are S-isomorphically mapped to the same points on U(S × C).

Proof. Let t̃i, t̂i ∈ Ti be symmetric types. For i = 1, 2, let π ≡ (πi)i∈N be a permutation defined in

the definition of symmetric types.

We want to show that π is a S-isomorphism from Λ to itself. Since T is countable, πi is Borel

isomorphism from Ti to Ti. By the definition of symmetry, we have that;

∀i ∈ N, ∀ti ∈ Ti, λi(ti) = λi(πi(ti)) ◦ [IdS , π−i].

It means that π is S-isomorphism from Λ to Λ. Also, the definition of symmetry implies that t̂i = πi(t̃i).

Both of the types are S-isomorphically mapped to each other. Thus they are S-isomorphically mapped

to the same points on U(S × C). �

Next we have to show that the symmetry characterizes the sequential belief in U(S × C).

Proposition 4.8. When we embed Λ to M ⊂ U(S × C), if two Harsanyi types in Ti can be mapped

to the same point in M by some S-isomorphisms, then they are symmetric.

Proof. Let ti, t′i ∈ T and h be an S-isomorphic embedding from T to M . Suppose that there exists

another S-isomorphism h′ : T → M such that h′(t′) = h(t). Then g ≡ h−i ◦ h′ is an S-isomorphism

from T to T and t = g(t′). By the definition, t and t′ are symmetric with regard to the permutation g. �
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4.2 Characterization of symmetric types

Next we show that symmetric types are characterized by Bayesian equilibrium. We will make use of

a result of Sadzik [31], who adopted the syntactic approach to obtain an epistemic characterization of

Bayesian equilibrium. We show that Sadzik’s syntactic condition is characterized by the symmetry of

types.

We do not deal with the syntactic details here. We introduce only the part of the paper that we

need here. Sadzik added signal to the Harsanyi type.

Definition 4.9. For each i ∈ N , let Xi ≡ {0, 1}N. A signal from Ti to Xi is a function zi : Ti → Xi.

Let z ≡ (zi)i∈N . We denote Z as the set of all possible z. We assume z is common knowledge

among the agents. Then, given a Harsanyi type space Λ and the realized private information z, we

can derive a hierarchy mapping δzi : Ti → U(S×X) in the same way we derived sequential beliefs over

S. Let δz ≡ (δzi )i∈N . Notice that z does not have to be a bĳection. Therefore, the image of Λ by δz

is no longer S-isomorphic to Λ generally.

We assume that A is Polish. Since Xi is the Hilbert cube, we can embed Ai to Xi. Therefore we

can interpret the set of signals Z as the set of potential strategies. For the characterization, we need

the next notation.

Definition 4.10. For each t ∈ T in Λ and Γ,

LBE(t,Γ) ≡ {a ∈ A : ∃β∗ s.t. β∗ is B.E. in Λt and Γ, and β∗(t) = a}.

Here Λt is the smallest sub type space of Λ which includes t.

Theorem 4.11. (Sadzik [31] ) For t, t′ ∈ T in Λ, if {δz(t) : z ∈ Z} = {δz(t′) : z ∈ Z}, then,

LBE(t,Γ) = LBE(t′,Γ) for any Γ.

Theorem 4.12. (Sadzik [31] ) For t, t′ ∈ T in Λ, if BE(t,Γ) = BE(t′,Γ) for any Γ, then {δz(t) : z ∈

Z} = {δz(t′) : z ∈ Z}.11

11When T is infinite, the latter part is relaxed to the equality of the closure of {δz(t) : z ∈ Z} and {δz(t′) : z ∈ Z}.
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Next we show how to interpret Sadzik’s characterization by using the universal type space argument.

Proposition 4.13. For t, t′ ∈ T in Λ, if t and t′ are symmetric, then {δz(t) : z ∈ Z} = {δz(t′) : z ∈

Z}.

Proof. Suppose that t, t′ ∈ T are symmetric and π is the associated permutation on T such that

t = π(t′). Let z ∈ Z. Then z ◦ π−i ∈ Z. All we have to show is δz(t′) = δz◦π
−i(t).

Let δzk be the kth order belief mapping induced by a signal z, and let Hk
X be the space of the kth order

sequential beliefs over (S ×X). Then

∀i ∈ N, ∀l ∈ T,

∀s ∈ S, ∀x ∈ X, δz1,i(li)(s, x) = λi(li)[IdS , zi]−1(s, x).

∀E ∈ Σ(Hk
X), δzk+1,i(li)[E] = λi(li)[IdS , δzk,−i]−1[E].

We also have

∀i ∈ N, ∀l ∈ T,

∀s ∈ S, ∀x ∈ X, δz◦π1,i (li)(s, x) = λi(li)[IdS , z−i ◦ π−i−i ]
−1(s, x).

∀E ∈ Σ(Hk
X), δz◦πk+1,i(li)[E] = λi(i)[IdS , δz◦π

−i

k,−i ]−1[E].

we show that δz(t′) = δz◦π
−i(t) by mathematical induction with regard to k. For k = 1, we have , for
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all i ∈ N , and any t, t′ ∈ T such that t = π(t′), the equations below.

∀s ∈ S, ∀x ∈ X, δz1,i(t′i)(s, x) = λi(t′i)[IdS , z−i]−1(s, x)

= λi(t′i)[{(s, l′−i) : z−i(l′−i) = x−i}]

= λi(πi(t′i))[{(s, π−i(l′−i)) : z−i(l′−i) = x−i}]

= λi(ti)[{(s, l−i) : z−i ◦ π−1
−i (l−i) = x−i}]

= δz◦π
−1

1,i (ti)(s, x).

For the higher order belief, for all i ∈ N ,

∀E ∈ Σ(Hk
X), δzk+1,i(t′i)[E] = λi(t′i)[IdS , δzk,−i]−1[E]

= λi(t′i)[{(s, l′−i) : (s, δzk,−i(l′−i)) ∈ E}]

= λi(πi(t′i))[{(s, π−i(l′−i)) : (s, δzk,−i(l′−i)) ∈ E}]

The induction hypothesis is that, for all i ∈ N , and any t, t′ ∈ T such that t = π(t′), δzk,i(t′i)(s, x) =

δz◦π
−1

k,i (ti)(s, x). Therefore,

δzk+1,i(t′i)[E] = λi(πi(t′i))[{(s, π−i(l′−i)) : (s, δzk,−i(l′−i)) ∈ E}]

= λi(ti)[{(s, l−i) : (s, δz◦π
−1

k,−i (l−i)) ∈ E}]

= δz◦π
−1

k,i (ti)(s, x).

As a result, δz(t′) = δz◦π
−i(t). Thus any image of t′ induced by a signal z is always attained by its

symmetric type t with a signal z ◦ π−1. �

Proposition 4.14. For t, t′ ∈ T in Λ, if {δz(t) : z ∈ Z} = {δz(t′) : z ∈ Z}, then the smallest sub

type spaces of Λ, Λt and Λt′, can be S-isomorphically embedded to the same space in U(S × C) where

t and t′ fall onto the same point.
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Proof. Suppose that {δz(t) : z ∈ Z} = {δz(t′) : z ∈ Z}. Let Φ be the smallest sub type space of T

which includes t, and let Φ′ be the smallest sub type space of T which includes t′. We can pick the

identity function on T for z. Then δz becomes the same as S-isomorphism to U(S × T ), the universal

type space on S×T in Liu[24]. LetM(m) be the smallest sub type space on U(S×T ). ThenM(δz(t))

is S-isomorphic to Φ. If |Φ| > |Φ′|, then |Φ′| can never mapped to M(δz(t)) by any belief mapping.

Therefore, we have |Φ| = |Φ′|.

By the assumption, there exists z′ : T → T such that z′(t′) = δz(t). Then we can consider Φ′ as

a Harsanyi type space on the payoff parameter S × T . Since |Φ| = |Φ′|, δz′ must be bĳection from Φ′

to M(δz(t)). Therefore, Φ′ does not have redundant types concerning S × T . According to Mertens-

Zamir, it implies that Φ′ is S×T -isomorphic to M(δz(t)). Let λz′ ∈ ∆(S×T ×Φ) which induced by λ

and z′, and µi ∈ ∆(S×T ×M−i(δz(t)) be a natural belief mapping induced by Kolmogorov extension.

Then,

∀i ∈ N, ∀li ∈ Φi,

λz
′
(li) = µi(δz

′

i (li)) ◦ [IdS×T , δz
′

−i]−1.

Therefore,

∀i ∈ N, ∀li ∈ Φi,

Marg(S × Φ′)λz
′
(li) = Marg(S ×M−i(δz(t)))µi(δz

′

i (li)) ◦ [IdS , δz
′

−i]−1.

By construction, Marg(S × Φ′)λz′i = λi. Therefore, Φ′ is S-isomorphic to M−i(δz(t)). Therefore, Φ′

is S-isomorphic to Φ, and t′ and t can be mapped to the same point S-isomorphically. �

Under a plausible condition, we obtain the next result.

Lemma 4.15. Let t, t′ ∈ T in Λ, and Λ is the smallest sub type space that includes t. Then, if

{δz(t) : z ∈ Z} = {δz(t′) : z ∈ Z}, t and t′ are symmetric.

Proof. By the above proposition, the smallest type space Λt′ is S-isomorphic to Λ. Therefore, by
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Proposition 4.6., they are symmetric. �

We get the next theorem as a corollary.

Theorem 4.16. Let t, t′ ∈ T in Λ, and Λ is the smallest sub type space includes t. Then, BE(t,Γ) =

BE(t′,Γ) for any Γ if and only if they are symmetric to each other.

4.3 Semantic interpretation of syntactic characterization

Sadzik adopted a first order language which can describe the modal logic of epistemology. He showed

that {δz(t) : z ∈ Z} = {δz(t′) : z ∈ Z} if and only if the set of sentences which can be true by

appropriate values of signals at the types are the same. The results in this section show that this

syntactic characterization of types are equivalent to symmetry of types, and whether or not they can

be mapped to the same sequential beliefs on U(S × C).

5 Application to intrinsic correlation

We have shown that any Harsanyi type space can be mapped isomorphically to a sub-space of U(S×C).

One application of this theorem is the intrinsic correlation of beliefs proposed by Brandenburger-

Friedenberg [10]. They showed that, in some complete information games, we cannot achieve all

correlated rationalizable actions without any external mediator. They also showed that we can achieve

all correlated rationalizable actions as intrinsic ones by adding a coin-flip to the basic uncertainty.

In fact, their results are closely related to redundant types. In this section, we show the results of

Brandenburger-Friedenberg in a different way; using redundant types and our theorems above.

5.1 Bayesian representation of correlated equilibrium

Consider a complete information game. Let G ≡ 〈(Ai)i∈N , (πi)i∈N 〉 be a game, where Ai is the strat-

egy space of the agent i and πi : A → R+ is a payoff function. We assume that, for all i ∈ N , Ai is

finite.12 To define the correlated equilibrium of the game G, we introduce the Bayesian framework a
12This is the same assumption as Brandenburger-Friedenberg.
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la Aumann. Let the basic uncertainty space be Ω, the information partition of the agent be Hi, and

the interim belief systems be P (.|Hi) ∈ ∆(Ω). Since A is finite, Ω can be chosen to be finite in order

to represent correlated equilibria. 13

Definition (Aumann [2]): For all i ∈ N , Let fi : Ω → Ai be measurable with regard to Hi.

Then f ≡ (fi)i∈N is an a posteriori equilibrium iff

∀i ∈ N, ∀ω ∈ Ω,∀ai ∈ Ai,∑
ω∈Ω

πi(fi(ω), f−i(ω)) · P (ω|Hi(ω)) ≥
∑
ω∈Ω

πi(ai, f−i(ω)) · P (ω|Hi(ω)).

Definition (Bernheim [7], Pearce [27]): A set of strategies R∞ ⊂ Πi∈NAi is the set of the cor-

related rationalizable actions if (1)for each i ∈ N and each ai ∈ R∞i , there exists µ ∈ ∆(R∞−i) such

that ai is a best response to µ, and (2) there is no set F ⊂ Πi∈NAi such that it satisfies (1) and F ) R∞.

Concerning a posteriori equilibria and correlated rationalizable actions, we have the next equivalence

result.

Proposition 5.1. (Epstein [19] 14) For any a∗ ∈ R∞, there exists a posteriori equilibrium 〈A, (Hi)i∈N , (P (.|Hi))i∈N , f〉

such that, for all i ∈ N , Hi = Ai, for all a ∈ A, f(a) = a, and f(a∗) = a∗.

From 〈A, (Hi)i∈N , (P (.|Hi))i∈N , f〉, where Hi = Ai, we can construct a Harsanyi type space on A.

For all i ∈ N , let Ti ≡Hi. and λi : Ti → ∆(A× T ) be as follows;

λi(ai)[(a−i, a−i)] =P (a−i|ai) if a−i = f−i(a−i)

= 0 otherwise.

13As in the following argument, we can set Ω to be A.
14Aumann [3] and Brandenburger-Dekel [8] showed the same result.
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Let Λ ≡ 〈A, T, λ〉. We can easily confirm that Λ is a Harsanyi type space on A.

Let G′ ≡ 〈π,Λ〉 be a Bayesian game. For i ∈ N , let a strategy βi : Ti → Ai be such that βi(ti) = fi(ω)

where ω ∈ ti. Then β ≡ (β)i∈N becomes a Bayesian Nash equilibrium of the game G′. The a posteriori

equilibrium of the original game G is a Bayesian Nash equilibrium of G′.

5.2 Conditional independence and rationality and common certainty of

rationality

Brandenburger-Friedenberg characterized intrinsic correlation by two conditions on Harsanyi types.

Definition: AHarsanyi type ti ∈ Ti satisfies conditional independence if λi(ti)[a−i|h(t−i)] = Πj∈N\{i}λi(ti)[aj |h(t−i)],

where h is the hierarchy mapping from T → U(A).

For the definition of another condition, rationality and common certainty of rationality, we need some

preliminary definitions.

Definition: For each i ∈ N , a pair (ai, ti) ∈ Ai × Ti satisfies rationality if ai is a best response

to Marg(A−i)λi(ti).

We use Ri to denote the set of the pairs that satisfies rationality.

Definition: For any E ⊂ A−i × T−i, ti ∈ Ki(E) if λi(ti)[E] = 1.

Definition: For each i ∈ N , ti ∈ Ti satisfies rationality and common certainty of rationality if

ti ∈ Ri ∩
⋂∞
k=1K

k(R), where Kk is the kth iteration of the operator K.

Since β is a BNE, it is almost clear that, for all ti ∈ Ti, (ti, βi(ti))i∈N satisfies RCBR. Polak [28] showed

that RCBR is not sufficient condition for Nash equilibrium as shown in Aumann-Brandenburger [4],
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but Nash equilibrium satisfies RCBR under complete information about the payoffs. And he showed

that the same thing applies to BNE. Here is a brief sketch of the proof. By construction, it is clear

that, for all i ∈ N , (ti, βi(ti)) ∈ R1
i . Suppose that, for all i ∈ N and ti ∈ Ti, (ti, βi(ti)) ∈ Rki .

Then, since λi(ti)[{(t−i, a−i) : a−i = β−i(t−i)}] = 1 and {(t−i, a−i) : a−i = β−i(t−i)} ⊂ Rki , we have

ti ∈ B(Rk−i). By the induction hypothesis, (ti, βi(ti)) ∈ Rki ∩ [Ai ×B(Rk−i)]. Thus, (ti, βi(ti)) ∈ R∞i .

5.3 Conditional independence and redundancy

Note that conditional independence defined above is conditional on the sequential beliefs of the other

agents’ types. Therefore, when there are redundant types in Λ, it is hard for CI to be satisfied. How-

ever, the results that we have shown allows us to get rid of redundant types without affecting resulting

equilibria.

In this section, we show first that, for any a∗ ∈ R∞, there exists a Harsanyi type space Φ such

that a∗ is a realization of a BNE, and Φ has no purely redundant types except for one agent. As a

result, we get the result that, for any a∗ ∈ R∞, there exists a Bayesian formulation where a∗ satisfies

RCBR at a type which satisfies CI.

Proposition 5.2. For any a∗ ∈ R∞, there exists a posterior equilibrium such that, for some ω ∈ Ω,

f(ω) = a∗, and, for all i 6= 1, if Hi 6= H ′i, P ([aj ]j 6=i|Hi) 6= P ([aj ]j 6=i|H ′i) for some a−i.

Proof. By the proposition above, there exists a posterior equilibrium such that Ω = A, for all i ∈ N ,

Hi = {ai ×A−i : ai ∈ Ai} and fi(a) = ai. Let this a posteriori equilibrium be F and [ai] ≡ ai ×A−i.

For notational convenience, we denote each class in the agent i’s information partition as [ai]. Now it

is possible that there exists [ai] 6= [a′i] such that, for all H−i, P (H−i|[ai]) = P (H−i|[a′i]). Then we can

duplicate the agent 1’s information partition.

Suppose that, for b1 ∈ A1, P ([b1]|[ai]) > 0. We add another set of states so that the states of the

world Ω̂ = (A1 ∪ {a2
1}) × A−1 and associate another information partition [a2

1] to the agent 1. We
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define a new a posterior equilibrium F̂ ≡ 〈A, Ω̂, P̂ , f̂〉 such that

For j = 1, f̂1([a2
1]) = b1

∀a1 ∈ A1, f̂1([a1]) = f1([a1]).

∀j 6= 1,∀aj ∈ Aj , f̂j([aj ]) = fj([aj ]).

The new sequence of conditional beliefs is defined in the following way;

For j = 1, P̂ (.|[a2
1]) = P (.|[a1])

P̂ (.|[a1]) = P (.|[a1]) otherwise.

∀ j 6= 1,∀aj 6= [a′i], P̂ (.|[aj ]) = P (.|[aj ])

For j = i and a′i, ∀a−1,i ∈ A−1,i, P̂ ((a2
1, a−1,i)|[a′i]) = P ((b1, a−1,i)|[a′i])

P̂ (.|[a′i]) = P (.|[a′i]) otherwise.

It is easy to show that F̂ ≡ 〈A, Ω̂, P̂ , f̂〉 is an a posteriori equilibrium, and f̂(a∗) = a∗. Note that, in

this a posterior equilibrium, P̂ (.|[ai]) and P̂ (.|[a′i]) are distinguishable at the event [bi].

Since N and A are finite, we can iterating this process until every pair of each agent’s, except for

the agent 1, information states [aj ] 6= [a′j ] have different conditional beliefs over the other players’

information states. �

Corollary 5.3. For any a∗ ∈ R∞, there exists a Harsanyi type space Λ = 〈A, T, λ〉 and a pair of

Bayesian equilibrium strategy β = (βi)i∈N such that a∗ = β(t) , and, for all i 6= 1, Ti has no purely

redundant types.

32



Then we can apply the theorem to find an S-isomorphic Harsanyi type space Φ on A × {0, 1} which

has no redundant types. And, in Φ, no types result in the same sequential belief. Therefore, each type

and its action associated by the equilibrium strategy β satisfy CI. Therefore we have the next result,

which is the same result shown in a different way by Brandenburger-Friedenberg.

Theorem 5.4. For any a∗ ∈ R∞, there exists a Harsanyi type space Φ = 〈A× {0, 1}, V, φ〉 such that

a∗ satisfies RCBR at some state v ∈ V which satisfies CI.

6 Conclusion

In this paper, we showed that it is possible to embed Harsanyi type spaces isomorphically onto the

space of sequential beliefs over an augmented uncertainty, even if they have redundant types. The

technique to introduce a payoff irrelevant parameter is an extension of Liu. However we have the

following distinctions: (1) our payoff irrelevant parameter space is exogenous, and (2) it is enough that

the parameter space has only two values. That is, any correlation of types in Bayesian frameworks

which cannot be explained by the basic uncertainty is resolved by adding a coin flip to the uncertainty.

Concerning the first finding, the exogeneity of the parameter allowed us to show the existence of the

universal type space where the vast majority of Harsanyi type spaces are uniquely embedded.

We showed that our results can be applied to provide a characterization of Bayesian Equilibrium

and an interpretation of intrinsic correlation in games. Because we presented a universal type space

that includes reduntant type spaces, the recent research on strategic topologies on Mertens-Zamir’s

universal type space can potentially be extended to our space. Moreover, we can use Bayesian Equi-

librium as the solution concept, differently from Dekel et al who used ICR and Ely-Peski who used IIR.
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7 Appendix

7.1 Bimeasurability of the function φ

Let Φ = 〈S × C, V1 × V2, (φi)i∈{1,2}〉 be a Harsanyi type space, V1 = V2 = [0, 1], and C = {0, 1}

as defined in the section 3. First we show that φ1 : V1 → ∆(S × V2 × C) is bimeasurable. It is

worth while to notice that φ1 maps each element in V1 to a product measure on the measurable space

( S × V2 × C, Σ(S × V2 × C) ).

We define the following functions.

f1 : V1 → ∆(S × V2) such that f1(v1) = λ1(p−1
1 ) ◦ [IdS , p2]−1.

g1 : V1 → ∆(C) such that g1(v1)(0) = v1.

You can see that both f1 and g1 are bimeasurable functions. Then we have that φ1(v1) = f1(v1)×g1(v1),

where f1(v1)×g1(v1) is the product measure on the Borel measure space ( S×V2×C, Σ(S×V2×C) ).15

Since S × V2 and C are both second countable, Σ(S × V2)× Σ(C) = Σ(S × V2 × C).

Lemma 7.1. The Borel σ-algebra Σ(S × V2 ×C) = {E : ∃A ∈ Σ(S × V2), ∃B ∈ Σ(C), E = A×B}.

Proof. Let Σ̂ ≡ {E : ∃A ∈ Σ(S × V2), ∃B ∈ Σ(C), E = A × B}. We only have to show that Σ̂ is

a σ-algebra. It is clear that ∅, S × V2 × C ∈ Σ̂. Let E ∈ Σ̂. Then there exists A ∈ Σ(S × V2) and

B ∈ Σ(C) such that E = A×B. Therefore Ec = Ac × C ∪A×Bc.

Let ∆P (S × V2 × C) ⊂ ∆(S × V2 × C) be the set of the product measures over S × V2 and C.

Lemma 7.2. The subspace ∆P (S×V2×C) is homeomorphic to the product space ∆(S×V2)×∆(C).
15By Caratheodory’s extension theorem, the product measure is uniquely determined.
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Proof. By Caratheodory’s extension theorem, the function d : ∆(S × V2)×∆(C)→ ∆P (S × V2 × C)

such that (η, µ) 7→ η × µ is bĳection.

First we want to show that d is a continuous function. The topological base of S × V2 × C is

t = {G × a : G is an open subset of S × V2, and a ∈ 2C}. Therefore any open set G′ ⊂ S × V2 × C

takes the form of

G′ = G̃1 × {0} ∪ G̃2 × {1} ∪ G̃3 × {0, 1},

where, for i = 1, 2, 3, G̃i is an open set in S × V2. It is reduced to

G′ = G1 × {0} ∪G2 × {1},

where, for i = 1, 2, Gi is an open set in S × V2.

Let {ηα} be a net in ∆(S × V2) such that ηα → η. And let {µα} be a net in ∆(C) such that

µα → µ. Then,

∀G : open, lim inf ηα(G) ≥ η(G),

∀a ∈ 2C , lim inf µα(a) ≥ µ(a).

Let να ≡ ηα × µα, and ν = η × µ. Then, for each open set G′ ⊂ S × V2 × C,

να(G′) = να(G1 × {0}) + να(G2 × {1})

= ηα(G1)µα({0}) + ηα(G2)µα({1}).

In the same way,

ν(G′) = η(G1)µ({0}) + η(G2)µ({1}).
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Since ηα → η and µα → µ,

lim inf ηα(G1)µα({0}) ≥ η(G1)µ({0}).

lim inf ηα(G2)µα({1}) ≥ η(G2)µ({1}).

And,

lim inf να(G′) = lim inf{ηα(G1)µα({0}) + ηα(G2)µα({1})}

≥ lim inf ηα(G1)µα({0}) + lim inf ηα(G2)µα({1})

≥ η(G1)µ({0}) + η(G2)µ({1})

= ν(G′).

Therefore, να → ν. Therefore d is a continuous function.

Next, we show that d−1 is a continuous function. Let {να} ≡ {ηα × µα} be a net of product

measures such that να → ν = η × µ. Then, να(S × V2 × a) = µα(a), and ν(S × V2 × a) = µ(a).

Since lim inf να(S × V2 × a) ≥ ν(S × V2 × a), lim inf µα(a) ≥ µ(a). In the symmetric way,

lim inf ηα(G) ≥ η(G). It means that (ηα, µα)→ (η, µ). Therefore d−1 is a continuous function. �

Corollary 7.3. The subspace ∆P (S × V2 × C) is closed.

Since ∆(S × V2)×∆(C) is second countable, Σ(∆(S × V2)×∆(C)) = Σ(∆(S × V2))× Σ(∆(C))
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Proposition 7.4. The function φ1 : V1 → ∆(S × V2)×∆(C) is a bimeasurable function.

Proof. (Inverse measurability) Let φ1 = (f1, g1). The space of the probability measures ∆(C) is home-

omorphic to V1, and g1 is its homeomorphism. We consider that φ1 : V1 → ∆(S × V2) × V1 and

φ1 = (f1, Id). It allows us to consider that φ1(V1) ⊂ ∆(S × V2) × V1 is a graph of the function f−1
1 .

Since f−1
1 is a measurable function, the graph φ1(V1) is a Borel set in the product measure space

∆(S × V2) × V1.16 For each E ∈ Σ(V1), φ1(E) = f1(E) × E ∩ φ(V1). We know that both f1(E) × E

and φ(V1) are measurable. Therefore, φ1(E) is measurable.

(Measurablity) Let E ⊂ ∆(S × V2) × V1 be a rectangle. Let π1 and π2 be the projection onto V1

and ∆(S × V2) respectively. Let F2 ≡ f1 ◦ π1(E) ⊂ ∆(S × V2). Since f1 is bimeasurable, F2 is

also Borel. For each y ∈ π2(E), f−1
1 (y) ∈ π1(E) if and only if y ∈ π2(E) ∩ F2. Let Therefore,

the intersection of the rectangle E and the entire graph φ1(V1) ≡ {(x, f1(x)) : x ∈ V1} becomes

G ≡ {(f−1
1 (y), y) : y ∈ π2(E) ∩ F2}. Since π2(E) and F2 are both Borel, π2(E) ∩ F2 is also Borel. We

can see that φ−1
1 (E) = π1(G). Since f1 is measurable, π1(G) is also Borel. Therefore φ−1

1 (E) is Borel.

�

Proposition 7.5. The function φ2 : V2 → ∆(S × V1 ×∆(C)) is a bimeasurable function.

Proof. Let

∆0 ≡ {µ ∈ ∆(S × V1 × C) : ∀E ∈ Σ(S × V1), µ(E × {1}) = 0}.

16See Halmos [21] pp143.
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Let f : S × V1 × C → R such that

∀e ∈ S × V1, f(e, 0) = a,

f(e, 1) = b.

Then, f ∈ Cb(S × V1 × C). Therefore, when a net {µα} converges to some probability measure, it

must be in ∆0. Therefore, ∆0 is a closed set. Since λ2 is bimeasurable between V2 and ∆(S×V1) and

∆(S × V1) is homeomorphic to ∆0, φ2 is bimeasurable between V2 and ∆0. �

I use the term “bimeasurable” in a slightly different way.

Definition: A function f : X → Y is bimeasurable if f is measurable and , for each measurable

set E ⊂ X, f(E) is also measurable.

Lemma 7.6. Let X and Y be Polish, and f1 : X → ∆(X) and g1 : X → Y be both bimeasurable.

Let f2 : X → ∆(Y ) be such that, for each x ∈ X, f2(x) = f1(x) ◦ g−1
1 . Then, the function f2 is

bimeasurable.

Proof. The measurability of f2 is shown by Liu.17 We only show that, for all E ∈ Σ(X), f2(E) ∈

Σ(∆(Y )).

Let g2 : ∆(X)→ ∆(Y ) such that, for all µ ∈ ∆(X), g2 : µ 7→ µ◦g−1
1 . Let A ≡ {µ ∈ ∆(X) : µ(E) ≥ p},

where E ∈ Σ(X) and p ∈ [0, 1]. Then, g2(A) = {ν ∈ ∆(Y ) : v(g1(E)) ≥ p} ∩ {ν ∈ ∆(Y ) : ν(g1(X)) =

1}. Notice that g1(X) ∈ Σ(Y ). The both sets in the right hand side of the equation are measurable.
17See Lemma 5 in Liu [24]
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Therefore g2(A) ∈ Σ(Y ).

Since f2 = g2 ◦ f1, we have that, for each E ∈ Σ(X), f2(E) ∈ Σ(∆(Y )). �

Lemma 7.7. For each k ≥ 1, the kth order hierarchy mapping hki is bimeasurable.

Proof. Without loss of generality, we only have to show that hk1 is bimeasurable.

For k = 1, let X ≡ S × V × C, Y ≡ S × C, f1 ≡ φ̃i, and g1 ≡ proj(S×C), where, for all

(s, c, v1, v2) ∈ S × V × C, φ̃i(s, c, v1, v2) ≡ φ1(v1). It is easy to see that f1 and g1 are bimeasur-

able. By the lemma, h̃1
1 : S × V × C → ∆(S × C) is bimeasurable. We can just restrict the domain

from S × V × C to V1 to get the h1
1 which is measurable.

For k ≥ 2, we assume that, for i = 1, 2, hk−1
i is bimeasurable as the induction hypothesis. Let

X ≡ S×V ×C, Y ≡ S×C×Hk(S×C), f1 ≡ φ̃1, and g1 ≡ h̃k−1
2 , where h̃k−1

2 (s, c, v1, v2) ≡ hk−1
2 (v2).

By the lemma, h̃k1 : S × V × C → ∆(S × C) is bimeasurable. We can just restrict the domain from

S × V × C to V1 to get the hk1 which is measurable. �

Proposition 7.8. The full hierarchy mapping hi is bimeasurable.

Proof. First, we show that hi is measurable. The σ-algebra on Π∞k=1H
k is the σ-algebra generated by

F ≡ {F = Πk/∈IEk ×Πk∈IH
k : I ⊂ N is finite, and Ek ∈ Σ(Hk)}.

Since hi ≡ (h1
i , . . . , ), for each F ∈ F , h−1

i (F ) ∈ Σ(Vi). By Theorem 4-1-6 in Dudley [16], hi is

measurable.
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Next, we show that, for each E ∈ Σ(Vi), hi(E) is measurable. Let E ∈ Σ(Vi). Since h1
i and h2

i

are bimeasurable injection, h2
i ◦ (h1

i )−1 is bimeasurable bĳection from h1
i (E) to h2

i (E). Let the image

of E by (h1
i , h

2
i ) be Γ2(E). It means Γ2(E) ≡ {(h1

i (vi), h2
i (vi)) ∈ H1×H2 : vi ∈ E}. We can see that it

is the graph of h2
i ◦ (h1

i )−1. Therefore, Γ2(E) is measurable in the product measurable space H1×H2.

By the mathematical induction, for each k ≥ 1, Γk(E) ⊂ Πk
l=1H

l, the image of E by (h1
i , · · · , hki ),

is measurable. The image of the full hierarchy hi(E) is the projective limit of (Γk(E))k∈N, and as we

saw, each Γk(E) is measurable. Therefore hi(E) is measurable. �
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