Do You Think About What I Think you Think?

Finite Belief Hierarchies in Games®

Willemien Kets'

December 28, 2009

Abstract

This paper models players with limited depths of reasoning. It does so by con-
structing finite belief hierarchies. A key feature is that players’ language is too coarse
to conceive of higher levels than their own. The type space I construct embeds the
universal type space with infinite hierarchies. As in the standard framework, a type
corresponds to a belief over other players’ types. However, players with limited depth
of reasoning have a coarser language to “talk” about other players’ types than more
sophisticated players. Unlike in models of cognitive hierarchies or k-level reasoning, a

player can believe that another player is at least as sophisticated as she is.
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Information travels at the speed of logic, genuine knowl-
edge only travels at the speed of cognition and inference.
Barwise (1988)

1 Introduction

How do people reason about others in strategic settings and how does that affect their
behavior? These questions have been at the forefront of game theory since its inception in
the first half of the twentieth century. Traditionally, the focus has been on the question
how “rational” players behave. More recently, the literature in behavioral game theory has
investigated various deviations of perfect rationality (Camerer, 2003). As already observed
by [von Neumann and Morgenstern| (1944, 4.1.2), however, the question how rational players
should behave cannot be separated from the question how non-rational players behave. Even
if one is concerned only with rational behavior, the interactive nature of the problem makes
that one has to deal with all possible types of players: What is optimal for a rational player
depends on what he expects his opponents to do, and these opponents may be boundedly
rational. It is therefore desirable to have a theory of behavior in strategic settings that
encompasses both perfect rationality and forms of bounded rationality.

A natural assumption is that players may not reason about everything they could po-
tentially reason about. In particular, players may not form beliefs of arbitrarily high order,
i.e., beliefs about others beliefs about their beliefs. . . about their beliefs about some event E.
While naturalﬂ this assumption is very much at odds with the Bayesian approach, which
assumes that players have (subjective) beliefs about all relevant uncertainty, and therefore
also about the beliefs of other players, the beliefs of other players about their beliefs, and so
on (Tan and Werlang, |1988]). The Bayesian approach naturally leads to infinite hierarchies of
beliefs (e.g., [Mertens and Zamir} 1985; Brandenburger and Dekel, [1993). This paper takes a
different perspective, based on the idea that players may stop reasoning at some point, and
thus do not further “refine” their view of the world.

To understand the main idea, it is instructive to consider the following setting, loosely
based on an example by Savage| (1954, pp. 13—-15). Bob walks into the kitchen, seeing that
Ann, his wife, has broken five good eggs into a bowl to make an omelet. A sixth egg, which
must either be used for the omelet or wasted, lies beside the bowl, unbroken. Bob needs to
decide whether to break the egg into the bowl, break it into a separate saucer for inspection,
or throw it away without inspection. According to Savage, there are two states of the world:

“The egg is good” and “The egg is rotten”. If Bob assigns (subjective) probability 0.9 to the

!The hypothesis that players only have a limited depth of reasoning has indeed received some empirical

support; see the discussion below.



egg being good, he may well decide to break the egg into the bowl. However, a question that
Bob could have asked is why Ann did not break the egg into the bowl. That is, while he has
a first-order belief on the state of the egg, he does not have a second-order belief, i.e., a belief
about Ann’s belief about the egg. Maybe Ann knows that the sixth egg is old, and should
be thrown away. Perhaps she also believes that Bob will understand that that is the reason
why she did not use the egg for the omelet. Had Bob reasoned about Ann’s beliefs about the
egg, and about Ann’s beliefs about his beliefs about her beliefs, he might not have wasted
five good eggs by adding the sixth, rotten, one to the bowl.

This example suggests that the state space of Savage can be further refined by considering
Ann’s and Bob’s higher-order beliefs about each other. Indeed, taking this to the logical
extreme leads to infinite belief hierarchies, such as those constructed by [Mertens and Zamir
(1985)), [Brandenburger and Dekel| (1993)) and others. However, this example also suggests
that this refinement of the state space is based on the extent to which Bob takes Ann’s
perspective—on the state of the egg, Ann’s beliefs about the egg, and so on. However, the
extent to which players can take each other’s perspective seems to be limited by cognitive
constraints. Hence, it is natural to assume that players will have limited depth of reasoning,
i.e., have finite belief hierarchies.

What do these finite hierarchies look like? First, as the example suggests, a player with a
finite hierarchy does not “reason” about certain higher-order beliefs, and that means that she
can only “talk” of an opponent having limited depth of reasoning. In the example, Ann has
a belief about the egg (the egg is bad) and about Bob’s beliefs about the egg (Bob believes
the egg is bad), about Bob’s beliefs about her beliefs about the egg (Bob believes that Ann
believes the egg is bad), but she may not have higher-order beliefs. That means she can only
“talk” about a Bob who reasons about her beliefs about the egg, not about a Bob who reasons
to any higher orders, e.g., about her beliefs about her beliefs about the egg. Second, by a
similar argument, Ann can only talk about herself reasoning about Bob’s beliefs about the
egg. Third, while Ann is certain in the current example that Bob is at least as sophisticated
as she is (in her language, they can both talk about a player who has beliefs about the other
player’s beliefs about the egg), it is also possible that Ann is unsure how sophisticated Bob is.
In the example, Ann is certain that Bob would think about her beliefs about the egg (even
though he did not), but if she considers the possibility that he doesn’t, she might throw away
the egg herself, just in case.

I formalize these ideas as follows. A player with a greater depth of reasoning has a
“finer” language to talk about higher-order beliefs than a player of shallower depth: If Ann
has a greater depth of reasoning than Bob, she can distinguish more events than he does.

Specifically, I construct the belief hierarchies of players using a similar approach as [Mertens



and Zamir| (1985), but with the important difference that players have a coarser o-algebra
than players who are more sophisticated in their reasoning. In the approach of Mertens and
Zamir, each player has a probability measure on the Borel o-algebra about each level of
uncertainty. Given the topological assumptions Mertens and Zamir| make, this means that
at some level k, each player can assign a probability to some (singleton) element of a given
basic space of uncertainty S (e.g., the space consisting of the two states “The egg is good”,
“The egg is bad”), the beliefs (probability measures) of all players about S (their first-order
beliefs), the beliefs of all players about the beliefs of all players about S (their second-order
beliefs), ..., and their (kK — 1)th-order beliefs. That is, at level k, each player can distinguish
the singleton belief hierarchies up to level £k — 1. By a recursive construction, Mertens and
Zamir| arrive at infinite belief hierarchies, meaning that each player can assign a probability
to the belief hierarchies that coincide for the first k levels, for any finite k. In fact, they show
that such an infinite belief hierarchy or type is equivalent to a Borel probability measure on
S and the set of infinite belief hierarchies. Hence, a player with a Mertens-Zamir type can
assign a probability to each individual belief hierarchy or type.

By contrast, in the current construction, a player may stop reasoning at a certain depth
A. Technically, that means that her o-algebra—i.e., her language to talk about S and about
(higher-order) beliefs—is not refined above A. While a player who reasons up to level A can
distinguish the belief hierarchies that differ at some level lower than A, she lumps together
all belief hierarchies that only differ at higher levels. I show that this implies that a player
of depth A can assign a probability to the event that another player has depth k for any
k < A — 1, but not for any k£ > A — 1; rather, she can only assign a probability to the event
that another player has depth at least A — 1. Indeed, it is possible that a player is certain
that a player has depth at least A — 1, that is, the greatest depth she can imagine. Similarly,
she knows that her own depth is at least A — 1, but reasoning about it further would require
her to have greater depth.

It is important to note that the current construction does not directly endow a player
with a belief about her opponents’ depth of reasoning, given her own depth. Rather, this
follows from the construction: If Ann has a given depth A, her language is such that she can
assign a probability to Bob having depth k for any £ < A — 1, or to the event that Bob has
depth at least A — 1, i.e., is at least as sophisticated as she is. In this, the current framework
differs markedly from the approach taken by the behavioral economics literature on finite-level
reasoning (e.g., Nagel, (1995} |Stahl and Wilson, [1995; |Camerer}, |2003; Camerer et al., 2004;
Costa-Gomes and Crawford, 2006)E] This literature assumes that each player is endowed with

2See[Strzaleckil (2009) for a model that unifies different approaches and a construction of a space of cognitive
types in the spirit of Harsanyi| (1967-1968).



a so-called cognitive type; a player with a cognitive type k£ must assign probability 1 to other
players having depth at most £k — 1. One feature of this setup that is somewhat awkward is
that if Ann and Bob have cognitive types k% and k® respectively, then the beliefs of one of
them must be wrong, and this is common belief. The framework proposed here does not have
this feature, since players can believe that others are at least as sophisticated as they are.
Indeed, it seems natural in some settings that a player knows that his opponent is at least as
sophisticated as she is, even if she cannot “say” what his depth of reasoning is exactly—that
is something she cannot reason about. This opens up the way to exploring new solution
concepts, where players can try to outguess the other player, but realize that the other may
outguess them instead.

A further advantage of the current model is that it allows both for perfect rationality
and bounded rationality, something which is not possible in models of k-level reasoning and
cognitive hierarchies, where players can have any finite depth, but not infinite depth.ﬂ That
is, the type space I construct contains both finite and infinite belief hierarchies. In fact, I
show that the Mertens-Zamir universal type space can be embedded in the current type space
as a belief-closed subset.

Finally, the current approach provides a natural framework to study belief revision. If Ann
has a given depth, and she observes a move by Bob that she cannot immediately rationalize,
she may realize that he is more sophisticated than she is. This allows her to refine her
language, thus becoming more sophisticated herself. By contrast, in the literature on cognitive
hierarchies and k-level reasoning, players can only become more sophisticated by conditioning
on probability-0 events, which seems less natural.

A distinct feature of the current approach is that it explicitly models players’ reasoning
processes and beliefs, as in epistemic program in game theory (see e.g. [Brandenburger, 2007,
for an overview of recent results). However, the literature on epistemic game theory typically
studies the implications of rationality in settings where players are perfect reasoners, focusing
on decision-theoretic criteria, such as dominance and admissibilityﬁ By contrast, the current
model explicitly allows for players who are boundedly rational. More generally, the current
paper can be viewed as an attempt to use the epistemic language to directly model players’
cognition.

The outline of this paper is as follows. Section [2| contains some examples to illustrate some

30f course, a type with infinite depth of reasoning could be added to these models, but it is not clear

whether such a type would be the limit of finite belief hierarchies with increasing depth.
4An exception is the literature on unawareness (e.g., Fagin and Halpern, [1988; [Modica and Rustichini,

1994; Dekel et al., [1998; Heifetz et al., |2006; |Feinberg, 2009). While one could say that a player with a
limited depth of reasoning is unaware that he could reason further, this is a different form of unawareness

than generally considered in the economics literature. See the discussion in Section



modeling considerations. Belief hierarchies and the type space are constructed in Section [3]
Section 4| discusses various notions of beliefs in the current setting. Section [5] contains a
discussion of a number of technical issues and open questions. Section [6] concludes. Proofs

not included in the main text can be found in the appendices.

2 Examples

There are two players, Ann and Bob, who are uncertain about some set S = {s1, s2}.
Given a space of uncertainty X, a player either has a belief p € M(X) about X, where
M(X) is the set of Borel probability measures on X, or she has “no beliefs” about X. For
now, I will not define formally what is meant by “no beliefs”. I will be similarly vague when

using terms such as “reason” and “think”.

Example 2.1 (Depth of reasoning)

Suppose that Ann assigns probability p{ to s;, and probability 1 — p{ to s;. Ann also has
beliefs about Bob’s beliefs about S: she assigns probability p§ to Bob assigning probability
72 = 1 to s; and probability 1 — p? to Bob assigning probability ﬁ’{ = 1 to sy. Finally,
she has beliefs about Bob’s beliefs about her beliefs about S: she assigns probability p§ to
Bob placing probability $5 on her assigning probability 1 to s; and 1 — p5 on her assigning
probability 1 to s, and probability 1 — p? to Bob placing probability ﬁg = 1 on her assigning
probability 1 to s;. Ann has no beliefs of higher order: she has no beliefs about Bob’s beliefs
about her beliefs about his beliefs about S, no beliefs about Bob’s beliefs about her beliefs
about his beliefs about her beliefs about S, and so on. What does Ann “think” about Bob’s
higher-order beliefs? In a sense, she only “reasons” about a Bob who has beliefs about S and
beliefs about her beliefs about S; she does not “reason” about a Bob who has beliefs about
her beliefs about his beliefs about S. <

This example illustrates some important points. First, if Ann has depth k, she can only
“reason” about a Bob who is less sophisticated than she is. Similarly, Ann can only “talk”
about a Bob who can only “talk” about an Ann who is less sophisticated than she is, and so
on. Finally, if Ann cannot “reason” about Bob’s kth-order beliefs, she cannot reason about
his (k + 1)th-order beliefs. Without this, it is possible that Ann does not have beliefs at level
k, while she does does have beliefs about Bob’s kth-level beliefs, or even about his beliefs
about her beliefs at level k. That is, Ann can “reason” about k-level beliefs, though she may
not have a k-level belief. As we will see, this condition naturally arises when players’ beliefs
are required to be coherent in the sense that higher-order beliefs do not contradict their beliefs

at lower order.



The next example suggests that there are also some natural constraints on players’ rea-

soning about others when there is uncertainty about others’ depth of reasoning.

Example 2.2 (Uncertainty about others’ depth of reasoning)

Suppose Ann assigns probability p{ to s; and probability 1 — p{ to s,. Also, assume that she
assigns probability p§ € (0,1) to Bob having no beliefs about S. Then, if Ann has beliefs
about Bob’s beliefs about her beliefs about .S, it seems reasonable to require that she assigns
probability at least p§ to Bob having no beliefs about her beliefs about S: a player (i.c., Bob)
who has no beliefs at level k£ has no beliefs at level k£ + 1. <

We have looked at how players reason about others’ depth of reasoning. But, what can a
player “know” about her own cognitive depth? That is, suppose Ann has a belief about S, a
belief about Bob’s beliefs about S, but no belief about Bob’s beliefs about her beliefs about
S, and so on. What does she believe about her beliefs about Bob’s beliefs about her beliefs
about S7 One possible answer that I focus on here is that she has no beliefs about her beliefs
about Bob’s beliefs about her beliefs about S: Ann simply cannot “speak” about her beliefs
at that order. An alternative answer that I briefly discuss in Section [5]is that she does know
that she does not know: she assigns probability 1 to the event that she has no beliefs about
her beliefs about Bob’s beliefs about her beliefs about S, she assigns probability one to the
event that she assigns probability one to the event that she does not have beliefs about Bob’s

beliefs about her beliefs about S, and so on.

3 Finite belief hierarchies and type space

3.1 Preliminaries

Given a metric space X, denote by M(X) the set of probability measures on the Borel
o-algebra Z(X) in X, metrized by the Prohorov metric. If X is compact metric (and thus
Polish) then M(X) is compact metric (e.g., Kechris, (1995, Thm. 17.23). Let X be a topolog-
ical space, and let p be a probability measure on (X, %(X)). Then, a support of y, if it exists,
is a closed set, denoted supp(u), such that u(X \supp(u)) = 0 and pu(GNsupp(p)) > 0 for any
open set G such that G Nsupp(p) # 0. If 4 has a support, it is unique, and pu(supp(p)) = 1.
If X is second countable or if p is tight, then supp(u) exists (Aliprantis and Border, 2005,
Thm. 12.14).E] Also, given a topological space X, let vx be the probability measure on the
trivial measurable space (X, {X,0}).

5A Polish space is second countable (Dudley} 2002, Prop. 2.1.4). Also, it is not hard to see that a subspace

of a second-countable space is second countable.



The Cartesian product of topological spaces is endowed with the product topology. Given
a Cartesian product Z = x,Zy, the projection mapping from U C Z to Z; is denoted ﬂgz.
Given a probability measure p on a subset Z of a product space Z; X Z,, the marginal of p
on Z; “inherits” the o-algebra of u in the following sense. If i is defined on the o-algebra ¥,
then the o-algebra for yio (77,)~" is given by {n7,(B) : B€ X}. If Z = Ay X -+ x A} X Ay x
oAy x -+ x A, for spaces Aj, ..., A, denote by (Ap)? the ith copy of Ay, £=1,...,m. If
X = X' x X? x --- is a (finite or infinite) product set and X7 = ) for some j, then X’ =

for all .

3.2 Belief hierarchies

There are two players, Ann (denoted by 1) and Bob (denoted by 2), and a common
uncertainty space S, assumed to be a compact metric space.ﬂ To avoid trivialities, I assume
that S has at least two elements. I construct players’ belief hierarchies in a bottom-up fashion
(cf. Mertens and Zamir, [1985)).

Define
Yo =5,
and
MT(Yp) == M(Yo) U {r }-
Also, let

Y] =Yy x MT(Yy) x MH(Yp).
For k =2,3,..., let
Yk = {yk ~ Yk—l X M+(Yk—1) X M+(Yk_1) . for i = 1,2, (31)
Z Yi_1\—1 Yi_ Z
(1) (W(,/(C/[+(Yk71))i(yk)) © (WYZ,;) = W(Li(yk,Q))i (WY:q(yk)%

(2) if 7T(Z/\k/l+(yk71))i(yk) € M(Yk—l)a then

Z Y1 _1_5
Tt eyt ) 0 (Tvr oy ) = 0% v w )’

(MF(Y},_9))i (e

where Zk = Yk,1 X M+(Yk,1) X M+(Yk,1), and

M+(Yk) = M(Yk) U (U Mg(yk)> U {VYk} (32)

=0

with M,(Y}) the collection of probability measures on Y} with o-algebra

2= {(m¥) (B): Be B(Y))},

6Tt may be possible to weaken some of the topological assumptions. The results extend to any finite number

players in a straightforward way.



and 0, is the point mass at u. By continuity of W)};f, it is immediate that X} C %(Y}).

As is standard, the elements of the spaces Yp, Y], ... specify an element of S as well as
players’ (higher-order) beliefs about S. Given y = (o, 1, ...) € X352, Y% such that (1) and (2)
in are satisfied, refer to hi(y) := (W&Jr(yo))i(yl), W(YﬁAJr(Yl))i(yQ), ) € XpMH(YVyq) as the
belief hierarchy of player ¢ generated by y. There are three possible cases. First, it is possible
to have Wz;’\“/ﬁ(yk_l))l (yx) € M(Yy_1) for all k, i.e., at every level, Ann has a belief (probability
measure) defined on the Borel o-algebra. In that case, we say that she has an infinite (belief)
hierarchy. A second possibility is that there exists A such that W&/ﬁr(mﬂ)l(yk) € M(Yi—1)
if k—1<A, and Wz/j\’“/ﬁ(yk_l))l(yk) € Ma(Yy_1) for k—1 > A. In that case, Ann has a finite
(belief) hierarchy. Finally, it is possible that W?Z’(/H Vet (yr) = vy,_, for all k: Ann has trivial
beliefs. Intuitively, if Ann has an infinite hierarchy, she has the finest possible language to
talk about beliefs, while if she has a finite belief hierarchy, she can only distinguish between
hierarchies that differ at lower levels. If Ann has trivial beliefs, she cannot “talk” about
beliefs—her own or others’—at all.

We can now interpret the conditions in the definition of Y;. Condition (1) requires that
beliefs be coherent, to the extent that a player can “talk” about her beliefs. That is, if Ann
has an infinite belief hierarchy, (1) is identical to the coherency condition of Mertens and
Zamir| (1985). Given y = (yo,v1,...) € X2,Y% such that (1) and (2) are satisfied, suppose
that Ann has a finite hierarchy at y: there exists A such that W&Jr(ykil))l(yk) e M(Yi_1)
if £ < A, and W&ﬂyk,l))l(yk) € Ma(Yi_1) otherwise. In that case, condition (1) requires
that Ann’s beliefs about Y}, for £ > A coincide with W?Z@H (Va_ )l (ya) regarding anything that
concerns Ya_1, but there are no other restrictions on her beliefs at that level. Similarly, if Ann
has trivial beliefs, there are no conditions on what she can believe. In the latter two cases,
are Ann’s beliefs coherent at the levels she cannot “reason” about? First note that while
Ann cannot have higher-order beliefs that contradict the beliefs at the levels she can “talk”
about, the higher-order beliefs that are consistent with her lower-level beliefs may contradict
each other. However, Ann cannot distinguish between these different higher-order beliefs: she
assigns positive probability to a sequence of sets, not to a sequence of individual higher-order
beliefs [T

Condition (1) does more than requiring that belief hierarchies are coherent as in |[Mertens
and Zamir| (1985)): it also ensures that players cannot have a “finer language” at higher levels
than at lower levels. Intuitively, if Ann cannot “speak” of certain events at a given level, then
she cannot “reason” about them at higher levels. Technically, (1) puts constraints on how

players’ o-algebras can change from level to level. To see this, suppose that Ann has belief

7A similar issue seems to arise in the construction of higher-order beliefs in the presence of ambiguity,

though in an entirely different framework (Ahn, [2007)).



vy, , about Yi_o. What possible beliefs can she have about Yj_;? Condition (1) requires
that the marginal of her belief about Y;_; on Y;_» has o-algebra {Y;_5,0}. Given the set of
possible measures M™(Yj_1), she can only have belief vy, |, about Yj_;. Similarly, suppose
Ann’s belief about Yj_s is given by some measure in M,(Yj_o) for some ¢ < k — 2. Then her
belief p,_1 about Y;_; cannot be a member of M(Y}_1) or M,,(Yj_1) for some m > ¢: if that
were the case, the g-algebra of the marginal of p;_; on Yj;_o would be too fine; conversely,
if px_1 were defined on ¥ | for h < ¢ or on {Y;_1,0}, then the marginal of ;1 would be
defined on too coarse a g-algebra. What happens if Ann’s belief about Y;_» is given by a
measure defined on the Borel o-algebra Z(Y;_5)? Then there are two options: either her
belief about Yj_; is defined on the Borel o-algebra %(Yy_1), or it is defined on Eijé. In
the latter case, one could say that she stops “reasoning”: her c-algebra on Y;_; does not
distinguish between elements that coincide up to Yj_».

Condition (2) requires Ann to know her own lower-order beliefs at k provided her belief
about Y}, is defined on the full o-algebra Z(Y;_1). Why only require that Ann knows her own
lower-order beliefs if her k-level belief is defined on the full o-algebra? The reason is simple: if
a player does not have k-level beliefs defined on the full o-algebra, she cannot “speak” of her
own higher-order beliefs. Hence, she cannot know them. I discuss an alternative specification

in Section Al

3.3 Universal beliefs space and type space

Now that we have constructed players’ belief hierarchies, we can construct the state space

and type spaces. I start with some preliminary results.
Proposition 3.1 For each k, Y s nonempty and compact metric, and thus Polish.

Let G := x32,Y), and let Y be the subset of G that consists of all y that satisfy

. (y) = my (7%, (y) ) (3.3)

for all k,m =0,1,... such that £k < m. Let 7 be the weakest topology on Y such that 7r€k is

continuous for each k. That is, (Y, 7) is the inverse limit of the spaces Yy, Y1, ... with their

respective topologies. The restriction of W% to Y is the canonical mapping from Y into Y,

and is denoted by 7y, .

Theorem 3.2 The inverse limit Y is nonempty and compact metric.

Proof. 1 first show that W}}:’;il(Yk) = Yi_1. Clearly, W?;il(yk) C Y for all k. Hence,

it is sufficient to show that the reverse inclusion holds for all k. The inclusion holds by

10



definition for k = 1. Suppose that 7r§’“ (Yk) D Yr_1, and consider y; € Y. We need to show
that there exist ,uk,,uk € M™T(Y}) such that (yx, pi, p2) € Yy, If 7rM+(Y )),.(yk) = vy,
set ph = vy,. If 7TM+ Ye1))? (yp) € My(Yy_1), take pi € My(Yy_1) such that it coincides
with 7r( M) (yx) on all elements of AB(Yy). If we have thus constructed a probability
measure u; for both players, we are done: (yy, uz, p2) € Y1 If this procedure gives us puy,
then by Proposition 2.10 of Mertens and Zamir| (1985), there exists g2 € M(Y}) such that
(Yrs pih i2) € Yiqq. Otherwise, the result follows directly from Proposition 2.10 of Mertens
and Zamir| (1985).

Using this result and Proposition [3.1I, we can now apply Proposition 9.6.8 of [Bourbaki
(1998) which establishes that Y is nonempty and compact. To prove that Y is metric, note
that the topology 7 on Y is equivalent to the topology on Y induced by the product topology
on G (Bourbaki, 1998, p. 48). Since Y} is metric for all k& (Proposition 3.1), G is metric.
It follows that G is Polish, and thus Hausdorff. Hence, as Y is a compact subspace of GG in
the relative topology, it is a closed subspace of G and therefore compact metric (Prop. 3.3
Kechris, |1995)). d

The space Y is the analogue of the universal beliefs space of Mertens and Zamir| (1985). Let
v = (Yo,y1,.-..) € Y and i = 1,2. Recall that h'(y) := (W?}M(YO))Z-(yl),Wz;f/ﬁ(yl))i(yg), ...) €
X MT(Y_1) is the belief hierarchy of player i generated by y. I show that each belief
hierarchy generated by some element of Y defines a unique probability measure on Y. 1
treat the different cases—infinite hierarchies, finite hierarchies, and trivial beliefs— in turn;

throughout, I use the notation pi ,(y) := W&ﬂ}’k_l))i(yk)'

Case 1: Infinite hierarchies Let y € Y and let ¢ be a player such that u} ,(y) €
M(Y_q) for all k. Let f be a real-valued continuous function that depends on a finitely
many coordinates of y € Y, and consider ([, fdui_,(y))ren. By condition (1) in (3.1]), and
since my, (Y') = Y; for all k, this sequence of integrals is well defined and constant for k
sufficiently large. Hence, the sequence (uf(y), i (y),...) defines a positive linear functional
M(y) on the Riesz space E of real-valued continuous functions on Y that depend on finitely

many coordinates:

VfeE: M'(y hm/fduk

k—o0

and M'(y) has norm || M(y)|| = 1F] It is immediate that the set E forms an algebra in C(Y),
separates points in Y, and contains the constant functions. Hence, by the Stone-Weierstrass
theorem (e.g., |Aliprantis and Border, 2005, Thm. 9.13), E is dense in the space C(Y') of

8Recalling that Y is a compact space (and that each f € E is continuous), we endow E with the supremum

norm; also, R is endowed with its usual Euclidean norm.

11



continuous real-valued functions on Y in the uniform topology. That is, the closure of E
is C(Y). By Theorem 8.32 of Aliprantis and Border| (2005), M*(y) extends to a positive
linear functional M¢(y) on C(Y). Because Mi(y) is bounded, the functional is continuous
(on E) (Aliprantis and Border, 2005, Lemma 6.4), so that || M*(y)|| = 1 (recall that for every
f € C(Y), there exists a sequence in F that converges to f in the uniform topology). Then,
by a version of the Riesz representation theorem (Aliprantis and Border, 2005, Thm. 14.12),
there exists a unique regular Borel probability measure t'(y) on Y that represents M “(y), that
is, for all g € C(Y'),

M'(y)(g) = / gdt'(y).

Y
Let T,o € M(Y) be the collection of Borel probability measures on Y defined in this way.

What is the relation between the probability measure t'(y) and the hierarchy hi(y) =
(i (y), 1t (y), . ..)? For each y € Y, the belief t'(y) on Y agrees with the belief p(y) on Y} in
the following way: for every By € %A(Y}),

t() ((m) " (Br)) = i )(By).

To see this, first note that 7y, is continuous, and thus Borel measurable, so that indeed
(my,) 1 (By) € B(Y). Let f:Y — R be defined by:

1 ity e (my) (B
0 otherwise.

Vyev: f(y)Z{

Then the indicator function f depends only on finitely many coordinates, and is continuous,
ie., f € F, so that

M(y)(f) = /Y fdti(y)

where I have used that M (y)(g) = M(y)(g) for g € E.

Case 2: Finite hierarchies Fix a player ¢ and y € Y, and suppose h'(y) = (uh(y), 1t (y), .. .)
is such that u}(y) € M(Y) for k < A, and pi(y) € Ma(Y:) otherwise. That is, the hierarchy
hi(y) has depth A. Then, hi(y) can be represented by the unique probability measure ¢*(y)

on the measurable space (Y, ¥X), with
yX o= {(WYA)_l(B) : B € %}(YA)}7
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such that for all £ € XX,
t'(y)(B) = pia (v, (E)).
It can be checked that the collection of probability measures on (Y, XX) is homeomorphic to
M(Ya). For A =0,1,..., let Ta be the subset of probability measures on (Y, ¥X) defined in
this way.
In this case, t'(y) is consistent with h*(y), but only to the extent that a player can “speak”
of her beliefs. That is, suppose k < A, and let By, € #(Y}). Then,

£) () ' (BY) = sk (ma (€Y - w2 (m () € Be)))
= ua (W) 7 (By)
= m.(y)(By),

where in the first equality I have used that my, = w% o Ty, , and in the last that beliefs are

coherent. What about k& > A? Player ¢ can only “talk” about elements of the set

{(rva) "' (Ba) - Ba € B0a) } = { (w) " ()7 (Ba)) : Ba € 2(Va) }

Hence, 7’s vocabulary to talk about subsets of Y} is limited. But for the subsets ¢ can talk
about, her beliefs ¢'(y) coincide with i (y). Suppose By, = (my* )" (Ea) € 2(Y;) for some
Ep € @(YA) Then,

) ()7 B) = wily) (M (7 () (B1)))
= ua(y)(Ea).

Case 3: Trivial belief The hierarchy hi(y) = (vy,,vy;,...) can be represented by
t'(y) = vy, where vy is the probability measure on (Y, {Y,0}). A player with such a hierarchy
cannot reason about any proper subset of Y, and there is no relation between t*(y) and 1t (y)

for any k.

Summarizing, each belief hierarchy h’(y)—finite, infinite or trivial—defines a belief on Y.
While a player with an infinite hierarchy can distinguish between all individual hierarchiesﬂ
a player with depth A at y € Y can only distinguish between hierarchies that differ in their
beliefs on YA_1, but not between hierarchies that differ at higher levels: the finest events in

her “language” are sets of the form

{lyeY :my,(y) =yat,

9Recall that singletons are closed in Hausdorff spaces, and that the Borel o-algebra contains the closed

sets.
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where ya € Ya. A player with trivial beliefs, finally, cannot distinguish any hierarchies: she

cannot reason about any proper subset of Y.

Define
T:=T,U (U TA> U{y}.

A=0
It will be helpful to define a metric on 7. As Y is compact metrizable, so is M(Y") (Aliprantis
and Border| 2005, Thm. 15.11, 15.15), and its topology can be metrized by the Prohorov
metric p (Dudley, 2002, Thm. 11.3.3). Also, let pa be the Prohorov metric on M(Ya).
Define the function p™ : T'x T'— R by:

p(t, 1) if t, 1 € Th,
-1 -1 .
v eT:  pr(r) = Lol e ma) ) e T,
ift =1t =vy,
2 otherwise,

where it can be checked that t o (my, )™t € M(Ya) if t € Ta. It can be verified that p* is a
metric on T, so that T is Hausdorff.

The space T is the analogue of the universal type space of Mertens and Zamir| (1985). I
will refer to the elements of T as types and to T" as the type space. However, note that types
here need not correspond to infinite hierarchies of beliefs, as is standard. Also, it is not clear
whether T is universal; see the discussion in Section [5.3]

Proposition 3.3 There exists a homeomorphism ¢ fromY to S x T x T.

Proof. I first construct a mapping from Y to S x T x T" and show that it is a bijection. Let
¢:Y — S xT xT be the mapping defined by:

VyeY:  o(y) = (my), t'(y), £ y)),

where t!(y), t*(y) are probability measures on Y generated by the belief hierarchies h'(y), h?(y),
respectively, as described above. By construction, z = ¢(y) and 2/ = ¢(y) implies 2’ = z.
That is, ¢ is a function. Conversely, let (s,t!,t?) € S x T x T. For i = 1,2, t' is a
probability measure on Y that is derived from a belief hierarchy h' = (u,p,...) such
that for all k, ui € M™(Y;) and conditions (1) and (2) in are satisfied. Hence, it
is possible to associate with each (s,t!,#?) a unique x((s,t!,#*)) € Y such that y, = s
and (W?}AJF(YO))i(yl),Wz/j/ﬁ(yl))i(yQ), ...) = hi for i = 1,2. That is, x defines a function from
SxT xT toY, and it can be checked that y is the inverse of ¢. Consequently, each element

of Y corresponds to a unique element of S x T x T', and vice versa, so that ¢ is a bijection.
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Since a continuous bijection from a compact space to a Hausdorff space is a homeo-
morphism (Aliprantis and Border, 2005, Thm. 2.36), it suffices to show that ¢ is contin-
uous and that S x T x T is Hausdorff. (Recall that Y is compact (Theorem [3.2)).) First
note that because T is a metric space, the product topology on S x T x T is metrizable
(Aliprantis and Border, 2005, Thm. 3.36) and thus Hausdorff. Second, we need to show
that ¢ is continuous. First observe that y, — y in (Y,7) only if for all &k, it holds that
W&Jr(yk,l))i(yn) — W&+(Yk71))i(y). In particular, eventually W&+(Yk—l))i(yn> needs to be de-
fined on the same o-algebra as W&+(Yk_l))i(y) for all k. Let i« = 1,2 and y € Y. Suppose
t'(y) € T, and let {y, } be a sequence in (Y, ) that converges to y. Recall that Y is compact
metric, so that by the Stone-Weierstrass theorem, the collection C of continuous functions
on Yy, k=0,1,..., is dense in the space C(Y") of continuous functions on Y (endowed with
the uniform topology). Then for all f € C, M*(y,)(f) — M%(y)(f), so that t(y,) — t'(y)
by Theorem 15.3 of |Aliprantis and Border| (2005). If t/(y) € Ta or t'(y) = vy, then y, — y
directly implies that t*(y,) — t'(y). O
For future reference, note that it follows from the proof of Proposition that T is compact

metric.

3.4 Beliefs about the other’s type

In models of infinite belief hierarchies, an infinite belief hierarchy or type defines an un-
ambiguous belief about other players’ types. Is that still true when one allows for finite belief
hierarchies? It will be instructive to consider a player’s belief about her own beliefs first. In
the case that players can only have an infinite belief hierarchy, each player knows her own be-
lief hierarchy (Mertens and Zamir, 1985, Lemma 2.14). When players have finite hierarchies,
this no longer holds. Nevertheless, the following result shows that a player knows her own

beliefs, to the extent that she can reason about them:
Lemma 3.4 Let y = (yo,41,...) €Y and i =1,2.

(a) If t'(y) € T, then
Y € supp(t'(y)) = t'(y) =t'(y).

(b) If t'(y) € Th, then
y' € supp (ti(y) o (7%)_1) —
(ti<y,) o (ﬂ-Y0>_17 cet Jti(y/) ° (ﬂ-YA—l)_l) = (tz(y) ° (ﬂ-Y0>_17 s Jti(y) ° (WYAq)_l)

Moreover, for k > A,
(e (m)™) (ke o) ({F 000 () ")) =1
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Proof. (a) The proof follows the proof of Lemma 2.14 of Mertens and Zamir| (1985), and
is only included to facilitate comparison between (a) and (b). If 3 € supp(t‘(y)), then for
k=0,1,...,

(Fe (m) "t o (i) ™) € supp (F) © (mumsone) ) -

But since y € Y, we can use (1) and (2) in (3.1)) repeatedly to find that ¢'(y) assigns probability
1 to (t'(y) o (my,) ™%, .., t'(y) © (7y,_,)71). Hence, (£(y') o (my) ... B (y) o (M) ™) =
(t'(y) o (myy) Y, ..., t'(y) o (my, )7 1) for all k, so that t'(y') = t'(y).

(b) First consider the first claim. By a similar argument as for part (a), it is possible to show
that if ¢/ € supp(t'(y)), then for k =0,1,..., A,

<ti(y’) o (Wyo)il, oty o (Wyk_1)71> € supp (t’(y) o (WXZ&(MHYZ))@-)A) )

Using that y € Y, and by repeatedly applying (1) and (2) in (3.1)), it follows that ¢(y) assigns
probability 1 to (t'(y) o (my,) ", ..., t"(y) o (wy,_,)""). This establishes the first claim.
Turning to the second claim, let £ > A. First I show that

(ot vaa) ({ti(y) ° (WYAfl)_l}) S {(ﬁgﬁ) (B):Be€ '%O/A)}v

i.e., that the claim is well defined. Let

B = (m 5\A/H (Ya—1) ) ({tl( )o (WYAfl)_l})'

Since the singletons are closed sets in a Hausdorff space, and by continuity of 7" M (YA )
B is a closed subset of Ya, so that B € #(Ya). Furthermore, it is not hard to check that
(’/T;/Z) YB) = (n T M+ (va_r)i) L{ti(y) o (7ryA_1)71}), so that the claim is indeed well defined.

The result now follows by noticing that

Zn = ( E\A/IJF(YA 1))? ) B <{tz(y) ° (TFYAfl)_l})

is the subset of YA in which 4’s marginal on Yo_; is consistent with #'(y). Hence, by the
coherency condition (1) in (3.1]), player i assigns probability 1 to (W}XZ )" HZA) C Vs O

Lemma [3.4] tells us something about what a player “knows” at a given state about her own
higher-order beliefs. Part (a) and the first claim in (b) say that in all states to which a player
assigns positive probability in a given state y, her relevant higher-order beliefs are equal to
her true beliefs at y, as given by her type t'(y). When she has an infinite belief hierarchy,
she in fact knows her own type. If she has a hierarchy of depth A < oo, she only knows her
beliefs up to level A — 1. The second part of (b) shows two things. First, a player does not
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know her beliefs at any higher level than A. On the other hand, she does not “loose” the
ability to “speak of” her lower-level beliefs at higher orders: all her higher order beliefs are
consistent with her true lower-order beliefs. Importantly, it does not follow from [3.4(b) that
t'(y') € Ta: the result only implies that ¢'(y') € Ty for some A > A. That is, a player cannot
distinguish between hierarchies that coincide regarding her own beliefs at the levels she can
reason about, even if they have greater depth than her own.

What about a player’s belief about other players’ types? Intuitively, if Ann has type vy,
she cannot distinguish between any (proper) subsets of S or T'. If she has a type in Tp, she
knows her own beliefs about S, but cannot discriminate any beliefs of Bob. If she has a type
in 77, Ann can “talk” about S, her own beliefs about S and Bob’s beliefs about S, but not
about Bob’s beliefs about her beliefs about S. And so on. That is, Ann can make a finer
distinction among Bob’s types if she has a greater depth. To formalize this idea, we construct
a homeomorphism between the type space T and a collection of beliefs over S x T, where
different types may have beliefs defined on different o-algebras. More precisely, the o-algebras
of different types are nested, with types of greater depth having finer o-algebras than types
of shallower depth. This implies that certain types are able to make finer distinctions among
types than others, depending on their level of sophistication.

Let i = 1,2, and for A =0,1,..., let =\ be the o-algebra

{ng(TTX)jT oo (myv,) (B): Be %(YA)} .

in S x T, where ¢ is the homeomorphism from Y to S x T' x T' constructed in the proof of

Proposition [3.3] and j # i. There is a natural ordering among these different o-algebras in
S xT:

Proposition 3.5 Let i = 1,2. For any A, A’ =0,1,... such that A' > A, Z4 C ZY,. Also,
for any A, =\ C B(S x T).

Proof. I first prove the first claim. Let A; A’ =0,1,... such that A’ > A. Let Ba € Z(Ya),

so that ﬂgi(TTX)JT ogo (WYA)_1<B) € =%. Then, using that Y is the inverse limit of Y, Y7, ..

w5 (@ ((ma) 7 (Ba)) ) = 7857 (@ ()™ o (m2) 7 (Ba)) )

But, by continuity of w}ti', it holds that (ng')_l(BA) € B(Yar), so ng(j;:;f<¢((7TYA)_l(B))) €

Z%,. The proof of the second claim is similar. Again, let Bo € %(Ya). By continuity of my,,

(my,) "1 (Ba) € B(Y), so that ¢po(my, )1 (Ba) € B(SxTxT), and ng(z;x);fpocﬁO(WyA)_l(BA) €

PB(S xT). O

°)
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For i = 1,2, j # i, let Pa(S x (T)7) be the set of probability measures on (S x T, =4 ),
and let

P(S % (T)’) :== M(S x (T) <U Pa(S > (TY )) U {Vsx )i}
I first define a topology in P(S x T'), using the following lemma:
Lemma 3.6 Lett=1,2, j#i and A=0,1,.... Then,

{WSXTxT ogo(ry,) (B):Be %(YA)} = B(S x XA MH(Y)).

Sx X (MF(Yy))d

Define the function p**7 : P(S x T') x P(S x T) — R as follows. For all u, ' € P(S x T),

P (s 1) if 1, 1/ € M(S % T),
SxT SxT -1 ST -1 .
o2, ) = pa’ <,u © (ﬂ-SiXZ 01M+(y1_,)) o (WS:XZ 01M+(y)) ) if p, " € Pa(S x T),
0 if p=p' = vsxr,
2 otherwise,

where p3*7 is the Prohorov metric on M (S x T), and p2*7 is the Prohorov metric on M (S x

-1 _ .
x 2 tMF(Y))). (Note that by Lemma po (7 SXTA: 1M+(Ye)) € M(S x x5 MH(Yy)) if
p € Pa(S xT).) Tt can be verified that p°*7 is a metric on P(S x T'). Throughout this note,
the topology on P(S x T) is the topology induced by p**T

Theorem 3.7 (a) There exists a homeomorphism Vs : Too — M(S x T).

(b) For A =0,1,..., there exists a homeomorphism a : Ta — Pa(S x T).

Proof. Let i = 1,2, and let t* be a type of i.

(a) The proof follows |Mertens and Zamir (1985), and is only included for completeness.
By Lemma [3.4(a), if y € Y lies in the support of !, then #(y) = #. Also, by definition,
t" € M(Y), so that by Proposition |3.3] ¢’ corresponds to a unique r* € M(S x T x T'). Hence,
it is natural to set
AN SxTxT
Voo(t') = (Ws:(TX)J ) ,

where j # i. That is, each t' € T, is mapped into a unique ¥ (¢') € M(S x T). Also, by

SXTxT
Sx(T)

Now let p € M(S x T). We want to show that there exists t* € T, € M(Y') such that

the continuity of 7 , the image measure 1, is continuous.

S><T><T) -1 _ 5y

1. r’o (W(T),.

2. r'o (ﬂgiz‘%?)*l = U,
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where r? is the unique element of M (S x T x T') that corresponds to ¢ (Proposition , and
§ is the delta function. To show this, we construct a sequence (£}, ¢!, ...) on Yy, Y7, ... that
satisfy conditions (1) and (2) in (3.1) for all k£ and which defines an element ¢ € M(Y') such
that the probability measure r* on (S x T'x T, Z(S x T x T')) that corresponds to ¢* (defined
n (Y, 2(Y))) has the desired marginal distributions. For k = 1,2, ..., define
SxT -
Hk = e (”sux’;;g(wm))f))

be the marginal of 2 on S x (x5—3(M™*(Y;))?). That is, ju, is defined on the measurable space
(S X XEZg M*(Yy), B(S x x[Zg MT(Yy)). Let t) := po(75*T)~!, so that t) € M(S) = M(Yp),
and for £ = 1,2, ..., define inductively

That is, ti is a probability measure on
(Yo x XGZgMF(Ye) x X2 M (Ye), B(Yo x X2 MF(Ye) X xZg M*(Y))))

which satisfies (1) and (2) in by construction. By the construction in Section [3] this
defines a probability measure ¢ € T,, € M(Y).

It can be verified that the function from M(S x T') to T, we constructed in this way
is the inverse of 9. Furthermore, T, is a closed subspace of the compact space T, and
therefore compact, and M (S x T') is Hausdorff. Hence, ¢, is a homeomorphism (Aliprantis
and Border} 2005, Thm. 2.36).

(b): For t' € Th, set

balt) =1t (xS
where 7 is the probability measure on the measurable space (S x T x T, {¢ o (my, ) *(B) :
B € $(Ya)}) that corresponds to ¢ (Proposition [3.3). Then 1 (#) is a probability measure
on (S xT, {ngTTX)]T og¢go(my,) Y(B): B € B(Ya)}), ie, ¥a(t') € Pa(S x T). Clearly,
¥ is a function on Th. To show that ¥ is continuous, consider a sequence {t} in Ta
that converges to t € Ta, and let {ry},r be the corresponding probability measures on

(SXxT xT,{¢o(ry,) (B): B€ PB(Ya)}). Then (Dudley}, 2002, Thm. 11.3.3),

/ fomy, 0 ¢*1d7’k — fomy, 0 gb*ld'r’
SxTxT

SXTXT

for any continuous function f : YA — R. As for any continuous function g : S X T' x T — R,

there exists a continuous function f : Yo — R such that g = f o my, o ¢~!, it follows that

/ gdry — gdr (3.4)
SXTxT SXTXT
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for any continuous g : S xT xT — R. Fix any continuous function v : .S x X?:BlM—F(ng) — R.

Then, using (3.4)),
S><T><T -1\ SYTXT
/‘1xe AL+ (V) vd <7"k o (7Ts X xS HMT(Ye))d ) ) - /SXTXT’}/OWSXXZA()l(MJr(YZ))dek —

SXT'xT SXTxT -1
VO AT s dr—/ 1 (ro (S ) )
/SxTxT SxXpmg (MT()) Sx xR TIM*(Y7) Sxxyply (ME(Ye))d

so that, again by using Theorem 11.3.3 of Dudley| (2002), 1 (tx) converges to ¥a(t), and it
follows that 1A is continuous.

Conversely, let p € Pa(S x T'). First consider the case A = 0. Notice that p is defined
on =) = B(S) ® {T,0}. The interpretation is that 7 cannot “talk” about the other player’s
type. We map p into a type ¢t € Ty such that for all B € 3},

H(B) = p(my(B) x T,

and this mapping from Py(S x T') to T is the inverse of vy.
Now let A =1,2,.... We want to map p to some type t* € Ta of i such that

(a) Ti (0] (W&SJT)?XT)_l ({t € T:to (7T A— 1(M+(n)) )_1 == tz 9) (WXZA 01(M+(Ye))i)_1}> = 17

i -1
(b) 1o (xS =

where r* is probability measure on (SxT x T, {¢o(7ry,) " (B) : B € #(Ya)}) that corresponds
to t' (Proposition n It can be verified that (a) and (b) are well defined, i.e., {t € T :

- ~1
to (WXZA:_Ol(M+m))i) =t'o(m, A1 (v ;)7'} is a measurable set, and p and rio (7 g:(q;rx)JT)
are defined on the same o- algebra We construct a sequence (£f,t},...) on Yy, Yy, ... that

satisfies conditions (1) and (2) in (3.1]) for all ¥ and which defines an element ¢' € T such that
the probability measure r that corresponds to t* satisfies (a) and (b). For k=1,2,... A1,

let

—1
. SxT
e = e (”smif*g(w(m)j))

be the marginal of 1 on S x (x;_g(M*(Y,))?). As before, j1, € M(S x x5-d MT(Yy)). Let
th = po (75", so that t) € M(S) = M(Yy), and for k =1,..., A, let
th o= e X Ot S )

That is, ti € M(Yy x xj—g M*(Y}) x x5=3 M*(Y,)). Note that by construction, supp(t;) C
Yk.m For k= A+1,A+2,..., define t. € Ma(Y}) by:

VE € ¥k - ti(E) = th (my% (E)).

Since Yy x x5-g M*(Yz) x x5—3 MT(Y7) is Polish, it follows from Theorem 12.7 of Aliprantis and Border
(2005) that the support of ¢ exists.
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Again, conditions (1) and (2) in are satisfied by construction. Using the construction
in Section [3 the sequence (t},ti,...) defines a probability measure #* € Tx. We have thus
constructed a function from Pa(S x T') to Ta, and it can be checked that it is the inverse of
¥a. Finally, since Tx is a closed subspace of T' and thus compact, and Pa (S x T') is Hausdorff,
¥ is a homeomorphism (Aliprantis and Border, 2005, Thm. 2.36). O

Corollary 3.8 There exists a homeomorphism ¢ : T — P(S x T).

Proof. It is easy to see that the trivial mapping vy : {vy } — {vsxr} is a homeomorphism.
Now define ¢ : T'— P(S x T) by:

Voo (t) if t € Tio;
VteT: w(t) = ¢A(t) ift e Th;
d]@(t) ift = Vy.

It is immediate that v is a bijection. It remains to verify that ¢ is continuous and has a
continuous inverse. To see that v is continuous, note that ¢, — ¢ if and only if there exists
N such that t,, and t are defined on the same o-algebra for all n > N. Continuity of ¢ then
follows from the continuity of 1., g, and g, 11, .... Also, from the constructions for the
various cases in the proof of Theorem [3.7] it is immediate that 1) has an inverse; denote this
inverse by ¢!, Again, from the topology on P(S x T), it follows that a sequence {ju} in
P(S xT) converges to p € P(S xT) if and only if p,, and p are defined on the same o-algebra

for n sufficiently large, so that continuity of ¢~ follows from the continuity of the inverses of

¢OO7 ¢0 and 775071/117.--- Il

These results have an intuitive interpretation. The probability measures in P(S x (T)?%)
represent Ann’s beliefs about S and Bob’s type, given her own type. By Proposition [3.5]
the probability measures in Pa/(S x (T)?) are defined on a finer o-algebra than those in
Pa(S x (T)?) if A’ > A, and the measures in M(S x (T)?) have the finest o-algebra. Indeed,
if Ann’s belief is represented by a probability measure in M(S x (T)?), she can distinguish
the singletons of S and T" and can talk about her belief that Bob has a given type t € T.E On
the other hand, if her belief is represented by a probability measure in Pa(S x (T)?), she can
distinguish the singletons of S, but she cannot talk about the singletons of 7' (Lemma .
Rather, the subsets of T" she can speak of are sets of the form ngfTX)ZT o¢o(my,) ! (B), where
B € #A(Ya). That is, Ann can reason about the event that Bob’s beliefs about Ya_; are

given by a particular probability measure, but she cannot distinguish between types for Bob

UNote that B(SxT) = #(S)2%(T) (Aliprantis and Border, 2005, Thm. 4.44), and S and T are Hausdorff.
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that coincide in their beliefs up to Ya_; but differ in their beliefs at higher levels—those are
levels she cannot reason about. Finally, vg, (1) is of course defined on the coarsest possible
o-algebra: {S x (T)7,0} C Z) for all A. If Ann’s beliefs are represented by vgy (72, she

cannot speak of the space of uncertainty or Bob’s type at all.

3.5 Reasoning about others’ reasoning abilities

A notable feature of the current model is that players may differ in their reasoning abilities,
and that, additionally, they may reason about each others’ depth of reasoning. Here I take up
the question what players can believe about each others’ level of sophistication. Specifically,
I ask whether a player of a certain depth can reason about the depth of others, i.e., whether
the set of states in which her opponent has a given depth is an event, given her own depth.

Recall that each type to, € Ty corresponds to a belief po, € M(S xT), and each tan € Ta
corresponds to a belief un € Pa(S x T). First consider the type t., associated with an
infinite belief hierarchy. Such a type can discriminate all the singletons of T, and since T}, T
(A=0,1,...),and {vy } are all closed subsets of T', these sets are all Borel-measurable, so that
type ts can assign probabilities to each individual type, as well as to the sets Ti, T, T4, . . .,
and {vy}. On the other hand, a player of type vy obviously cannot assign probabilities to
any proper subset of T'.

What about players with a type ta € Ta? If A =0, a player with a type tao cannot think
about another player’s beliefs, even at the first level, so there is no proper subset of T" to
which a player with such a type can assign a probability. How about A > 17 It is not hard
to verify that the singleton {vy} is measurable for any such type, so that a player of type
ta for A > 1 can assign a probability to the other player having trivial beliefs. Is the set T}
measurable for t5? First suppose that £k < A — 1, and define

E), = {yA EYa:ms ey (UB) € Xj_oM(Yy) and wA_, it (v (U2 € xf,;l/\/tk(yg)} .

£=0 l=k+1

Since xy2, M*(Y,) and x2, M (Yy) are closed in x;2 M™(Yy), it follows from the con-
tinuity of W}X/?ﬁnl(/‘/“m))j that B, € ZA(Ya). Furthermore, ijf)g’xT oo (my) N Ey) = T
Hence, a player of type ta can assign a probability to the event that her opponent has a type
in T}, for any kK < A — 1. Of course, this implies directly that she can assign a probability to
the event that her opponent has depth at least A — 1F_7]

But can she assign a probability to the event that her opponent has depth A — 1, or a

depth equal to k for any k > A —17 The answer is no; the reason is intuitive: a player cannot

12Tt can also be checked that the singletons in 7}, are measurable for a player with a type in Ta if and only
ithk<A-1.
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distinguish among types of depth at least A — 1. That is, for a player to be able to assign a
probability to some T} for k& > A — 1, she has to be able to “talk” about her beliefs about
YA, ...,k + 1-but she cannot. In other words, if a player with a type in T assigns positive
probability to the other player having a type in Th_1, then she cannot rule out that he has a
type in T}, for any £k > A — 1 or in T.: just as she does not “realize” that she cannot reason
beyond Ya_1, she cannot “think” about the question whether her opponent reasons beyond
Ya_1. This seems natural: When you believe that your opponent is less sophisticated than
you are, then you can have a clear idea of the reasoning patterns he might employ. On the
other hand, when you believe that someone is at least as sophisticated as you are, you cannot
imagine how he might reason.

These results can be related to the literature on cognitive hierarchies and k-level reasoning
discussed in Section[I] In these literatures, players are endowed with a cognitive type, and they
believe that others are less sophisticated than they are. Of course, the current framework
does not require in any sense that a player assigns probability zero to other players being
more sophisticated than she is: a player with a finite hierarchy simply does not “reason”
about beliefs at sufficiently high order. However, it is possible that a player with a type in Ta
assigns probability 0 to her opponent having depth A — 1 or higher. In that sense, the current
model, though entirely different in nature, is in line with models of cognitive hierarchies and
k-level reasoning. Of course, the issue what players believe about others’ reasoning abilities is
also important when one considers an epistemic condition such as rationality and mth-order

belief of rationality.

4 Belief and Confidence

In the standard framework, a player with a given type believes an event if she assigns
probability 1 to it. In the current model, this notion needs to be amended, since types may
have different o-algebras, so that a subset that is an event for one type may not be an event
for another. Also, it may be natural to consider other notions of beliefs, especially when
considering higher-order “beliefs”. Here I discuss two notions of “belief” for the current
model, the first one arguably closest to the standard notion (and thus referred to as belief),
the other one different from the standard notion in that it allows players to “believe” subsets
that they cannot “talk” about (i.e., that are not in their g-algebra). This notion is called

confidence.
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4.1 Belief

Let 1 = 1,2, and let j # 4. For E € B(S x (T)7), let
BYE):={t'eT:E¢c%(t) and ¥(t")(E) = 1},

where Y(t') is the o-algebra of ¢(t"). That is, B'(E) is the set of types of i that can “talk”
about F and that assign probability 1 to E. If ' € B(E), say that ' belicves E. Since in
the standard setting, all types have the same o-algebra in S x T', and belief is only defined
for events in that o-algebra, this definition seems to be the direct extension of the standard
notion of belief.

As a simple application of this notion, define U} := T, and for k= 1,2,.. ., let
Ui = Bi(S x UT_,).

Then, U := (,—, Uk is the set of types that represent infinite hierarchies and assign probability
1 to the other player having an infinite belief hierarchy and assigning probability 1 to the other
player having and infinite belief hierarchy and assigning probability 1 to.... That is, at a
state (s',t!,s%,¢%) € S x U x S x U, there is full sophistication and common belief of full
sophistication. Let Th;z be the universal type space of [Mertens and Zamir| (1985) generated

from a compact metric space S. The following result is immediate:
Proposition 4.1 There exists a homeomorphism n : Tz — U.

That is, there is no homeomorphism from T)z to T, (it is easy to verify that U is a
strict subset of T, ). In the setting of Mertens and Zamir} players not only have infinite belief
hierarchies, they also believe that others have infinite hierarchies, that others believe that their
opponents have infinite hierarchies, and so on: The universal type space of Mertens and Zamir
and any subset thereof satisfy full sophistication and common belief of full sophistication.

An open question is what the conditions are on an event (subset of S x T" or Y') such that
there can be common belief in that event if players have finite hierarchies. Also, it is unclear
what the belief-closed subsets of T" are (Battigalli and Siniscalchi, [1999); see the discussion in
Section [5.3]

4.2 Confidence

The notion of belief, as defined in the previous subsection, may be fairly restrictive when
one is interested in higher-order “belief” in the current setting. If players only have a limited
depth of reasoning, it seems that there cannot be higher-order belief, while it may be natural to

assume that if a player cannot “reason” about higher orders, he “trusts” that what he believes
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at lower levels will hold at higher levels as well. This motivates the following definition: for
i=1,2and F € B(S xT), let

BU(E):={t'eT:E ¢X(t) or y(t")(F) = 1}.

If t' € Bi(E), we say that t' is confident that E. When Ann is confident that E, then either
she believes F, or she cannot “talk” about F.

As an application, suppose S = S! x S2, where S° is the set of actions of player i, and
suppose each player ¢ is endowed with a utility function u; : S — R. Say that an action-type
pair (s',t) € S x T'\ {vy} is rational if s* maximizes u; given margg; ¥ (t'). Let RY be the

set of rational action type pairs of player i, and for kK = 2,3, ..., define
R= Ry N [S X Bi(Rifl)L

where j # i, and let Ry := R} x R2. Note that R}, is not the set of states at which there is
rationality and kth order belief of rationality (Tan and Werlang, |1988). Then R := (), Ry is
the set of states (action-type pairs for each player) such that there is rationality and common
confidence in rationality. It seems possible to establish a relation between strategy profiles
that are iteratively undominated and states with finite hierarchies at which there is rationality
and common confidence in rationality, much in the spirit of earlier results for rationality and

common belief of rationality.

5 Discussion

5.1 Knowing that you don’t know

In the current framework, a player may simply stop reasoning at a certain level, also about
her own beliefs. As suggested in Section [2 there is an alternative modeling approach: one
could also assume that a player knows that she does not know, and knows that she knows
that she does not know, and so onFE] Technically, if Ann has depth A, her belief about YA,
assigns probability 1 to the event that her belief about YA is defined on the Borel g-algebra
PB(Ya), her belief about Ya o assigns probability 1 to the event that her beliefs about Ya 1
are defined on a coarser o-algebra than #(Ya 1) (she cannot reason about Bob’s beliefs about
Ya+1), and so on. This second approach seems to be the extension of the standard assumption
that a player knows her own lower-order beliefs. How would that work out in a context where
players are allowed to have finite belief hierarchies and may be uncertain about others’ depth

of reasoning, formally and conceptually?

13See [Fagin et al.| (1991) for a related approach in the context of knowledge structures.
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Formally, the key issue is to replace the collection M (Yy), k > A, of probability measures
on (Y, {(w}fg )"YB) : B € #(Ya)}) by a collection of probability measures defined on a
finer o-algebra. Roughly speaking, it is possible to replace (2) in the definition (3.1)) of Y}
by its unconditional version, denoted (2’), and inductively define Na(Y%) for & > A to be
the collection of probability measures on Y, endowed with the o-algebra generated by the

collections of sets
{(my*)"(B): B € B(Ya)}

and
{{ykz S Y;c . ﬂ-zj\cf(ykil))i(yk) = 5}%-1} D k-1 € NA(}/’C—l)} )

where NV (Y)_1) is defined in a similar way as M™(Y;_1), but with (2) in replaced by
(27), and the collection M (Yx_1) of probability measures in (3.2)) replaced by the collection
NAa(Yj_1) defined on the finer o-algebra.

What are the conceptual implications? It seems that this alternative approach models a
situation where a player simply stops reasoning about the other players at a certain level,
but is fully “aware” of her own limitations in reasoning about the other player. Indeed, even
when a player has a finite hierarchy, she assigns positive probability to her true beliefs at all
levels, just like a player with an infinite belief hierarchy. Arguably, this alternative framework
is perhaps not so much a model of limited reasoning ability—a player can reason about her
own beliefs at all orders—, but may be more suitable for situations where players can “think”
or “reason” about certain things, but may be unable to formulate a clear opinion about them,
much in the spirit of ambiguity (though to model ambiguity, it would make sense to allow
for further refinements of the J—algebras).ﬁ Finally, note that this alternative model does
seem to be closer to the models employed in the literature on cognitive hierarchies and k-step

reasoning, where a player’s cognitive type is private information.

5.2 Top-down construction

The current construction is a bottom-up one: we start with a common space of uncertainty;,
and explicitly delineate which higher-order beliefs are allowed (cf. Mertens and Zamir}, [1985)).
Could we have used a top-down approach, as in Brandenburger and Dekel (1993)7 Under
such a construction, first all possible belief hierarchies are constructed, also belief hierarchies
that are not coherent. One then discards all belief hierarchies that are not coherent, or assign

positive probability to belief hierarchies that are not coherent, or assign positive probability to

141n this context, it is interesting to note that there is some connection between multiple-prior models which
are commonly applied to model ambiguity in beliefs, and models in which there are various restrictions on
the o-algebras (Halpern) 2003, Thm. 2.3.3).

26



belief hierarchies that are not coherent, and so on. Somewhat surprisingly, a direct analogue
of the top-down approach does not work for the current setting. The reason is that the
coherency requirement (cf. condition (1) in (3.1))) plays a dual role here: The coherency
condition does not only ensure that a given event is given the same probability at different
levels (as in Brandenburger and Dekel (1993))), but also that the o-algebras match across levels.
This means that any analogue of the “coherency and common belief of coherency”-condition
of Brandenburger and Dekel will have to reflect these two aspects of coherency: At the
outset, a wide range of o-algebras should be thought possible by the players, which can then
be successively trimmed at different stages of the iterative procedure, as in |Brandenburger
and Dekel (1993, p. 193). However, apart from the difficulty of defining (and finding an
appropriate topology for) such a huge space of beliefs at each level, a player’s belief now
needs to refer to his opponent’s possible set of o-algebras, depending on his own o-algebra.
This seems to be a very difficult problem, suggesting that there is no gain from going to a

top-down approach in the current setting.

5.3 Harsanyi type spaces

In Section 3] the point of departure was a common space of uncertainty. Via the construc-
tion of belief hierarchies, this gave rise to a universal belief space Y and a type space T. It
was shown that each type corresponds to a belief about the other player’s type and the basic
space of uncertainty S. Alternatively, one may want to start with some set 7 for each player
and associate with each element of 7 a belief about S and 77, j # i, in the vein of Harsanyi
(1967-1968).

In the standard setting, any Harsanyi-type space can be embedded in the universal type
space as a belief-closed subset (Mertens and Zamir, 1985; Battigalli and Siniscalchi, 1999).
It is not obvious that the Harsanyi-approach can be extended to the current setting, and
whether each such set 7¢ can be embedded in the type space T. Remember that players
with limited reasoning abilities (i.e., those with a type in T for some A < oo or with type
vy ) do not rule out a large class of belief hierarchies of their opponents, simply because they
do not reason about certain higher orders. When working with the universal beliefs space
Y, this class of belief hierarchies is indeed very large. Now consider a set 7° that includes
the trivial type vy. Then it seems that the only belief-closed subset that includes 7°¢ is the
universal space T'! This suggests that not all sets 7¢ can be embedded as belief-closed subsets
in T'. Alternatively, one could require that players do not “rule out” belief hierarchies that
are somehow consistent with the types in 71, 72, but do rule out other hierarchies. However,

this seems to amount to assuming that the sets 7° are common belief, which was just asserted

27



to be problematic when players only reason through a finite number of steps.[T_SI

In addition its intrinsic interest and to the insights it provides to the current construction,
investigating the possibilities of working with |Harsanyi-like type spaces in the current setting
would also be worthwhile because it would force us to model explicitly what it means for
a player to stop reasoning at some level. In the construction in Section [3| this was done
through the definition of M™(Y}). Generating belief hierarchies from type spaces may yield
complementary insights. Also, if we know what the belief-closed subsets of T are, it may
be possible to investigate more deeply what the implications are of allowing for uncertainty

about the other players’ cognitive depth.

5.4 State space models

It is well known that standard type space models can be directly related to models in
propositional modal logic (Fagin et al., [1995; |Aumann, 1999a/b). It is not clear what the
connection is when belief hierarchies are allowed to be finite and when there can be uncertainty
about other players’ depth of reasoning. In the present setting, a type still captures everything
what a player beliefs about the space of basic uncertainty and about the others’ (higher-order)
beliefs, but belief now has two dimensions: belief refers to what a player deems possible, and
at the same time entails a restriction on a player’s language, and these two aspects cannot
be separated. Therefore, to gain a better insight into these issues, it would be worthwhile to
try to construct a state space model starting from the universal beliefs space.

It may be possible to relate the current framework to a modal logic that allows for un-
awareness and reasoning about knowledge of unawareness (Halpern and Rego, 2009). The
type of unawareness in the current model is qualitatively different from the types of unaware-
ness considered previously in the economics literature. In particular, unlike in the models
considered in that literature, awareness is not generated by primitive propositions; rather,
unawareness in the current framework concerns the modal operators. Indeed, a key feature
of the current approach is that a player may think it possible that another player is as least
as sophisticated as she is, something which cannot be captured if awareness is generated by

primitive propositions (Halpern) 2001)).

15Note though that common belief can arise in various ways: for instance through an iterative process,
co-presence, or via the observation of some public event (e.g. Lewis, |1969; (Clark and Marshall, [1978; |Barwisel
1988)). The second avenue for obtaining common belief does not seem to depend on players’ reasoning abilities.

However, it is hard to see how there can be common belief in 7%, i = 1,2, in that way.
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6 Conclusions

Two major questions are left unanswered in the current work; in fact, they are not even
touched upon explicitly. The first is how various forms of evidence on perception and reasoning
processes should be translated into game-theoretic models and epistemic conditions. The
focus of the current work is a very basic idea: Individuals do not always reason about all
they can reason about; that is, logical omniscience fails in a very particular way. The game-
theoretic literature on unawareness considers settings where individuals may not be aware
of all possible courses of action (e.g., Heifetz et al., |2006; Feinberg, 2009)@ Both seem
plausible assumptions, but so far they are not well-founded in direct cognitive evidence.E]
Also, it may be worthwhile to consider other aspects of individuals’ mental models of strategic
situations. For instance, individuals may have very different representations of a “game” than
the modeler, and this is likely to affect the way they reason about the gameEg]

A second question is how one could derive plausible (epistemic) conditions from stylized
models of reasoning processes, which can then be used to motivate solution concepts, i.e.,
testable predictions of behavior. While solution concepts have been developed for the case
where individuals may not be aware of certain moves or the existence of some players (e.g.,
Heifetz et al., 2006} Feinberg, 2009)), and standard solution concepts have been adapted in
the literature on cognitive hierarchies and k-level reasoning (where players are certain that
other players are less sophisticated than they are (e.g., Camerer et al., 2004; Costa-Gomes
and Crawford, 2006))), the question is wide open for the current setting. The experimental
literature has provided some evidence on behavior and higher-order beliefs. The hope is
that this can be used as an inspiration for future research, which then can inspire novel

experiments.

Appendix A Proof of Proposition 3.1

To prove that Y}, is compact metric (and thus Polish), I first show that M™*(Y},) is compact

metric, provided that Y} is compact metric.

16Fagin and Halpern| (1988) and [Halpern and Rego (2009)) provide a more general model of unawareness
that may be able to capture the idea of limited depth of reasoning to some extent, but they do not explore

the consequences of this type of unawareness.
1"While the literature on Theory of Mind does address the question to what extent humans are capable of

taking the perspective of another player, there seems to be little work on “higher-order” perspective taking.
See Hedden and Zhang] (2002) for an experimental study of the effect of limited depth of reasoning on behavior

in games from a Theory-of-Mind perspective.
18The literature on unawareness cited above addresses this question to a certain extent, but only allows for

a limited set of representations.
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Lemma A.1 For each k, if Y} is compact metric, M*(Yy) is compact metric.

Proof. Fix k =0,1,... and suppose Y} is compact metric. Then M(Y}) is compact metric
in the topology 7 induced by the Prohorov metric p;. Define p; : M (Y;) x M (V}) — R
by:

pr (s 1) if 1, 1 € M(YV3),
Yk)—l /o (ﬂ_Yk)—l) lqu/ ILL, c M (Y)
V,IGM+Y . + ’/: pé(,uo(ﬂYg y W Y, , o YE),
oy (Y) pr. (1 1) = = vy,
otherwise,

where we note that o (7‘(’1}%)_1 e M(Yy) if u € My(Yy). Tt can be verified that p; is a metric;
denote the induced topology on M™*(Y},) by 7,7 Notice that the topology on M (Y}) induced
by 7, is just 7.

Clearly {vy, } is a compact subset of (M (Y}), 7). Also, using the identity mapping from
M(Y}) to MT(Y), one can show that M(Y;) is a compact subset of (M™T(Y), 7%). If we
show that M,(Y%) is a compact subset of (M™T(Y}), 7") for every £ =0, ..., k, it thus follows
that M™(Y}) is compact, because a finite union of compact sets is compact.

To show that M,(Y},) is a compact subset of (M™T(Y}), 7,7) for a given ¢, define the function
fF M(Y) — M (V%) by

Ve € M(Ye) : [y (pe) = pun,

where . is the unique probability measure in M,(Y;) C M™(Y}) that satisfies

e () 7(B)) = el B)

for every B € %(Y,). It can be verified that fF(M(Y;)) = M,(Y:). Since (M(Y7), )
is compact, and because continuous functions carry compact sets into compact sets, it is
sufficient to show that fF is continuous. Because the open balls form a basis for (M™(Y), 7;1),

f¥ is continuous if for all r € MT(Y},) and € > 0,

Fi(re) == (f1)" ({y e MY (Y2) : pf(r,y) < e})

is open in (M(Y;), 7). Fix r € M*(Y}) and € > 0. Suppose ¢ > 2. Then it is immediate
that Fy(r,e) = M(Y}). So suppose € < 2. If r & M,(Xy), it is easy to see that Fi(r,e) = 0.
Ifre M{(Yk),

Fi(re) ={y € M(Yo) : pu(r,y) < e}
Hence, Fy(r,e) is open in (M(Yy, ) for all r € M™*(Y;) and € > 0, and it follows that

(M*(Yy), 7,") is compact. Since the space (M™(Y}),7;") is metrizable and compact, it is
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complete and totally bounded (e.g., |Aliprantis and Border, 2005, Thm. 3.28), and thus sep-
arable (e.g., Aliprantis and Border, 2005, Lemma 3.26). Hence, (M™(Yp),7;") is compact
Polish. Il

I now prove that Y} is compact metric for all k. The space Y, is compact metric by
assumption, so that M™(Yp) is compact metric by Lemma . Since the product of compact
metric spaces is compact metric, Y] is compact metric.

Let k = 2,3,..., and suppose that Y, ; is compact metric (so that by Lemma ,
MT(Yy_1) is compact metric). T first show that Y; is compact. Because closed subsets of
compact spaces are compact (in the relative topology), it is sufficient to show that Y} is a
closed subset of Vi1 X M (Y1) x M*(Y;_1). Define

Qe = {u € Vi X ME(Yioy) x MF(Ye) : for i = 1.2,
Z Yi_1\—1 Yi— Z
(W(fxtﬂyk_l))i(yk)) © (WY:Q) = W(Li(Yk_z))i (WYkkfl(yk))}’
Ry = {yk € Vit X M (Yiey) X MT(Yy) « fori=1,2,

if W(ZJ\IQ/[Jr(Yk_l)i)(yk) c M(Yk_l), then

Zy Yi_1 -1 -5
71-(/\/H'(ch—l))i<yk> N\ MF (Yi_2))i =0 Yp z ,

"M (g (¥ (6

Up = {yk € Vit X M (Yiey) X MT(Yiy) « fori=1,2,

o Vi .
if 70 vy (e, (k) € Me(Yis), then

W(Z/a+(yk_l))i(yk) S MZ(Yk—l)}7
where Zj := Y1 X MT (Y1) x MT(Yy_1). If we show that Q, Ry and Uy are closed, we
are done, since Y, = Q, N R, N U,.
Consider a sequence {g} }nen in Q) that converges to g, € Yip—1 X MT (Y1) X MT(Yi_1).

I show that ¢x € Qy, so that Qy is closed. Since Yj_1 x MT(Y;_1) x M*(Y)_1) is endowed
with the product topology, for i = 1,2,

(W(Zj“4+(yk,l))i(q;?)) © (”i::;)il - (W(Z./(€4+(Yk71))i(q/€)) o (”5::;)71

and

Yi_ Z, n Y- Z
Tt vy (M (6)) = 7t vy (T (ar)

Since g € @y, for all ¢,
Z Yi_1\—1 Yi._ Z
(”(fw(yk_l))i(%)) © (WY;Z;) = W(Ak/ti(yk_z))i (”Y:q(q’v))
SO i € Q.
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Next, let {7} }nen be a sequence in Ry, that converges to 1, € Vi1 X MT (Y1) X M (Y_1).
Since 7 — ry, for n sufficiently large, either v, 7, € M(Yy), 72,1 € My, (Yy) for some m,
or r} =ry = vx,. In the latter two cases, R = Yy_1 x MT (Y1) x M*(Y;_1), and we are

done. So suppose i, rp € M(Yy). Clearly,

n Y1 -1 Zy, Yi-1 -1
Tt ey T0) 0 (Tvr vyt ) Tider iy T8) © (vt vy

Also,

0 Y z — 0 v, z
- k k—1 &
7T(M+(Yk72))i(7ryk_1 (r) W(M+(Yk72))i (ﬂyk_l (rr))

under the Prohorov metric if and only if

W&i(ykd))i(ﬂxsz_l(rg)) - W&i(m))i(ﬂgﬂl(m))-

But this is immediate from the continuity of the projection operators, so that Ry is closed.

Finally, consider a sequence {uf},en in uy that converges to u, € Yi_1 x M1 (Y1) X
MT(Yy—1). Again, for n sufficiently large, either u}, uy € M(Y%), u}l = up = vx,, or u}, ux €
M., (V) for some m. In the first two cases, Uy = Y1 X MT(Y;_1) x MT (Y1), and we
are done. If u},up € M,,(Yy), u} — uy implies W(Zfﬁ(yk_l))i(“@ — W(Z/fﬁ(yk_l))i(“k)v so that
uy € Ug.

It follows that Y} is compact. Hence, by Lemma , M (Y},) is compact metric. To see
that Y}, is nonempty for £ = 0,1, ..., let yy := s for some s € S, and for k > 1, set y; := vy,.
Then yi, € Qr N R N Uy for all k, so that Y, is nonempty.

Appendix B Proof of Lemma [3.6

Let A =0,1,..., and let G(Ya) be the collection of open sets in Y. Recall that the open

sets generate the Borel o-algebra. If we show that

SxTxT -1 .
{WSxxfgol(MJr(yg))j opo(my,) (B):Be€ g(YA)}

generates the o-algebra
-1
{Wgzzg&wﬂmw °¢o(my) (B):Be ‘%YA)} ’
and that
. S -1 .
{GCS:G open} C {Wszjgl iy 090 (1) (G) G € Q(YA)} C B(S),

then we are done (e.g., Billingsley| 1995, Ex. 2.5).
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The first claim follows directly from Lemma 4.23 of |Aliprantis and Border| (2005):

? <{W§:z§:€1(ﬂ4+m>w oo (ry,) (G):Ge g(m)}) —
{ngzg}(/vﬁ(n))d ogo (WYA)_l(B) :B € %(YA)} ,

where o(C) for a nonempty collection C of subsets denotes the o-algebra generated by C.

Turning to the second claim, I now show that

X1 X -1 .
{GCS:Gopen} C {ngfgww))j oo (ry,) (G):Ge Q(YA)} .

Let G be an open set in S x x27! (M (¥;))?. Then, by continuity of W?iig;};l(MJF(n))f’ the set

SxTxT —1 . . . . . .
. xTxT.
(e 510ty ))J) (G)isopenin S xT xT. Also, since the inverse ;)f Ta };omeomorphlsm is a
XX

homeomorphism, and homeomorphisms are open mappings, ¢~ *((7 Sxx AL (AL (Y))j)*l(G)) is
(=0 £
open in Y. Finally, since projections are open mappings, 7ryA(qS’l((Wg:zﬁa(MﬂY[))j)’l(G)))
£=0
is open in Y, and thus belongs to #(Ya). Hence,

Ge {WSXTXT sy © @0 (1) (B B e Q(YA)} .

A-1
SXXypo

It remains to show that

{WSXTXT oo (m,) (@) :Ge Q(YA)} C B(S).

Sxx g (MF ()

That is, we need to show that, given an open set G in Ya, there exists B € Z(S) such that
SXTxT

Sxxé;%AA*
SXTxT
Sxxﬁ;l

T Wy © ¢o (WYA)_I(GA) = B. By similar reasoning as above, it follows that the

-1 : : .
set Mt © ¢o(my,) (Ga)isopenin S, so that it is an element of Z(S).
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