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1 Introduction

Common knowledge is a very central component of game theory. The concept of common knowl-

edge was formalized by Aumann (1976) who shows in his seminal paper that if two people have

the same prior beliefs, and their posteriors for an event are common knowledge, then they nec-

essarily agree on their posteriors beliefs. Many well-known results rely on common knowledge

of some elements of the game, e.g., common knowledge of rationality leads to correlated equi-

librium (Aumann, 1987; Brandenburger and Dekel, 1987), common knowledge of everybody’s

willingness to participate in a trade plan precludes trading (Milgrom and Stokey, 1982), common

knowledge of rationality and the opponents’ conjectures about everybody’s strategy in a normal

form game suffices for Nash equilibrium (Aumann and Brandenburger, 1995).

In most cases common knowledge was a priori taken for granted. Geanakoplos and Pole-

marchakis (1982) were the first ones to study how common knowledge emerges in a dynamic

environment where individuals start with asymmetric information. They show that if two indi-

viduals communicate their probabilistic beliefs back and forth, they will eventually agree on a –

commonly known – probability assessment. Their setting has been the stepping stone for further

development of models of communication in populations with Bayesian agents. The main aim

of this literature is to study the conditions for reaching a consensus in groups of people through

different communication mechanisms.

All the previous models assume that communication takes place through public announce-

ment of the signals, which is quite restrictive. Parikh and Krasucki (1990) relax this assumption

by introducing a model of pairwise private communication: They show that under some con-

nectedness assumption (roughly, everybody talks to everybody either directly or via others) on

the structure of the communication protocol, a consensus will be reached. A number of subse-

quent papers study the possibility of agreeing in environments with pairwise communication,

under different assumptions about the signal functions, the protocol structure and information

structure (Krasucki, 1996; Heifetz, 1996; Koessler, 2001; Houy and Menager, 2008).

A usual assumption in the existing literature – and very crucial for the results – is that the

structure of the communication protocol is commonly known, i.e., everybody knows who talks to

whom at every period, everybody knows that everybody knows this, and so on. In this paper we

relax this assumption by introducing uncertainty about conversations that took place between

third parties. Consider for instance the following example. Three individuals – Ann, Bob and

Carol – privately talk about the probability they assign to some event. Communication takes

place as follows: Ann talks to Bob, who talks to Carol, who talks back to Bob, who talks to Ann,

and so on. If this structure is commonly known, the three individuals will eventually agree on a
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common assessment (Krasucki, 1996). However, it is not straightforward whether this would still

be the case if Carol did not know whether Ann had already talked to Bob in the first period or

not.

First, notice that in order to address the previous question we need to formally model interac-

tive knowledge about the protocol. The existing models do not serve this purpose, as the structure

of the protocol is not formally an event of the state space, and therefore we cannot formally refer

to knowledge or common knowledge about it. Hence, our first step is to incorporate the struc-

ture of the protocol into every state. This process induces a generalized state space which allows

us to express the structure of a protocol as an event, and therefore knowledge of the protocol is

well-defined.

Then, we provide an example which illustrates that a consensus may not be reached, even if

we impose very stringent restrictions on the structure of the possible protocols and the nature of

the transmitted signals. Namely, in our example, the individuals fail to agree, even though it is

common knowledge from the beginning and throughout the entire process that communication

satisfies information exchange1, which is a very strong requirement (Krasucki, 1996). Further-

more, even though we do not assume a commonly known protocol, the corresponding graph2

is: This is quite surprising as all existing results on consensus provide sufficient conditions on

the structure of the graph, after having implicitly assumed that the protocol inducing this graph

is commonly known. It turns out that this implicit assumption is rather crucial: As we show,

common knowledge of the graph may not suffice for reaching an agreement in the absence of

common knowledge of the protocol that induces this graph.

Finally, in our example it is not the nature of the signals that drives the result. Parikh and Kra-

sucki (1990) introduce the notion of convex3 signals. They show that if the transmitted signals fail

to satisfy the convexity requirement a consensus may not be reached. However, in our example

the failure to reach an agreement does not rely on the lack of convexity, as we assume convex

signals.

Our main (negative) result provides an alternative explanation why people often fail to agree.

The usual justification until now, for such a failure, has been that the individuals may have dif-

1A protocol satisfies information exchange whenever, i talks to j if and only if j talks to i.
2Every protocol induces a graph summarizing how information is transmitted: Each individual corresponds to a

vertex, and there is a directed edge from i to j if i talks to j infinitely often.
3A signal function f maps every conditioning event E ⊆ Ω to a real-valued signal. We say that the signal function

is convex whenever there is some α ∈ [0, 1] such that f (E1 ∪ E2) = α f (E1) + (1 − α) f (E2) for non-empty disjoint

observations E1, E2 ⊆ Ω. That is, the signal transmitted by i after having observed E1 ∪ E2 lays between the signals

the same individual would have transmitted after having observed E1, or E2.
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ferent prior beliefs. However, as we show even little asymmetric information on the structure of

the protocol may be very significant for reaching an agreement.

The paper is organized as follows: Section 2 introduces the (standard) notation and terminol-

ogy used throughout the paper. Section 3 generalizes the state space by incorporating the protocol

structure into the states. The main result is presented in Section 4, while Section 5 concludes.

2 Notation and preliminaries

2.1 Information and knowledge

Consider a finite state space Ω and a finite population N = {1, ..., n}. Every state ω ∈ Ω is a

complete description of all the relevant characteristics of the environment, i.e., it determines all

the natural facts that occur at every instance.

Every individual i ∈ N is endowed with an information partition Pi of Ω, with Pi(ω) being

the element of the information partition that contains ω ∈ Ω: It is the set of states that i cannot

distinguish from ω.

We define knowledge as usual: i knows a natural event E ⊆ Ω at some state ω whenever

Pi(ω) ⊆ E. An event E ⊆ Ω is common knowledge at ω, whenever everybody knows it, every-

body knows that everybody knows it, and so on. Aumann (1976) showed that E is commonly

known if and only if (P1 ∧ · · · ∧ Pn)(ω) ⊆ E, where P1 ∧ · · · ∧ Pn denotes the finest common

coarsening of the partitions and (P1 ∧ · · · ∧ Pn)(ω) is its element that contains ω.

2.2 Signals and consensus

Let A be a non-empty set of signals, which contains the values of some parameter, e.g., the sub-

jective probability assessments assigned to some event. A signal (action) function fi : Ω → A

determines the signal that agent i transmits at every ω ∈ Ω. We assume that i’s signal is Pi-

measurable implying that i knows her own signal, i.e., fi(ω′) = fi(ω) for every ω ∈ Ω and every

ω′ ∈ Pi(ω). A consensus has been reached at some state ω if all individuals transmit the same

signal at ω, i.e., if there is some a ∈ A such that fi(ω) = a for all i ∈ N.

Agents in the population are like-minded if there is a function f : 2Ω → A, called the virtual

signal function, such that fi(ω) = f (Pi(ω)) for every i ∈ N and ω ∈ Ω. Throughout the paper,

we assume that the agents are like-minded.

The function f satisfies union consistency4 (Cave, 1983) if for all non-empty, disjoint E1, E2 ⊆
4Bacharach (1985) used the term sure-thing principle for the same property.
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Ω with f (E1) = f (E2), it holds that f (E1 ∪ E2) = f (E1). Henceforth, unless stated otherwise, we

assume without loss of generality that f is real-valued.

2.3 Communication protocols

Suppose that every individual i ∈ N starts with a prior information partition P0
i over Ω, which is

transparent among the individuals in N. The information partition of agent i ∈ N at time t ∈ N

is denoted by Pt
i . At every time t = 0, 1, . . ., a conversation between two individuals may take

place: When i talks to j at t, we say that i is the sender and j the receiver, and we write st = i and

rt = j. In this case, j updates her information by refining her partition Pt
j to Pt+1

j .

Updating is carried out in the standard way: Let Vt
i denote i’s working partition of Ω at time t

(Krasucki, 1996; Heifetz, 1996), with Vt
i (ω) being the signal equivalence class that contains ω, i.e.,

Vt
i (ω) := {ω′ ∈ Ω : f t

i (ω′) = f t
i (ω)},

where f t
i (ω) := f (Pt

i (ω)) is the signal transmitted by i at ω. Then j refines her partition in the

following standard way (Parikh and Krasucki, 1990; Krasucki, 1996; Heifetz, 1996): For all ω ∈ Ω,

Pt+1
j (ω) =

 Pt
j (ω) if j 6= rt,

Pt
j (ω) ∩Vt

i (ω) if j = rt, where i = st.
(1)

That is, the receiver rules out all states which are not consistent with the sender’s signal, i.e., the

receiver conditions5 with respect to the signal she would hear at every state.

The sequence of senders and receivers {(st, rt)}∞
t=0 is called a protocol and determines who

talks6 to whom at every time. The protocol induces a graph on N: There is a directed edge from i

to j, if i talks to j infinitely often, i.e., if there are infinitely many t with (st, rt) = (i, j).

Parikh and Krasucki (1990) called a protocol fair if the graph of directed edges is strongly

connected, i.e., if there is a path of directed edges which starts from some individual, passes from

all the vertexes (individuals), returning to its origin. In other words, everybody communicates

with everybody directly or indirectly.

5An equivalent way of writing the refining mechanism is the following

Pt+1
j =

 Pt
j if j 6= rt,

Pt
j ∨Vt

i if j = rt, where i = st,

where the operator ∨ denotes the coarsest common refinement (join) of the two partitions (Krasucki, 1996; Heifetz,

1996).
6We adopt the following notational convention: st = rt corresponds to “nobody talking to anybody at time t”.
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A protocol satisfies information exchange if, for all distinct i, j ∈ N with a directed edge from

i to j, there is a directed edge from j to i, i.e., i talks to j infinitely often if and only if j talks back to

i infinitely often. Krasucki (1996) showed that communicating union-consistent signals through a

fair protocol which satisfies information exchange leads to a consensus.

An implicit – but crucial – assumption underlying all results in the literature, is that the proto-

col is commonly known among the individuals in N. What happens otherwise is not very clear.

We address this question in the following sections.

3 The generalized state space

In this section, we formalize the notion of knowledge of the protocol, and also study the implica-

tions of relaxing the assumption about common knowledge of the protocol.

3.1 An example

This example illustrates how the receiver interprets a signal in the existence of asymmetric infor-

mation about the protocol, and how she consequently updates her information upon hearing this

signal.

Let N = {a, b, c} and consider the state space Ω = {ω1, ..., ω4}, endowed with the following

virtual signal function: For every E ⊆ Ω, let

f (E) =
1

#E ∑
ω∈E

f ({ω}), (2)

where #E denotes the cardinality of E and

f ({ω1}) = 1, f ({ω2}) = 3, f ({ω3}) = 4 and f ({ω4}) = 0.

It is straightforward to show that f is union-consistent. The prior information partitions over Ω

are

P0
a = {{ω1, ω2}2, {ω3}4, {ω4}0},

P0
b = {{ω1, ω2, ω3, ω4}2},

P0
c = {{ω1}1, {ω2, ω3, ω4}7/3}.

with the indexes denoting the signals that the individuals would transmit given the correspond-

ing cell of their information partition.

Suppose that according to the actual communication protocol a talks to b at t = 0, but c does

not know whether this conversation has occurred or not. Then c does not know whether b has
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refined her partition to P1
b = {{ω1, ω2}2, {ω3}4, {ω4}0} (after having heard a’s signal), or still

holds her prior partition (which is the case if a has not talked to b). Therefore, if c in the next

period receives signal “2” from b at ω1, she cannot rule out the states ω3 and ω4: If a did not talk

to b, then b would say “2” at every state in Ω, whereas if a talked to b, then b would say “2” at

ω1 and ω2. Since c cannot rule out any of the two possibilities, she can neither rule out any state.

Hence, c does not update her information at t = 1.

3.2 Knowledge of the protocol and the generalized state space

Let Z denote the a (finite) set of protocols, with typical element z. Let st(z) and rt(z) denote the

sender and the receiver at time t, given the protocol z. We endow Z with a partition I0
i for every

individual. For every z ∈ Z, let I0
i (z) denote the element of I0

i that contains z: It is the set of

protocols that i cannot distinguish from z before the communication begins. Knowledge of the

protocols is defined as usual: Individual i knows the event G ⊆ Z whenever I0
i (z) ⊆ G. Common

knowledge of the protocols is defined analogously.

It is intuitively straightforward that i can always distinguish between two protocols that in-

duce different communication structure at the times when she participates in the communication. For-

mally, let Si(z) := {t ∈ N : st(z) = i} and Ri(z) := {t ∈ N : rt(z) = i} denote the times when

i acts as a sender and as a receiver respectively, given the protocol z. The following condition is

assumed throughout the paper.

Assumption 1. For all i ∈ N and z, z′ ∈ Z: if z′ ∈ I0
i (z), then (st(z′), rt(z′)) = (st(z), rt(z)) for

every t ∈ Si(z) ∪ Ri(z).

That is, each individual knows (i) when she is spoken to and by whom and, (ii) when she speaks

and to whom.

Let Θ := Ω × Z be the generalized state space, each element of which fully describes all

natural facts and also determines the protocol structure. Every individual inherits a generalized

information partition Π0
i over Θ, which is derived from P0

i and I0
i , as follows:

Π0
i (ω, z) := {(ω′, z′) ∈ Θ : ω′ ∈ P0

i (ω) and z′ ∈ I0
i (z)}. (3)

The partition Π0
i obviously satisfies projΩ Π0

i (ω, z) = P0
i (ω) and projZ Π0

i (ω, z) = I0
i (z), where

proj denotes the projection of a subset of Θ on one of the coordinates: the private information

induced by Π0
i is consistent with the (prior) information induced by both P0

i and I0
i .

The following example illustrates how the generalized state space, together with the general-

ized information partitions, are constructed.
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Example 1. Recall the Example from Section 3.1: There are three individuals N = {a, b, c} and the

state space Ω = {ω1, ..., ω4}, together with the partitions

P0
a = {{ω1, ω2}, {ω3}, {ω4}},

P0
b = {{ω1, ω2, ω3, ω4}},

P0
c = {{ω1}, {ω2, ω3, ω4}}.

Consider also two possible protocols z = {z1, z2}, with z1 being the Round-Robin protocol

(a talks to b, who talks to c, who talks to a and so on), and z2 being the same protocol with the

difference that a does not talks to b at t = 0. Individuals a and b are able to distinguish between

the two protocols, as z1 and z2 differ only in conversations they participate themselves. Individual

c on the other hand, cannot distinguish between z1 and z2. Note that c’s inability to distinguish

between the two protocols is consistent with Assumption 1, as the two protocols differ only in

conversations at which c does not participate either as a sender or as a receiver. Thus,

I0
a = {{z1}, {z2}},

I0
b = {{z1}, {z2}},

I0
c = {{z1, z2}}.

The following information partitions over Θ respect P0
i and I0

i when projected to the corre-
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Π0
c

sponding coordinate, as illustrated in the following figure. /

Obviously, when the protocol is commonly known, the Z-dimension becomes irrelevant, and

therefore we are back to the standard setting, where Θ is degenerated to Ω, and Π0
i is degenerated

to P0
i .

3.3 Signals and communication in the generalized state space

When the protocol is commonly known, signals are generated by the virtual signal function, as

described in Section 2.2.
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Now, suppose that there is incomplete information about the protocol. Recall that the signal

function maps the individual’s private information over Ω to an element of A. That is, at (ω, z) the

sender st(z) transmits the signal that follows from her private information over Ω. The following

example illustrates how we generalize signals when the protocol is not commonly known.

Example 2. Recall the generalized partitions from Example 1, and let the virtual signal function

be the one defined in Equation (2), with

f ({ω1}) = 1, f ({ω2}) = 3, f ({ω3}) = 4 and f ({ω4}) = 0.

If the actual protocol is z2 – according to which a never talks to b – all (generalized) states

(ω, z2) yield the same signal ∅, which stands for “no signal”. If, on the other hand, the actual

protocol is z1 – according to which a talks to b at the first period – the (generalized) states in

{(ω1, z1), (ω2, z1)} yield signal “2”, (ω3, z1) yields “4”, and (ω4, z1) yields “0” (see the figure

below).
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Since a’s generalized partition Π0
a is transparent to everybody, b can associate every signal

with a unique generalized state, and therefore refines his generalized partition (in the usual way)

to Π1
b, as depicted below.
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In the next period, both z1 and z2 are such that b talks to c, who infers that, if the protocol is z2

– according to which a has not talked to b in the previous period – then b says “2” at all (natural)
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states, i.e., b says “2” at (ω, z2) for all ω ∈ Ω. If, on the other hand, the protocol is z1 – according

to which a has talked to b at the first period – the (generalized) states in {(ω1, z1), (ω2, z1)} yield

signal “2”, (ω3, z1) yields “4”, and (ω4, z1) yields “0”.

Since Π1
b is transparent to everybody, c refines his generalized partition (in the standard way)

to Π2
c , as depicted below.
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Now, at the third period, c talks to a according to both z1 and z2. At the generalized state

(ω2, z1), individual c has ruled out the natural states which do not occur at any generalized state

in Π2
c(ω2, z1). All other natural states may occur according to some protocol deemed as possible

by c at (ω2, z1). Thus, c rules out only ω1, and therefore says “7/3”, as depicted above. /

Formally, at each time t, agent i ∈ N has the generalized information partition Πt
i , with the

initial partition Π0
i being as defined in (3). The generalized signal function ht

i : Θ → R ∪ {∅} is

such that at every generalized state (ω, z) the value of the signal is

ht
i(ω, z) =

 ∅ if i 6= st(z),

f (projΩ Πt
i(ω, z)) if i = st(z).

(4)

That is, i does not transmit any signal at (ω, z) if she is not assigned (by the protocol z) to be the

sender at t. If, on the other hand, z assigns i to speak at time t, she sends the value that the virtual

signal function assigns to the subset of natural states that i cannot rule out at (ω, z).

Let Wt
i denote i’s generalized working partition of Θ at t, with Wt

i (ω, z) being the element of

the partition which contains (ω, z), i.e.,

Wt
i (ω, z) = {(ω′, z′) ∈ Θ : ht

i(ω′, z′) = ht
i(ω, z)} (5)

contains the generalized states that yield the same signal as (ω, z) at t.

Information refining takes place in the standard way (Parikh and Krasucki, 1990; Krasucki,

1996; Heifetz, 1996): For every (ω, z) ∈ Θ,

Πt+1
j (ω, z) =

 Πt
j(ω, z) if j 6= rt(z),

Πt
j(ω, z) ∩Wt

i (ω, z) if j = rt(z), where i = st(z).
(6)
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That is, j updates her information only at generalized states that assign her to be the receiver.

Remark 1. By Assumption 1 all individuals know at all states (i) when they are engaged in

communication, and (ii) who the sender and receiver are at such occasions. Since, by construc-

tion, the (prior) generalized partition respects the information about the protocol, it follows from

Πt+1
i (ω, z) ⊆ Πt

i(ω, z) that i keeps knowing this information. Thus, the updating mechanism is

well-defined. /

4 Failing to agree when the protocol is not commonly known

Consider a commonly known fair protocol which satisfies information exchange, and let the vir-

tual signal function satisfy union consistency. Under these assumptions, a consensus is necessar-

ily reached (Krasucki, 1996). The following result shows that this is no longer true if the protocol

is not commonly known, even if it remains common knowledge that the protocol satisfies infor-

mation exchange.

Negative result. If the protocol is not common knowledge, then a consensus may never be reached, even

if (a) agents are like-minded, (b) signals are union-consistent, and (c) it is common knowledge that the

protocol is fair and satisfies information exchange.

The following example proves the result. Let N = {a, b, c, d} and Ω = {ω1, ..., ω6}. Let the virtual

signal function be the one defined in Equation (2), with

f ({ω1}) = 2, f ({ω2}) = f ({ω6}) = 5, f ({ω3}) = f ({ω5}) = 8 and f ({ω4}) = 4.

The two protocols differ only in the conversations that take place at t = 0:

0 1 2 3 4 5 6 7 · · ·
z1 c → a a → b b → a a → c c → a a → d d → a a → b · · ·
z2 d → a a → b b → a a → c c → a a → d d → a a → b · · ·

Note that the conversations that take place at every t ≥ 1 are common knowledge, whereas what

happens at the first period is only known to a, c and d. Therefore – in line with Assumption 1 –

we assume that a, c and d can distinguish the protocols, whereas b cannot: I0
i = {{z1}, {z2}} if

i ∈ {a, c, d} and I0
b = {{z1, z2}}.

The prior generalized information partitions, together with the signals transmitted by the cor-

responding senders at t = 0, are depicted in Figure 1.
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Figure 1: Prior generalized partitions and signals

One easily verifies that after t = 6, the generalized information partitions are the ones depicted

in Figure 2, together with the corresponding signals. All the steps are presented in the Appendix.

Notice that no refinement takes place after this time, implying that a consensus is never reached

at (ω2, z2) for instance.

The remarks below stress that the lack of consensus is ultimately due to the lack of common

knowledge of the protocol, not due to violations of other conditions that are known causes for

lack of agreement.

Remark 2. The previous result may be surprising, as information exchange is a very strong re-

quirement, which always leads to consensus (Krasucki, 1996). This is the case because the parties

involved in a repeated bilateral communication, could in principle disregard all communications

in which they do not participate, and still agree with everybody they are connected. However, in

the absence of common knowledge of the protocol structure, the receiver at time t fails to ignore

the fact that the sender has already heard signals from other individuals at various t′ < t. This

is mainly because the actual signal aggregates the signals that would have been sent given every

possible protocol. Thus, the receiver cannot disaggregate them, and therefore cannot ignore the

fact that the sender has already received information by other individuals in the past. /

Remark 3. As the two possible protocols in the example differ in finitely many periods – in fact,

the first period only – they correspond to the same graph. In other words, common knowledge
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Figure 2: The final generalized information partitions

of the graph induced by the protocol does not suffice either for consensus: even little asymmetric

information can lead to disagreement. /

Remark 4. Parikh and Krasucki (1990) show that consensus may not be reached through an ar-

bitrary (commonly known) fair protocol, if the signals are union-consistent, but not convex (see

Footnote 3). In our example above, the signal function is clearly convex. Hence, the lack of con-

sensus is not due to a lack of convexity. /

5 Concluding discussion

5.1 Relationship to the existing literature

As we have already mentioned, the literature on communication and consensus, almost unan-

imously assumes common knowledge of the protocol. The only attempts to depart from such

an environment are those of Heifetz (1996) and Koessler (2001), who study a particular form of

asymmetric information about the protocol. Namely, they allow for the possibility that the mes-

sage transmitted by the sender at some t ∈ N fails to be delivered to the receiver with positive

probability. This is a special case of our setting: Recall Example 1, where c does not know whether

a has talked to b or not, at t = 0. Formally, this is equivalent to Heifetz’s “closed eyes case”, where

13



c also considers the possibility that b has failed to receive a’s signal.

Though their research question is similar to ours, the model they employ differs from ours in

that they enlarge the state space by adding time – instead of the protocols space – as the second

dimension. In the previous example, their generalized state space would be such that c cannot

distinguish between times t = 0 and t = 1. That is, according to c the actual time is t = 1 if a has

already talked to b, and t = 0 otherwise. Since, she does not know whether the conversation has

taken place, she cannot distinguish between t = 0 and t = 1.

Obviously, our framework is more general as it can capture any kind of asymmetric informa-

tion about the protocol structure, e.g., recall the example in Section 4: At t = 0 either c talks to

a or d talks to a, implying that b knows at t = 1 that this is the second round of communication,

and therefore using generalizing the state space by simply incorporating time does not allow us

to model b’s uncertainty about the protocol.

5.2 Towards a positive result

As we have already mentioned in Remark 4, the failure to reach an agreement does not rely on

the signals not being convex. Therefore, for a positive result to be established, even stricter con-

ditions on the virtual signal function are required. It is not hard to prove that by extending union

consistency to non-disjoint events, a consensus is always reached. However, such an extension

would rule out many classes of signal functions, such as conditional probabilities. Aumann et

al. (2005) study the class of signals that satisfy this particular property, which they call logical

sure-thing principle, and also clarify its relationship with union consistency. In any case, pro-

viding weaker (than the logical sure-thing principle) sufficient conditions for a consensus under

asymmetric information about the protocols remains an open question for future research.

A Appendix

Below, we show how the generalized information partitions in the example of Section 4 evolve

over time until t = 7. As we have already shown, after t = 7 no further updating occurs, implying

that the individuals never reach a consensus. For the sake of compactness, we present for every

t = 1, ..., 7 only the generalized partitions of individuals who refine at that period.

At t = 0, individual c talks to a according to z1, and d talks to a according to z2. Therefore, a is

the only one who refines her partition to Π1
a.

At t = 1, individual a talks to b according to both protocols, and b refines her partition to Π2
b,

while everybody maintains their current generalized partition.
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At t = 2, individual b talks back to a according to both protocols, and a refines her partition to

Π3
a, while everybody maintains their current generalized partition.
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At t = 3, individual a talks to c according to both protocols, and c refines her partition to Π4
c ,

while everybody maintains their current generalized partition.

At t = 4, individual c talks back to a according to both protocols. Since c’s generalized working

partition is Π4
a-measurable, a does not refine her partition, and therefore Π5

a = Π4
a. Everybody

maintains their current generalized partition.

At t = 5, individual a talks to d according to both protocols, and d refines her partition to Π6
d,

while everybody maintains their current generalized partition.

At t = 6, individual d talks back to a according to both protocols. Since d’s generalized work-

ing partition is Π6
a-measurable, a does not refine her partition, and therefore Π7

a = Π6
a. Everybody

maintains their current generalized partition.

As we have already discussed in Section 4, nobody ever updates her generalized information

partition after t = 7, implying that Πt
i = Π7 for all t > 7, and for every i ∈ N, implying that a

consensus will never be reached.
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